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ABSTRACT This paper proposes 3D-MedGAN, MLU-Net and Info-Max-Net models for overcoming
the lack of labeled data and extracting the multi-level feature of images in medical image segmentation.
3D-MedGAN is aimed at dealing with the lack of labeled data in medical images. It uses a generative
adversarial network to simulate data and then draws newly generated samples from the distribution learned
by the model. Training the segmentation model by mixing generated samples with real samples can
effectively improve the effect of the segmentation model. MLU-Net uses multiple layers of different levels of
convolutional angles to extract feature information from multiple angles in medical images. By adopting the
attention mechanism to fuse the multi-level feature information, MLU-Net is able to improve the feature
expressions and segmentation effect. Info-Max-Net is aimed at handling the noise problem in medical
images. When the information in the images is complex, it is difficult to extract features. Using mutual
information to measure the dependency between the image and the extracted features can effectively reduce
noise in the image and improve the effect of segmentation. At the same time, for solving the problem
that the high dimension of the image makes it difficult to measure mutual information, this paper uses
a lower bound BL-estimator to measure the mutual information between the optimized image and the
extracted features. Therefore, the model can maintain a high convergence speed as it approaches the true
value of mutual information. Considering that the quality of images generated by 3D-MedGAN are not
as good as the original images, we combine the 3D-MedGAN, MLU-Net, and Info-Max-Net to improve
the sensitivity and the power of feature extraction of the hybird model. The effectiveness of our model is
verified through experiments of the 3D-MedGAN, MLU-Net, Info-Max-Net, and the hybrid model over the
LIVER100 dataset.

INDEX TERMS Medical image segmentation, generative adversarial network, mutual information maxi-
mization, multi-scale information.

I. INTRODUCTION
Medical image segmentation is a key and complex step in
the field of medical image processing and analysis. Its key
point emphasizes on the basic step of pathologic localization
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and anatomic structure research. Accurate image segmenta-
tion can provide reliable evidence for clinical diagnosis and
pathology research, assist doctors to establish more accurate
diagnosis and make a better treatment plan. At the same time,
medical image segmentation is complicated. In particular,
automatic segmentation from medical images is a difficult
task, because medical images have high complexity and
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lack of simple linear features. The accuracy of segmentation
results is also affected by volume effect, gray inhomogeneity,
artifacts, the proximity of different soft tissue gray levels, etc.
[1] As a consequence, medical image segmentation remains
to be explored and can be further improved.

Medical image segmentation methods can be broadly
divided into the following categories: (1) threshold-based
segmentation [2]: one or more gray thresholds are calculated
based on the gray characteristics of the image. The gray val-
ues of each pixel in the image are comparedwith the threshold
values, and these pixels are classified into appropriate cate-
gories according to the comparison results; (2) edge-based
segmentation [3]: the gray values of pixels on the bound-
aries of different regions usually vary greatly. If the image
is transformed from spatial domain to frequency domain
through Fourier transform, the edges correspond to the high
frequency part. According to this characteristic, the edge
pixels can be determined first and then connected together
to form the boundary between regions; (3) region based seg-
mentation [4], [5]: This method makes use of the feature of
smooth and uniforms the surface of objects to achieve the
segmentation. Because the smooth surface corresponds to the
region with constant intensity or slowly-changing intensity
in the image, the region with the uniform property can be
separated through the region growth method or the split-
ting and merging method; (4) segmentation based on fuzzy
theory [6]: this method improves the method of ‘‘one-size-
fits-all’’ approach, introduces the concept of ‘‘membership
degree’’ in the fuzzy theory, and divides pixel points into
regions with a high membership degree; (5) segmentation
based on deep learning [7]–[10]: by simulating the abstract
and iterative process in the human visual system through
the convolution neural network, the deep features perceived
by the brain can be extracted. Then the deconvolution layer
samples the deep features and classifies pixels one by one
through the sampling process to complete image segmenta-
tion. Nowadays, deep learning methods have achieved a great
success in medical image segmentation. Despite the success
of deep learning methods, two major problems in medical
image segmentation have been identified:
• There is a serious lack of labeled data in medical images:
Because labeling medical images needs professional
annotation, it requires a considerable level of profes-
sional medical literacy, time and cost to obtain a labeled
medical image data. At the same time, medical images
also involve the privacy of patients, so labeled medical
image data are sometimes unavailable, leading to great
diffculties to develop the medical image segmentation
model;

• The noise and dimensional problem in medical images:
Because of the high dimension and the serious noise in
medical images, it is very diffcult to extract the features
from image data.

To address those two problems, we proposed three
models: 3D-Medical GAN (3D-MedGAN), Multi-Level
U-Net (MLU-Net) and mutual Infomation Maximization Net

(Info-Max-Net). Then, we proposed a hybrid model to aggre-
gate the advantage of these models. Our contributions are
listed as follows.
• In view of the above two problems in medical image
segmentation, we proposed three models, which can
effectively solve the problems of medical image seg-
mentation with insufficient labeled data, multi-scale fea-
ture extraction of medical image and noise in medical
image.

• In order to solve the problem that the image generated
by 3D-MedGAN contains more noise and it is difficult
to extract features, we mixed the three models. By using
Info-Max-Net and MLU-Net, we can effectively extract
the original image and extract features of the generated
image, so as to achieve better segmentation results

• Experimental results of medical image segmentation
based on LIVER 100 dataset demonstrated the effective-
ness of the proposed model and the hybrid model

The brief introduction of these three models can be found
in the next sub-sections.

A. INTRODUCTION TO 3D-MedGAN
The rapid development of deep learning technologies in
the field of medical image segmentation is based on the
acquisition of a large amount of high-quality data. However,
the amount of available medical image data is very limited,
resulting in a major obstaclein applying deep learning tech-
nologies to the medical field. The lack of available medical
image data is embodied in two aspects, one is the lack of
images, while the other is the lack of professional anno-
tations, which directly affects the training model. Aiming
at overcoming the challenge of acquiring training data of
medical images, the proposed solution is to enlarge the train-
ing data set by generating the synthetic simulation samples
through the Generative Adversarial Networks (GAN) [11],
so as to alleviate the problem of insufficient labeled data.

Based on 3D Unet, we propose an end-to-end network
architecture, which can synthesize labelled 3D Nuclear Mag-
netic Resonance (NMR) image data by using the conditional
generative adversarial networks. Users canmodify the dimen-
sion, shape and position of the real data, and then input the
modified annotation into the trained model to get the corre-
sponding Magnetic Resonance (MR) image. We referred to
this model as 3D-Medical GAN.

We used the 3D Unet [12] network as our generatorG. The
batch normalization layer [13] in the lower sample block and
the upper sample block is replaced by the instance normaliza-
tion layer [14]. The batch size of our experiment was set to
1 due to GPU memory limitations. The activation function in
the down-sampling and up-sampling blocks is LeakyReLU.
The activation function for the final output module uses tanh
for the image generation task. Besides, we added the spectral
normalization operation [15] to each convolution layer to
stabilize the training of the entire generative adversarial
networks. The same scheme is applied to the discrimina-
tor D [16] as well. Spectral normalization constrains the
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Lipschitz constant of the whole network by constraining the
spectral norm of the weight matrix at each level. It does
not require additional hyper-parameter adjustments, and the
additional computational cost is low. SimGAN [17] had been
proved as a reliable and effective way to use discriminators to
help generators simulate local features in 2D images. By lim-
iting the size of the receptive field of the convolution kernel,
D identifies the local region of the input image. This method
not only reduces the parameters of the discriminator network
but also enriches the training samples of the discriminator.

B. INTRODUCTION TO MLU-Net
In the field of computer vision, extracting image features is
a crucial issue, which is related to the feasibility of subse-
quent models, and the effectiveness of the classification and
recognition system. In the medical image, there are many
features such as the organ and the lesion in the image. At the
same time, the edge of the medical image is often blurred
and the precision of segmentation is required. To address
this issue, we proposed a model, called MLU-Net, which
used multi-level information and attention for medical image
segmentation. The overall framework adopted by MLU-Net
is based on U-Net networks. It has a symmetrical set of
encoders and decoders on both sides of the network and can
be directly connected by skipping the connection between the
corresponding encoders and decoders. In Figure 1, the first
line is the structure of the encoder and the second line is
the structure of the decoder. The U-shaped structure of the
network and its characteristics of skip connections are the
core of the network. This structure can help the encoder to
extract the deep spatial features with multiple complexities,
and enable the decoder to receive the feature information with
multiple complexities.

FIGURE 1. The framework of MLU-Net.

Our network was improved on the basis of the traditional
U-Net [12] by introducing a special multi-layer attention [18]
unit. Figure 2 shows this multi-layer structural unit. This
structure contains two key technologies, namely, multi-layer
extraction mechanism and attention mechanism. Multi-layer
paths provide encoders with rich semantic information. Each
cell contains several convolution filters, which can improve
the performance of the convolution layer and the efficiency
of the network.

FIGURE 2. The framework of Multi-Level block.

C. INTRODUCTION TO Info-Max-Net
Because ofmedical equipment and operation, medical images
often contain a lot of noise, resulting in a huge obstacle to
the image feature extraction. Aiming at tackling this problem,
we proposed a model, called Info-Max-Net, which captures
useful features and filter noise unsupervised by maximizing
the mutual information [19] between the original image and
the feature coding.

Info-Max-Net consists of two subnets and a bilinear inter-
polation function discriminator. One subnet performs feature
extraction and image segmentation, while the other subnet
and discriminator simultaneously estimates and maximizes
the mutual information between the image and the feature
coding to improve the quality of image deep features. The
Info-Max-Net model can filter the noise of medical images
without supervision, capture the information which is helpful
for classifying the images, and improve the accuracy of image
segmentation.

Info-Max-Net utilizes a typical U-shaped network for fea-
ture extraction and image segmentation. The subnetwork
U-Net consists of a contraction path (to the left) and an
expansion path (to the right). The contraction path follows
the typical architecture of convolution networks, consisting
of three down-sampled modules, each of which contains two
3 × 3 convolutions followed by a Rectified Linear Unit
(ReLU), and a 2 × 2 largest pooled layer. With each down-
sampling step, the number of feature channels is doubled,
and finally the feature coding is obtained. In each step of the
expansion path, the feature spectrum is sampled first, then
2 × 2 deconvolved, and then the number of feature channels
is halved, connected with the feature spectrum obtained from
the corresponding levels in the contraction path, followed by a
linear rectification function through two 3× 3 convolutions.
The boundary pixels should be cropped, since they are lost
during each convolution. Finally, the 1× 1 convolution maps
each pixel to its own category.

The number of categories (including the background) we
split is L, the number of pixels is N , the pic indicates the
probability of predicting that the i-th pixel belong to the c
category, and the gic represents the 0-1 value of whether the
i-th pixel actually belong to the c-th category, then the split
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loss function [20] for the first subnet can be expressed as

DiceLoss =
1
L

L∑
c=1

(
1−

2
∑N

i=1 picgic∑N
i=1 p

2
ic +

∑N
i=1 g

2
ic + ε

)
, (1)

where, ε is a small positive number to ensure that the top
denominator is not 0.

Another subnetwork of Info-Max-Net is the mutual-
information encoder, which still uses U-Net, similar to the
first subnetwork. Input images from the first subnetwork and
other random images are input into the mutual information
encoder, and the last layer of the mutual information encoder
is used as their characteristic spectra.

We linked the feature coding of the matched input image
with the feature spectrum as the positive sample of the train-
ing discriminator and link the feature coding of the input
image extracted from the first subnet with the feature spec-
trum of the other images computed from the second subnet
as the negative sample of the training data. The positive and
negative samples are input into the bilinear function of the
discriminator, and the discriminator calculates the score.

From the specification of the BL-mutual information esti-
mator [21], mutual information is estimated as follows,

EP[log σ (Tθ (x,Eψ (x)))]+EP×P̃[log(1−σ (Tθ (x
′,Eψ (x))))]

(2)

The essence of parameter θ is to train a discriminator
that needs to distinguish the matching between the feature
map and the feature code in the sample. If the discriminator
achieves a high score of (x,Eψ (x)) for a matched image from
a distribution of P, and reaches a low score of (x ′,Eψ (x))
for a mismatched image and encoding (x ′), then the value
of the BL-estimator will approximate to its supremum, thus
approaching to the true value of mutual information.

It is required to find the discriminant function parameter θ
which maximizes the BL-estimator to ensure that the value of
the estimator is close to the true value of mutual information.
It is also necessary to identify the base encoder parameter ψ
which maximizes the BL estimator to ensure that the learned
image encoding is optimal. The parameters θ and ψ can be
determined by the following formula

(θ∗, ψ∗) = argmax
θ,ψ

EP[log σ (Tθ (x,Eψ (x)))]

+EP×P̃[log(1− σ (Tθ (x
′,Eψ (x))))].

If the discriminator Tθ can easily determine whether an
image matches the encoding, then the encoding has a strong
distinction between other images, meaning that the model
captures useful information from the original image and fil-
ters out noise, so it is the encoding we want.

In addition, in order to train both the subnetworks and the
discriminator parameters at the same time, we maximized
the discriminator’s target function, the BL mutual informa-
tion estimator, and equivalent to minimize the discriminant
loss function. Let the number of training samples be M ,
Tθ (x(i), y(i)) denotes the discriminator’s score on the i, and

hi represents whether or not the i sample is actually a value
of 0-1 for a positive sample, 1 for a positive sample, and 0 for
a negative sample, then the loss function of the Info-Max-Net
discriminator can be expressed as a loss function

LBCE = −
1
M

M∑
i=1

[
hi log σ (Tθ (x(i), y(i)))

+ (1− hi) log(1− σ (Tθ (x(i), y(i))))
]
.

Thus, the loss function of the Info-Max-Net is an addition
of the split loss function and the discriminant loss function.
When its gradient drops to 0, the two subnetworks and the
discriminator are well trained.

We use the bilinear interpolation function as the discrimi-
nator of Info-Max-Net. The result of bilinear interpolation is
not linear, but the product of two linear functions. Assuming
that the number of pixels in the feature map is N , the number
of components in the feature code is K , the i-th pixel of the
feature map is xi, and the j-th of the feature code is yj, then
the bilinear function is expressed as follows.

Tθ (x, y) =
N∑
i=1

K∑
j=1

θijxiyj +
N∑
i=1

θi,0xi +
K∑
j=1

θ0,jyj + θ00,

where θij(i ≥ 1, j ≥ 1) is a quadratic parameter, θi,0 and θ0,j
are a single parameter, and θ00 is a constant parameter.

D. EXPERIMENTS OF THREE MODELS
In this subsection, we show the experimental results
of 3D-MedGAN, MLU-Net, and Info-Max-Net.

1) EXPERIMENTS OF 3D-MedGAN
We applied the 3D-MedGAN model to the BraTS15 and
BraTS17 datasets. We trained four 3DUnet models on BraTS
datasets for different modes (T1, T1ce, T2 and FLAIR).
Then these models were used to segment the synthesized MR
images. After that, we compared the differences between the
segmentation results and the labeled images used in the syn-
thesized images. Compared with the commonly used GAN
metrics, such as inception score (IS) and Fréchet inception
distance (FID), the above method can directly evaluate the
effect of data enhancement of these synthetic data in the
segmentation task. These models were still trained using the
Adam optimizer, with a learning rate of 2.0×10−4, β1 = 0.5,
and β2 = 0.999. Based on the BraTS competition criteria,
the segmentation results should be comparedwith the original
label map on three sub-tasks: (1) Intact tumor (necrotic and
unenhanced tumor, enhanced tumor and edema) (2) Tumor
core (necrotic and unenhanced and enhanced tumor), and (3)
Enhanced tumor region. We used dice score as a metric.

The evaluation results are displayed in Figure 3. It is shown
that the quality of the composite image is acceptable and
reliable. Four trained 3D Unet models segmented the ‘‘entire
tumor’’ region of the real image with a dice score, more
than 0.9. For the composite image this index did not drop
significantly, and the four modes on the dice score were
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FIGURE 3. Using 3D Unet to evaluate the quality of the composite image.
The purple, gray, and orange columns represent the ’whole tumor’,
the ’tumor core’, and the ’enhanced tumor’ task dice score, respectively.
Four histograms correspond to four modal ‘T1s’, ‘T1ce ’, ‘T2s’ and ‘FLAIRs’
respectively. The three groups of columns in the diagrams, ‘Unet’, ‘Without
pool’ and ‘With pool’, represent the results of 3D Unet model versus real
data, data synthesized by networks without image buffer pooling and
data partitioning by networks with that mechanism respectively.

close to 0.8. However, due to class imbalance and insufficient
data in the training-generated model, the relatively small
regions of ‘‘tumor core’’ and ‘‘enhanced tumor’’ can not be
well restored in the synthetic image. In T1, T2 and FLAIR
modalities, the ‘‘enhanced tumor’’ scores of MR images were
all lower than 0.4, while in real images the scores were all
higher than 0.6. Compared with the score of 0.92, 0.92 and
0.76 on the real image, the composite image achieved good
scores of 0.78,0.79 and 0.62 on the three regions, respectively.

In the following experiments, we do extensive experiments
to verify whether the performance of the segmentation model
is improved by training false samples and real samples. The
experimental results is shown in Table 1. The experimental
data show that these false samples significantly improve the
performance of brain tumor segmentation network. Besides,
our bogus samples also provide good protection for personal
health information. Even if the sample is synthesized with a
real annotation, it will show a significant change compared
to the real image corresponding to the annotation. It is almost
impossible to identify the owner (patient) of a synthetic image
if it further erases information on the synthetic image that
does not affect tumor segmentation, such as the DICOM
primordial data or the removal of the skull. This means that
the agency that collects the original MR image can train the
3D-MedGAN with the original image, and then share the
sample data from the 3D-MedGAN with researchers outside
the agency without worrying about any disclosure of patient
privacy. To a large extent, it breaks the restriction of the ethics
committee and promotes the sharing of medical data.

2) EXPERIMENTS OF MLU-Net AND Info-Max-Net
We experimented with MLU-Net on the liver image segmen-
tation dataset LIVER 100. The dataset had a total of 100 sam-
ples, of which we used 80 as a training set and 20 as a
test set. Because the volume of the tumor region in each

TABLE 1. Performance (Dice Score) of the segmentation networks trained
by the different data components gained from BRATS17. The first part are
the results of model based on 3D U-Net [22], and the second are those of
Triple-Cascaded-Net [23]. Here, the F is the abbreviation of fake data, and
R is the abbreviation of real data. An obvious increase is presented in 3D
U-Net.

sample is very small, preprocessing is required to balance the
computational resources and the data volume. Firstly, we used
the interpolation algorithm to sample the training set, and
extract the small pieces which contain the tumor region in
the sampled area. Because the deep neural network needs a
large number of training sets, we used random methods to
meet the data requirements. For each set of data, we first
extracted a slice of 48 × 256 × 256, and then input it to the
training network, setting the number of batches to 1. During
the training process, the data were sampled down and cut
into chunks of 48× 256× 256. Eventually, the results of the
network prediction were combined together and interpolated
to the size of the initial state of the previous sample.

We compared the proposedMLU-Net with some represent-
ing models from this year in the task of medical image seg-
mentation and extraction. The results were listed in Table 2.
From this table, we know that our model scored 4.6%,
1.9%, 1.1%, 3.0%, and 5.3% higher than U-Net, U-Net++,
DialResNet, AgNet, and RA-UNet for liver extraction tasks,
respectively. Ourmodel scored 23.7%, 28.9%, 10.5%, 27.4%,
and 23.6% higher than above methods respectively, in the
tumor extraction task. Therefore, our model achieved better
performance than all other approaches in the segmentation
and extraction tasks.

TABLE 2. Performance on LIVER 100 Liver and Tumor data.

We also applied Info-Max-Net to the liver tumor segmen-
tation data set LIVER 100. Data set preprocessing and model
evaluation methods are consistent with those in MLU-Net.

We trained five previously proposed models, U-Net
[24], U-Net++ [25], DialResNet [20], AgNet [26], and
RA-Unet [27], on the LIVER100 dataset with 80% of the
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training data, and 20% of the test data. The parameters
for each model are optimized, and the results are shown
in Table 2. It can be seen that the proposed Info-Max-Net
model had a gap of about 0.05 dice score in liver segmentation
task compared with other models, but it performed better
than any other model in the more difficult tumor location
task. The tumor dice scores of the Info-Max-Net model
increased by 20.7%, 25.8%, 7.5%, 24.3%, 20.6%, compared
with U-Net, U-Net++, DialResNet, AgNet, and RA-Unet,
respectively.The liver dice score of the Info-Max-Net model
is lower than that of the U-Net, U-Net++, DialResNet,
AgNet and RA-UNet, respectively, by 6.9%, 10.8%, 10.0%,
8.3%, and 6.2%. It is concluded that Info-Max-Net is able
to identify tumors more accurately because, by maximiz-
ing mutual information, Info-Max-Net can more accurately
capture the underlying features that help to classify tumors
in different images, and determine their location and size,
compared with the traditional U-Net and its variants.

II. HYBRID OF GENERATIVE ADVERSARIAL NETWORK
AND MUTUAL INFORMATION
Despite the improvement of Info-Max-Net, we also found
that although we used a bilinear discriminator to improve
the generalization ability of the model, the loss function still
oscillated repeatedly during the training process due to the
small amount of training data, and the segmentation effect of
themodel depended on the input sequence of training samples
and other phenomena. If we can use the 3D-MedGAN model
to generate more simulation training images, we can over-
come the above shortcomings, stabilize the training process,
and enhance the generalization ability of the model. This
section introduces the framework of IM-MedGAN taking into
annount the combination of 3D-MedGAN and Info-Max-Net.

This paper uses a two-stage model to integrate
3D-MedGAN and Info-Max-Net, as shown in Figure 4. In the
first stage, we use 3D-MedGAN to augment the training
set. 3D-MedGAN is a generative adversarial network com-
posed of a generator and a discriminator. The generator is a
U-shaped network with an activation function LeakyReLU.
The discriminator is a multi-layer convolutional neural net-
work with a large to small size and a small to large flux.When
training 3D-MedGAN, we input the artificial annotation map
of the medical image into the generator, and the generator
outputs the simulated medical image map that conforms
with the annotation. The generated simulation images and
the real images in the training set are input to the discrim-
inator together, and the discriminator makes a distinction.
During the game between the generator and the discriminator,
the performance of both sides is improved. With the enhance-
ment of the discriminator’s ability to distinguish between real
images and generating images, the generator also gradually
has the ability to generate images that are highly similar to
real medical images. After training, we mixed the simulation
images output by the 3D-MedGAN generator with the real
images in the original training set to obtain a larger training
data set.

FIGURE 4. The framework of IM-MedGAN.

In the second stage, we apply the expanded training set
obtained in the first stage train the Info-Max-Net image
segmentation network, and use the trained Info-Max-Net
encoder to extract the deep-level features of the medical
image. The decoder up-samples the feature code to obtain
the medical image segmentation result. The Info-Max-Net
model consists of two sub-networks, one of which performs
feature extraction and image segmentation, and the other sub-
network estimates the mutual information between the input
image and the extracted features. We add the loss functions
of the two sub-networks and train the entire Info-Max-Net
model by Adam gradient descent method, that is, to simul-
taneously estimate and maximize the mutual information
between the input image and its corresponding feature code to
obtain the data set. The optimal spatial encoding method and
the parameters of the deconvolution layer that upsamples the
feature encoding. After training, we input the medical images
to be segmented into Info-Max-Net, and through the steps of
feature extraction and up-sampling, we obtain the predicted
segmentation maps corresponding to the input images.

The IM-MedGAN hybrid segmentation model takes the
advantages of the 3D-MedGAN and the Info-Max-Net mod-
els to effectively alleviate the problem of insufficient labeled
medical data. At the same time, by maximizing mutual infor-
mation, the quality of image deep features and the accuracy
of image segmentation can be improved.

III. HYBRID OF GENERATIVE ADVERSARIAL NETWORK
AND MULTI-SCALE INFORMATION
In the experiment, we found that even if we add an attention
mechanism to MLU-Net, it adaptively selects locations that
need to be processed with high resolution, but because MLU-
Net has more convolutional layers, the amount of param-
eters to be determined is large, and there are few medical
images with manual annotations. We still need to use the
3D-MedGAN model to generate simulation images to enrich
the original data set. This section introduces a hybrid segmen-
tationmodelMLU-MedGANbased on generating adversarial
networks and multi-scale information.
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FIGURE 5. The framework of MLU-MedGAN.

This section also uses a two-stage model to combine
3D-MedGAN andMLU-Net, as shown in Figure 5. In the first
stage of MLU-MedGAN, we use the 3D-MedGAN model
to synthesize simulation samples to expand the training data
set, to alleviate the problem of insufficient labeled data.
The 3D-MedGAN model restores the continuous distribu-
tion of random data from the discrete distribution com-
posed of limited training data by making the generator
and discriminator in the adversarial network compete with
each other. Sampling is performed on the continuous dis-
tribution to obtain countless labeled data that are distinct
or similar to the real data. In the second stage of MLU-
MedGAN, we input the expanded training set to MLU-Net.
MLU-Net extracts the multi-scale features in the training
image and makes predictions on the categories to which
the image pixels belong at multiple levels. MLU-Net fol-
lows a U-shaped structure. The encoder and decoder are
symmetrically distributed on both sides of the U-shaped
chain, and the corresponding convolution layers contain skip
connections.We set up severalmulti-level units in the encoder
part of MLU-Net, and then use the attention mechanism to
combine the branches of the multi-level units. This attention
mechanism enables the encoder to extract the features of
each level of the medical image with high efficiency. The
decoder of MLU-Net contains multiple deconvolution layers
of different scales, which perform the multi-scale predic-
tion on the category to which pixels belong at different
levels.

The MLU-MedGAN hybrid segmentation model can not
only greatly expand the training data set, improve the training
effect of deep neural networks, but also make multi-scale
predictions by combining features at different levels of the
image to improve the accuracy of image segmentation.

IV. HYBRID SEGMENTATION MODEL BASED ON
MUTUAL INFORMATION AND MULTI-SCALE
INFORMATION (IM-MLU-Net)
The accuracy of the Info-Max-Net model for tumor classifi-
cation is much higher than other models, but its performance
on liver segmentation tasks does not reach expectations. After

analysis, we found that this is because Info-Max-Net only
optimizes the deep-level features, and fails to combine the
shallow-level features of the image for multi-scale prediction.
Medical images often have blurred borders and complex
gradients. The high-resolution information is required to
provide details for accurate segmentation. At the same time,
the human body structure is relatively fixed, and the distribu-
tion of segmentation targets in medical images has a strong
law. The deep low-resolution information can capture the
characteristics of the target and its surrounding environment,
which can be used for segmentation target detection and
recognition. Therefore, a single-scale model with only deep
or shallow features is often incapable of segmenting medical
images. We need to use the MLU-Net model to extract
image information of different scales and different levels to
complete this task. Below we introduce the IM-MLU-Net,
a hybrid segmentation model based on mutual information
and multi-scale.

The fusion method used in this section is different from
the two-stage model. We trained MLU-Net and Info-Max-
Net synchronously, as shown in Figure 6. Specifically, after
the input image passes through the three multi-level atten-
tion modules of the MLU-Net encoder, low-resolution deep-
level information is obtained to provide the relationship
between the segmentation target and its environment. The
high-resolution information of the shallow information of the
image is directly transferred from the encoder to the decoder
of the same height through a jump link, providing more
fine-grained features for segmentation. We input the input
image and other images in MLU-Net to the mutual infor-
mation encoder to extract the feature map. The feature map
of the input image and the matching feature code extracted
by MLU-Net are used as a positive sample for training the
discriminator, while the feature map of other images and the
feature code of the input image are stitched as a negative
sample.

The segmentation loss function of MLU-Net is added to
the discriminative loss function of the mutual information
discriminator. As the overall loss function of IM-MLU-Net,
the entire IM-MLU-Net model is trained by the Adam gradi-
ent descent method. The intuitive explanation of IM-MLU-
Net is that if the mutual information discriminator can easily
determine whether the input image of MLU-Net matches the
feature code, it means that the code has strong discrimination
to other images. Meanwhile, the code can capture the useful
information of the original image and filter out the noise.
We combined the deep features that maximize the mutual
information with other shallow features extracted from the
encoder to predict the category to which the pixel belongs at
each scale.

The IM-MLU-Net model combines the advantages of the
Info-Max-Net model and the MLU-Net model. By maxi-
mizing mutual information, the encoding of the image can
capture the deep features in the image via skip connection
and multi-scale prediction, leading to good classification
performance.
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FIGURE 6. The framework of IM-MLU-Net.

V. HYBRID SEGMENTATION MODEL BASED ON
GENERATING ADVERSARIAL NETWORKS, MUTUAL
INFORMATION, AND MULTI-SCALE INFORMATION
In order to solve the problem that medical image segmen-
tation is lack of medical image data, medical image con-
tains multi-scale information and medical image contains a
lot of noise, we propose a hybrid model, called IM-MLU-
MedGAN, which combines the advantage ofMLU-Net, Info-
Max-Net and 3D-MedGAN.

The structure of the IM-MU-MedGAN model is shown
in Figure 7. Firstly, in order to solve the shortage of labeled
medical data, we used 3D-MedGAN to expand the training
set. 3D-MedGAN synthesizes 3D image data with annotation
by conditional generative adversarial networks. The essence
of 3D-MedGAN training process is the game process between
generator and discriminator. In this process, the performance
of both generators and discriminators has been improved.
With the enhancement of discriminator’s ability to distinguish
real images from generated ones, generators gradually have
the ability to generate images that are highly similar to real
ones. After training, we can modify the existing real data
such as tumor size, and input the modified label map into
the trained generator. The output of the generator accords
with the label. We mixed the simulated image generated by
3D-MedGAN generator with the real image of the original
training set, and therefore achieve the goal of expanding the
training set.

After getting the expanded training set, we use this data
set to train IM-MLU-Net and output the segmentation results
of the test image through the trained model. During the
training phase of the IM-MLU-Net model, we input both real
and synthetic medical images into the hybrid segmentation
network IM-MLU-Net. The MLU-Net’s multi-level attention
mechanism module extracts the features and images of the
input image. The feature is expanded to the original image
size through the deconvolution layer, and the prediction result
of the segmentation is finally output.

We compare the segmentation results output by MLU-Net
with the manually labeled maps to calculate the segmenta-
tion loss function value. The bilinear function discrimina-
tor in the IM-MLU-Net network judges that if the images
and codes in the input samples match with each other, then
high scores are assigned to the corresponding images and

codes, otherwise, low scores are assigned to the mismatched
pairs. The loss function is added to the segmentation loss
of MLU-Net. The Adam gradient descent method is used
to train the segmentation network as a whole so that the
BL-estimator continuously approaches to the true value of
the mutual information. The mutual information between
the feature code extracted by MLU-Net and the interaction
between the input images reaches the upper bound, and at the
same time, the segmentation map predicted by the training
image gradually approaches to the actual artificial labeling
result. After training, we input the image to be segmented into
MLU-Net to get the segmentation result of themedical image.

The loss function used in the experimental training model
in this section is explained as follows. Both the generator and
discriminator of the 3D-MedGAN model use a least squares
loss function. We recorded the input label map of the gener-
ator G as z, where z is obeying the distribution Pz, and the
simulation image generated by the generator as G(z), where
Pz is initially set as a Gaussian distribution. For obtaining the
true distribution of the liver tumor image x that the generator
finally learns to be recorded as Pdata. The following function
is adopted.

L3D-MedGAN(D) =
1
2
Ex∼Pdata(x)[(D(x)− b)

2]

+
1
2
Ez∼Pz(z)[(D(G(z))− a)

2],

Among them, a and b are used to mark generated images
and real images, respectively. In the experiment, we set a as a
matrix with dimensions w× h× d , where all elements are 1,
and set b as a zeromatrix with the same size. The loss function
of generator G in the 3D-MedGAN model can be expressed
as

L3D-MedGAN(G) =
1
2
Ez∼Pz(z)[(D(G(z))− c)

2],

Among them, c is the threshold matrix for G to make
D believe that the generated image is a real one. In the
experiments in this section, it is set to be the same as a, with
dimensions of w× h× d , and all elements are 1.
MLU-Net uses the Dice loss function. We recorded the

number of divided categories (including the background) as
L, the number of pixels is N , and pic means that the i th pixel
is predicted to belong to c. Probability of each category gic is a
0-1 value representing whether the i th pixel actually belongs
to the c th category, then the segmentation loss function of
MLU-Net can be expressed as

LMLU-Net =
1
L

L∑
c=1

(
1−

2
∑N

i=1 picgic∑N
i=1 p

2
ic +

∑N
i=1 g

2
ic + ε

)
,

where ε is a small positive number to ensure that the denom-
inator is not zero.

The bilinear function discriminator used to estimatemutual
information uses a binary classification entropy loss function
with logical sterics (LBCE), and the number of training sam-
ples isM , Tθ (x(i), y(i)) represents the discriminator’s score on
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FIGURE 7. The framework of IM-MLU-MedGAN.

the i th sample, and hi is a 0-1 value, representing whether
the i th sample is actually a positive sample. For positive
samples it is 1, while for negative samples it is 0. Then the
loss function of Info-Max-Net discriminator can be expressed
as [28]

LInfo-Max-Net(D) = −
1
M

M∑
i=1

[
hi log σ (Tθ (x(i), y(i)))

+(1− hi) log(1− σ (Tθ (x(i), y(i))))
]
,

Among them, δ(z) is a Sigmoid function, which can be
expressed as

δ(z) =
1

1+ exp(−z)
,

The above equation converts the score Tθ (x, y) from the
discriminator to a 0-1 value.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL DATASETS AND PREPROCESSING
To show the effect of the hybrid segmentation model,
the dataset of the liver tumor image segmentation on the
LIVER100 are used. To ensure that the experiment runs
smoothly and the test results are true and accurate, we first
perform the following preprocessing steps on each 3D image
in the LIVER100 dataset:

1) Adjusting the size of the liver tumor slice to 256*256 to
ensure that the pooling operation of the MLU-Net
model can be applied to layers with the same size on
the horizontal and vertical axes, thereby seamlessly
stitching the segmentation result map;

2) Counting the gray values of all images and truncating
the part of the gray range outside 0.5%-99.5% for the
purpose of eliminating outliers in the image;

3) Interpolating the labeled map of the liver tumor by
nearest-neighbor algorithm, that is, the gray value of
the pixel closest to the position of the pixel to be valued
is taken as its gray value;

4) Finding the start and end slices of the liver region,
expand outward in two directions, and randomly
extracting from the 48 slices which contain the liver as
the input to the hybrid segmentation model. If the num-
ber of slices containing liver is less than 48, then these
data are directly discarded. In fact, it rarely happens
that three-dimensional images with less than 48 slices
of liver are encounted in the experiments.

B. EXPERIMENTAL SETTINGS
The liver tumor images in the LIVER100 dataset are used
and they are divided into three categories: background, liver,
and tumor. Similar to the previous experiments of the MLU-
Net model and the Info-Max-Net model, the experimental
environment of the experiments in this section is conducted
in Linux with TensorFlow 1.14.0 and Python 3.7.4.

The GPU model is GeForce GTX 1080Ti, and the test
speed is 6.29 seconds per image. To maximize the use of
GPU memory, we tried to use larger input tiles, so set the
batch size to 1, which was a single image. We used the Adam
optimization algorithm to iteratively update the Info-Max-
Net network weights. The initial learning step size is 10−4.
After training 1500 batches, the loss function value of the
test set decreases slowly and the step size is reduced. Thus,
the learning steps size is adjusted to one-tenth of the original,
which is 10−5.

C. EXPERIMENTAL RESULTS
In this section, we will show the results of image segmenta-
tion on the LIVER100 dataset based on a hybrid segmentation
model IM-MLU-MedGAN.

First, we augment the training data set with 3D-MedGAN.
Then, we mixed the generated simulation images with 80%
images in the LIVER100 dataset as the training set for
segmentation network; the remaining 20% images of liver
tumors in the LIVER100 dataset were used as the test set
for this experiment. The training curve of the IM-MLU-
MedGAN model’s loss function during training is shown
in Figure 8. It can be seen from the Figure 8 that the loss
function value had dropped to less than 2 when completing a
few batches of training, and the amplitude of the loss function
curve is stable after 1500 batches. In the end, after a total
of 3,000 batches of training, the value of the loss function
stopped falling, and the model converged.

We used the dice score to quantitatively evaluate the
segmentation accuracy of IM-MLU-MedGAN. The possible
value of the dice score of the liver or tumor is between 0-1.
The higher the degree of coincidence between the predicted
result and the actual label, the larger the dice score will be.
The average liver dice score of IM-MLU-MedGAN on the
entire test set was 0.7913, and the average tumor dice score
was 0.3902.

In order to verify the effectiveness of the hybrid segmen-
tation model, we compared the segmentation results pre-
dicted by the IM-MLU-MedGAN model with some other
recently proposed models. Each model is based on the

VOLUME 8, 2020 118965



Y. Sun et al.: Hybrid Segmentation Algorithm for Medical Image Segmentation

FIGURE 8. MLU-MedGAN model training curve.

TABLE 3. IM-MLU-MedGAN hybrid model and other models for liver
segmentation and dice score of tumor detection on LIVER100 dataset.

LIVER100 dataset. The tested dice scores are shown in the
Table 3, where the parameters of each model have been
adjusted to the optimum through grid search. The tumor
dice score of the IM-MLU-MedGAN model is better than
U-Net, U-Net++, DialResNet, AgNet, RA-UNet, Info-Max-
Net, MLU-Net, increased by 34.6%, 40.3%, 20.2%, 38.7%,
34.5%, 11.5%, 8.8% respectively, an average improvement
of 33.7% over the current popular image segmentation mod-
els. IM-MLU-MedGAN model’s liver dice score is higher
than these seven models by 13.0%, 8.3%, 9.2%, 11.3%,
13.8%, 21.3%, 8.1%, which is 11.12% on average. From this
we can see that the usage of 3D-MedGAN to supplement
the data, combined with using multi-scale information, atten-
tion mechanism and mutual information maximization can
effectively improve the quality of feature extraction and the
medical image segmentation.

D. ABLATION EXPERIMENT
The IM-MLU-MedGAN hybrid segmentation model is
mainly composed of 3D-MedGAN, Info-Max-Net, and
MLU-Net. In order to explore the impact of these three
parts on the hybrid model, we combine these three parts in
pairs to get the IM-MLU-Net model, IM-MedGAN model
and MLU-MedGAN model. Segmentation results of medical
images by combining the Info-Max-Net model and MLU-
Net model, as well as three mixed models of IM-MLU-Net,
IM-MedGAN and MLU-MedGAN, with our final IM-MLU-
MedGANmodel are compared. Through comparison, we can
evaluate the impact of each part of the IM-MLU-MedGAN
hybrid segmentation model on the segmentation effect.

Figure 8, 9, 10 and 11 show the loss curve of IM-MLU-
MedGAN, IM-MLU-Net model, IM-MedGAN model and
MLU-MedGAN model during training. It can be seen from

FIGURE 9. IM-MLU-Net model training curve.

FIGURE 10. IM-MedGAN model training curve.

FIGURE 11. MLU-MedGAN model training curve.

these figures that the loss function of the IM-MLU-Net model
and the IM-MedGANmodel are relatively similar. The loss is
higher at the beginning, then decreases rapidly, and gradually
stabilizes. In the MLU-MedGANmodel, the value of the loss
function is not high at the beginning, but the loss oscillation
is more serious afterward.

The dice scores of each independent model and their mixed
models for liver segmentation and tumor detection on the
LIVER100 dataset are shown in Table 4. Based on the inde-
pendent model, the 3D-MedGAN model is introduced to
expand the training data set, which can improve the perfor-
mance of the model on both liver segmentation and tumor
detection tasks. The IM-MedGAN hybrid model improves
the tumor dice score compared to the Info-Max-Net model
alone. It was increased by 8.9%, the liver dice score was
increased by 19.8%, and the MLU-MedGAN model was
increased by 3.6% compared with the tumor and liver dice
scores of the MLU-Net model alone. It can be seen that
the improvement effect of 3D-MedGAN on Info-Max-Net
is more significant than that on MLU-Net. We analyze that
the reason is that Info-Max-Net uses U-Net [24] for feature
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TABLE 4. The independent models and their mixed models proposed in
this paper perform liver segmentation and dice score of tumor detection
on the LIVER100 dataset.

FIGURE 12. Dice scores for liver segmentation and tumor detection on
the LIVER100 dataset with independent models and their hybrid models.

extraction and image segmentation, while MLU-Net Then,
a multi-level attention mechanism is introduced based on the
classic U-Net, so the features of different levels of the image
can be more efficiently learned, and thus the sensitivity to the
size of the training data set is not as strong as the Info-Max-
Net model.

Among the two-part hybrid segmentation model, the
IM-MLU-Net model has the highest segmentation accuracy.
It is very close to the dice score of the segmentation result of
the IM-MLU-MedGAN model. This shows that Info-Max-
Net optimizes deep-level features. It is very suitable for com-
bining with MLU-Net’s utilization of multi-scale features.
MLU-MedGAN has the lowest dice score in the hybrid seg-
mentation model. From the loss function curve of our model,
we can observe that our model have been trained well and
stable. Combined with the analysis of the loss function curve,
we believe that the main reason is that the loss oscillation
of the MLU-MedGAN model is serious in the later period,
which makes the model’s convergence effect poor, so the
model’s effect cannot be achieved and cannot outperforms
other hybrid models.

The dice score of the IM-MLU-MedGAN model is the
highest of all the models we have tested, and it’s tumor
dice score is higher than the IM-MLU-Net model, IM-
MedGANmodel, and MLU-MedGANmodel by 2.2%, 2.4%
and 5.0%, with liver dice score increased by 0.8%, 1.3%,
4.3%. The above data shows that combining any of our pro-
posed 3D-MedGAN, Info-Max-Net, and MLU-Net models
with other models has a positive effect on improving the
accuracy of medical image segmentation. The most obvious
improvement is the introduction of Info-Max-Net to estimate
and maximize the mutual information between the image

and the feature code. The IM-MLU-MedGAN model has a
tumor dice score of 11.5% higher than the Info-Max-Net
model alone, and a liver dice score of 21.3% higher than the
tumor dice score of the MLU-Net model alone. The score is
increased by 8.0%. Experimental data show that the improve-
ment of image segmentation models cannot be limited to only
one aspect. It can only alleviate the lack of training data at
the same time, improve the feature extraction efficiency of
the convolution layer, use the multi-scale features of medical
images, and consider the statistical significance of feature
coding, to improve the effect of image segmentation.

VII. CONCLUSIONS
In this paper, we proposed 3D-MedGAN,MLU-Net and Info-
Max-Net. The 3D-MedGAN can enrich the training data set
by generating fake images via adversarial learning, improving
the segmentation performance greatly. Meanwhile we use the
discriminator Semi-GAN to make the training process more
stable. MLU-Net introduces a multi-level block to extraction
different level features of the medical image via attention
mechanism. Info-Max-Net enables the encoder of image to
capture the deep features in medical images that are bene-
ficial to classification and ignores the noises in the medical
images. Then, we proposed a hybrid model, called IM-MLU-
MedGAN, to effectively alleviate the lack of labeled data and
feature extraction in the field of medical image processing
by integrating the 3D-MedGAN, the Info-Max-Net and the
MLU-Net models. We conduct experiments on the LIVER
100 dataset, and from experimental results we can see that
IM-MLU-MedGAN model can achieve better performance
than Info-Max-Net, MLU-Net, and other popular deep learn-
ing models on medical image segmentation tasks, which
verified the effectiveness of IM-MLU-MedGAN.
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