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ABSTRACT Siamese network based visual tracking has drawn considerable attention recently due to the
balanced accuracy and speed. This type of method mostly trains a relatively shallow twin network offline,
and measures the similarity online using cross-correlation operation between the feature maps generated
by the last convolutional layer of the target and search regions to locate the object. Nevertheless, a single
feature map extracted from the last layer of shallow networks is insufficient to describe target appearance,
as well as sensitive to the distractors, which could mislead the similarity response map and make the tracker
easily drift. To enhance the tracking accuracy and robustness while maintaining the real-time speed, based
on the above tracking paradigm, three improvements including reform of backbone network, fusion of
hierarchical features and utilization of channel attention mechanism, have been made in this paper. Firstly,
we introduce a modified deeper VGG16 backbone network, which could extract more powerful features
contributing to distinguishing the target from distractors. Secondly, we fuse diverse features extracted from
deep layers and shallow layers to take advantage of both semantic and spatial information of the target.
Thirdly, we incorporate a novel lightweight residual channel attentionmechanism into the backbone network,
which expands the weight gap between different channels and helps the network pay more attention on
dominant features. Extensive experimental results on OTB100 and VOT2018 benchmarks demonstrate that
our tracker performs better in accuracy and efficiency against several state-of-the-art methods in real-time
scenarios.

INDEX TERMS Visual tracking, Siamese network, channel attention mechanism.

I. INTRODUCTION
Visual tracking, as one of the fundamental tasks in com-
puter vision, is to estimate the location of an arbitrary
object in a video sequence, given only target position in
the first frame. It has been widely used in many applica-
tions such as video surveillance [1], autonomous driving [2]
and human-computer interaction [3]. Some significant break-
throughs have beenmade in the past decade, it still facesmany
challenges like background clutters, object occlusions, and
deformation.

Recently, convolutional neural networks (CNNs) have
demonstrated their superior performance in various visual
tasks such as image classification [4], object detection [5],
and semantic segmentation [6]. The features extracted
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by CNNs are dependent on large-scale training data,
and contain rich high-level semantic information effec-
tive for distinguishing the targets. Some of the tracking
approaches integrate convolutional features into correlation
filter framework [7]–[9], and achieve great improvements
compared to those which utilize the traditional hand-craft
features [10]–[12]. However, the CNNs utilized by the track-
ers based on the correlation filter are originally designed for
image classification tasks, which means the extracted feature
representation of the target is not fully suitable for visual
tracking. Moreover, these deep trackers cannot run in real
time.

To further exploit the representation capabilities of CNNs
adaptive to tracking task, in recent years, trackers based on
Siamese networks have achieved considerable popularity in
tracking community due to their real-time speed and com-
petitive accuracy. The typical framework of these trackers is
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that a Siamese network is trained offline with abundant image
pairs first, and the similarity between the target regions and
search regions is calculated. The location with the highest
response is the estimated object position. As the pioneering
work for this paradigm, SiamFC [13] adopts a fully convolu-
tional Siamese architecture followed by a cross-correlation
operation between the reference patch and the candidate
patches in search regions. SiamFC is highly efficient due to its
lightweight network without model updating scheme during
tracking.

Recently, in order to strengthen the power of the feature
representation extracted by the original Siamese frame-
work, many Siamese based tracking approaches have been
developed and have achieved state-of-the-art performance.
SA-Siam [14] constructs a twofold Siamese network, includ-
ing an appearance branch and a semantic branch to improve
the generalization capability of SiamFC. He et al. [15] pro-
pose a spatial masking mechanism to prevent the tracker
from drifting to the salient objects in the background.
Zhu et al. [16] improve the quality of the training data and
design a distractor-aware module to enhance the discrimina-
tion of the tracker. The SPM-tracker [17] builds two modules,
one is a coarse matching module aiming at strengthening
the robustness of a tracker and the other is a fine matching
module to enhance the discrimination power. The two blocks
are connected in a series-parallel manner and the tracking
performance is superior.

However, the above advanced methods still have some
major limitations. Firstly, the backbone architecture adopted
in these trackers is the classical AlexNet [4], a relatively
shallow network, of which the output cannot capture the
powerful feature representation of the target, and the tracker
lacks of discrimination in the presence of similar distractors.
Secondly, compared to the modern deep networks, AlexNet
contains only five convolutional layers and cannot benefit
from multi-layer feature fusion. In addition, only the features
extracted from the last convolutional layer which focus on the
semantic abstraction are utilized, in the trackers above. How-
ever, the spatial structure, which contributes to distinguishing
the target from background, is ignored. Thirdly, different
channels from the same convolutional layer are employed to
describe the target from different aspects, which may lead
to the importance gap between channels, i.e., some chan-
nels will learn more powerful features while others are less
useful.

To overcome the above issues and unveil the power of the
deeper network for real-time visual tracking, in this paper,
we propose a simple and efficient deep architecture named
HA-SaimVGG, which combines a hierarchical feature fusion
strategy with a lightweight channel attention mechanism in
the deeper network. Firstly, we introduce a modified deep
VGG [18] network as our feature extractor, which has more
powerful discriminative capability compared with the orig-
inal shallow AlexNet. Secondly, we impose offline trained
weights on response maps generated by deep layers and
shallow layers in backbone network, making use of both

semantic and spatial information of the target, to provide a
high-quality response map and improve the robustness of the
tracker. Thirdly, we equip the network with a lightweight
residual channel attention mechanism, which could enlarge
the importance gap between different channels in the same
layer, and make the network pay more attention on dominant
features.

In summary, The main contributions are summarized as
follows:

1) A novel end-to-end Siamese architecture, which inher-
its the merits of the deeper VGG network, multi-layer
feature fusion and attentionmechanism, is proposed for
high-performance real-time visual tracking.

2) A hierarchical feature fusion strategy, which takes
advantage of both semantic and spatial information
of the target, is utilized to enhance the discriminative
capability of deep networks and improve the robustness
of the tracker.

3) A residual channel attention mechanism, which is
lightweight and could distinguish important chan-
nels to emphasize informative features and suppress
less useful ones, is incorporated into the backbone
network.

4) Extensive experiments on OTB100 and VOT2018
benchmarks are conducted to demonstrate the perfor-
mance in real-time scenarios.

II. RELATED WORK
A. SIAMESE NETWORKS FOR VISUAL TRACKING
Trackers based on Siamese networks have achieved great
development in recent years. Tao et al. [19] first intro-
duce Siamese networks into tracking domain. They train
a Siamese network to find a candidate region that best
matches the original target appearance. Specifically, the ini-
tial target region will pass through one branch of the net-
work and many candidate patches go through another, and
the most similar candidate is determined by the matching
function. However, their approach(SINT) is not real-time
due to the utilization of optical flow. Held et al. [20]
present GOTURN tracker, which directly regresses the
locations of the target and could reach at 100 FPS on
GPU, while the accuracy is not satisfied. Different from
SINT, Bertinetto et al. propose a novel fully-convolutional
Siamese network (SiamFC) [13] which trains the network
offline with large-scale ILSVRC2015 (ImageNet Large Scale
Visual Recognition Challenge) dataset [21] and introduce the
cross-correlation layer to measure the similarity of the input
pairs online. SiamFC could run at 86 FPS on GPU and main-
tain the competitive accuracy, which immediately attracts
great concern in the tracking field. Guo et al. introduce
a dynamic Siamese architecture (DSiam) [22] that updates
the model online to adaptive to the variations of the tar-
get. Similarly, UpdateNet [23] addresses the model updating
problem by training an extra network to estimate the best
template for the next frame, which reduces the loss of speed.
SiamRPN [24] combines a Siamese network with a region
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proposal network(RPN) [5] to better handle scale variation
of the target. In our approach, we take advantage of real-time
speed in Siamese networks, and develop the network archi-
tecture and inference process on this basis.

B. HIERARCHICAL FEATURES FUSION
Different layers in a CNN could extract complementary infor-
mation of the object. For instance, the former layers focus on
the more fine-grained spatial details of the object whereas the
latter layers could capture more high-level semantic informa-
tion with low spatial resolution. Recently, many researches in
tracking domain have exploited the way to fuse multi-layer
features and obtained favorable results. Ma et al. [7] learn
the correlation filters by utilizing the third, fourth and fifth
convolutional layers in VGG19 network to extract the object
description. Wang et al. [25] build a specific network and
a general network based on the fourth layer and last layer,
respectively. The heat maps generated from these two sub-
networks could be adaptively fused to locate the target.
The tracker in [26] combines the complementary features,
the deep features help to distinguish the target from noisy
background and the shallow features provide the appear-
ance information of the object. Fan and Ling [27] cascade
a sequence of RPN modules from deep high-level to shallow
low-level layers in a Siamese network, which gains better per-
formance on the basis of SiamRPN. Kuai et al. [28] propose
a Hyper-Siamese architecture to aggregate the hierarchical
feature maps with a skip-layer connection and constitute the
hyper-feature representation of the target. In this paper, we are
motivated by this merit to exploit multi-cues of the target for
effective tracking.

C. ATTENTION MECHANISMS
As the new block of neural networks, attention models have
spread to many visual tasks [29]–[31], which could reduce
the irrelevant information and emphasize the significant ones.
For visual tracking, Gao et al. [32] incorporate a novel
cross-attentional module into Siamese network, and enhance
both discriminative and localization capabilities of feature
maps. Li et al. [33] introduce a encoder-decoder attention
module which squeezes the feature maps first and builds the
relationships between each channel in a Siamese network,
realizing the filter for different features. Wang et al. [34]
strengthen the feature representation for the Siamese archi-
tecture by integrating different kinds of attention mechanisms
including general attention, residual attention and channel
attention, resulting in the great alleviation of over-fitting.
Gao et al. [35] utilize a novel hierarchical attentional module
with long short-term memory and multi-layer perceptrons to
effectively facilitate visual pattern emphasis, and learn the
reinforced attentional representation for accurate target object
discrimination and localization. In terms of these insights,
this paper proposes a lightweight residual channel attention
module to help the backbone extract more discriminative
features.

III. PROPOSED APPROACH
In this section, three improvements including deeper feature
extraction network, feature fusion strategy and channel atten-
tion mechanism in our tracker are introduced.

A. OVERALL ARCHITECTURE
Our HA-SiamVGG takes SiamFC as a basic framework,
which formulates tracking as a template matching task
between the exemplar image z and the candidate patch x in
a search region using cross-correlation as

fθ (z, x) = ϕθ (z) ? ϕθ (x)+ b · 1 (1)

where ϕθ (·) denotes a convolutional feature embedding with
parameters θ , b · 1 denotes a bias term and ? is the
cross-correlation operation. The output of Equation 1 reflects
the similarity between the input image pairs and the maximal
value matches with the estimated target position.

In our work, we take full advantage of the deeper net-
work VGG to learn a more discriminative feature represen-
tation, equipped with a hierarchical feature fusion strategy
and a lightweight residual channel attention mechanism for
real-time tracking. The overall network architecture is shown
in Fig.1.

FIGURE 1. Overall network architecture of the proposed HA-SiamVGG
tracker. Different components of the modified VGG16 are illustrated in
different colors. We first utilize hierarchical features extracted from the
last layer and the first crop layer in the 4th block to generate two
response maps, then, we fuse these two maps by a convolutional
operation to provide a more robust response map. Meanwhile, the last
layer is equipped with a lightweight channel attention module to further
strengthen the dominant features.

B. DEEPER BACKBONE
Aswe know, the increasing depth of networks is beneficial for
elevating model capability [36]. However, a straightforward
replacement with original VGG cannot bring improvement
and even lead to substantially drops. We analyze the Siamese
framework and identify that the padding operation and the
network stride are the two dominant factors of performance
degradation.
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Padding operation will bring potential position bias.
Especially, when the target moves to the edge of the image.
If the network contains padding operation, as shown in the
Fig.2, the embedded features of the exemplar will include
both the original target patch and additional padding regions.
Whereas for the candidates in the search image, some of them
are the features only extracted from themselves(blue regions
in Fig.2), and some of them could contain padding regions
plus themselves(orange regions in Fig.2). Thus, it leads to an
inconsistency between the embedding features of the target in
different search regions, and results in an inaccurate similarity
reflection of the final output between input pairs. To address
padding interference, we crop out the outermost features
affected by padding operation of the feature map [37].

FIGURE 2. Padding influence. In the search image, when the target move
to image borders, some candidate regions only contain themselves(blue
regions) whereas some contain both themselves and outer padding
regions(orange regions), which lead to an inconsistency between the
embedding features of the target at different positions.

The network stride of the original VGG16which has 5max
pooling layers is set to 32, whereas tracking task aims to
localize the object precisely instead of classification, such
a big stride could result in a low spatial resolution of the
last layer, which is insufficient to locate the target accurately.
Thus, we reserve the first three max pooling layers, i.e., we
narrow the stride to 8, with regards to accuracy and efficiency.

C. FEATURE FUSION STRATEGY
In SiamFC framework, the quality of the response map plays
a critical role in position estimation. However, due to the
limited information extracted by the AlexNet which contains
only five convolutional layers, shallow network based track-
ers could hardly benefit from hierarchical feature fusion strat-
egy. Thus, the response map is not discriminative and easily
distracted. In this paper, we replace AlexNet with a deeper
modified VGG16 network and integrate multi-layer cues to
improve the quality of the final response map. As illus-
trated in Fig.1, we utilize features extracted from the last
layer and the first crop layer in the 4th block and generate
two response maps. Furthermore, these two response maps
including both semantic and spatial information can measure
the similarity between input pairs from more perspectives.
Then, we concatenate these two maps and fuse them through

FIGURE 3. Channel attention module. H, W, C represents the height,
width and number of channels for features, respectively. GAP means
Global Average Pooling layer to provide a channel-wise descriptor. Conv
denotes the one-dimensional convolution to build connections between
adjacent channels. σ is the sigmoid activation.

a convolutional operation with kernel size set to one. Thus,
different from some trackers combining response maps in
an empirical manner [7], [38], that is to say, their weighting
coefficients are defined by manual adjustment, our approach
is data-driven and end-to-end. Our expectation is that the
network can learn the robust weighting coefficients through
training phase, instead of manually fine tuning on small test
datasets.

D. CHANNEL ATTENTION MECHANISM
In order to further efficiently strengthen the robustness of
extracted features in the complex scenario during visual
tracking, for instance, the backgroundwithmany noises could
lead to a drifted tracker, a novel lightweight residual channel
attention mechanism is proposed. Instead of building sophis-
ticated relationships for one channel with all other channels,
which uses fully connected layers leading to higher model
complexity and computational burden [29], [30], we focus on
the interaction between a single channel and its neighbors.
As shown in Fig.3, the extracted features are firstly passed
through a global average pooling layer to provide a layer-wise
descriptor, followed by an one-dimensional convolution (1D
Conv) aiming to build connections between adjacent chan-
nels, then, a gating unit with a sigmoid activation is employed
to calculate weights for different channels,

f (x) =
1

1+ e−x
(2)

where Equation 2 represents the sigmoid function, x denotes
the features embedded after 1D Conv with size of 1 × 1×C,
C is the number of channels. Then, the calculated weights
are imposed on the input features in a channel-wise man-
ner. Lastly, we adopt the residual architecture by adding the
weighted features to the original input,

F̃i = wi × Fi + Fi, i = 1, 2, . . .C (3)

where wi represents the weight for each channel, Fi denotes
the original features extracted by each channel, and F̃i denotes
the features equipped with attention mechanism. The number
of parameters for our attention module is k, which equals
to the kernel size of 1D Conv, however, the number in [29]
and [30] is larger than C2. Thus, our method could signif-
icantly reduce the number of parameters. It is worth noting
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TABLE 1. Detailed backbone configuration of HA-SiamVGG.The first column represents the name of each layer, followed by four columns representing the
parameters setting of the convolution or maxpooling operation. The last two columns represent the size(height,width and number of channels) of
exemplar and search region after its corresponding layer operation. This network configuration corresponds to Fig.1, the layer name represents the order
of this operation. For instance, Conv1-1 denotes that this layer is the first convolutional layer in the first block, Crop1-1 denotes that this layer is the first
crop operation in the first block, MaxPool1 denotes that this is the first maxpooling operation.

that our channel attention mechanism resembles the ECA-
Net [39], can not only widen the activation gap between
different channels, but also retain the capacity of the original
features. In HA-SiamVGG, we utilize our attention block on
the features extracted from the last convolutional layer, which
further strengthens the semantic level of features.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we first provide the implementation
details including the detailed backbone configuration of
HA-SiamVGG, and then evaluate the performance of our
tracker on OTB100 [40] and VOT2018 [41] benchmarks,
lastly, we carry out ablative studies to analyze the effec-
tiveness of the proposed feature fusion strategy and channel
attention mechanism.

A. IMPLEMENTATION DETAILS
The detailed backbone configuration of HA-SiamVGG is
presented in Table 1.

The proposed tracker is trained on the dataset of
Got-10K [42] which contains about 10000 video sequences
with 1.5 million annotated axis-aligned bounding boxes.
In the training phase, we apply the stochastic gradient descent
withmomentum of 0.9 and theweight decay of 0.0005 to train
the network. The loss function is defined as

l(y, v) = log(1+ e−yv) (4)

where v is the estimated score which represents the similarity
of each exemplar-candidate pair, y is the ground-truth label
and y ∈ {−1,+1}. Different candidate regions have different
scores, and constitute a map of scores D. We define the loss

of a score map to be the mean of the individual losses,

L(y, v) =
1
D

∑
u∈D

(l(y(u), v(u))) (5)

where y(u) ∈ {−1,+1} denotes a true label for each position
u ∈ D in the score map. The convolutional layer parameters
of our network are initialized with the weights of VGG16 pre-
trained on ImageNet. The model is trained for 50 epochs in
total using mini-batches of 8 and the learning rate exponen-
tially decays from 10−2 to 10−5. The kernel size of 1D Conv
in channel attention module is set to 3.

For online tracking, as shown in Table 1, the size of tem-
plate and search region are 127× 127×3 and 255× 255×3,
respectively. The input image pair is fed into each branch
of the network and the size of score map is 17, where the
position of maximal value represents the center of the target.
The channel attention mechanism is used only in the first
frame to extract more powerful features of the exemplar.
Scale variation of the target is estimated by processing the
search image at three scales with a fixed aspect ratio that is
set to 1.0375.

All the experiments are implemented in Pytorch1.1.0 with
an Intel i7-8700 CPU, a NVIDIA GeForce GTX 1070 GPU
and the RAM is 16g.

B. RESULTS ON OTB100
OTB100, a widely-used tracking benchmark, contains
100 fully annotated sequences and utilizes precision score
and AUC score as two standard evaluation metrics [40]. Pre-
cision score calculates the Euclidean distance error between
the center positions of tracking results and ground-truth. AUC
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score measures the overlap rate, i.e., the intersection and
union of the tracking results and ground-truth. Following
the OTB100 benchmark settings, we compare our tracker
with the other seven state-of-the-art trackers using a one-pass
evaluation(OPE) strategy.

1) OVERALL PERFORMANCE ANALYSIS
We select 7 recent Siamese based tracking approaches
including SiamFC, SiamTri [43], UDT+ [44], CIRseNet22-
FC [37], SiamRPN [24], SA-Siam [14], TADT [45] to com-
pare with our HA-SiamVGG. Fig.4 illustrates that our tracker
achieves the best performance in both precision plot and suc-
cess plot. Compared with original SiamFC, HA-SiamVGG
obtains relative improvements of 12.3% in precision score
and 8.6% in AUC score. Furthermore, our method surpasses
the SiamRPN tracker by 4.3% and 3.1% in precision plot
and success plot, respectively. Different from SA-Siamwhich
builds semantic branch and appearance branch, our architec-
ture is more concise and powerful, the feature fusion strategy
could consider appearance and semantic information of the
target simultaneously and the attention mechanism devel-
ops the discriminability of the semantic features, thus, our
algorithm achieves better results. It is worth noting that our
tracker has a 3.5% improvement in AUC score compared with
CIResNet22-FC, which is a recent novel method that uses
deep ResNet [36] as its backbone equipped with CIR unit.
The achievements can be attributed to the deeper network
combined with hierarchical features and attention mecha-
nism, making HA-SiamVGG robust to challenging scenarios.
Moreover, our tracker can run at a speed of 40 FPS on GPU
on this benchmark.

FIGURE 4. The overall precision plot(a) and success plot(b) with
8 trackers on OTB100 benchmark. The digit in the legend denotes the
precision score and AUC score, respectively. The proposed HA-SiamVGG
performs best.

2) ATTRIBUTE ANALYSIS
In order to comprehensively compare our tracking algorithm
with others, we evaluate trackers using 11 annotated attributes
onOTB100 benchmark. Fig.5 and Fig.6 present precision plot
and success plot on each challenging attribute, respectively.
In Fig.6, our HA-SiamVGG performs best in 9 challenges
including fast motion, motion blur, deformation, illumina-
tion variation, in-plane rotation, low resolution, out-of-plane
rotation, out of view and scale variation. Compared with

other Siamese based trackers, the advantage of our tracker
is obvious. Especially, our method improves the baseline
algorithm SiamFC in a large margin on every challenging
factor. In Fig.5, our approach obtains 0.996 in precision
score under the challenge of low resolution, which means
almost every frame regarding with this attribute can be accu-
rately tracked. Moreover, it can be seen from both Fig.5 and
Fig.6 that combining feature fusion strategy and channel
attention mechanism helps improve the robustness of the
tracker, the CIRseNet22-FC tracker which only replaces the
backbone with deep ResNet does not perform as well as ours
on all attributes.

On the other hand, we also find that our HA-SiamVGG
could not perform well for scenes with occlusion, especially
when the target is occluded by the same kind objects. The
main reason is that our tracker has more power to distinguish
the target from different categories, however, as the same
kind of objects will produce similar response compared to
the target in both attention mechanism and feature fusion
module, it is difficult to identify the target accuratelywhen the
similar objects coincide with it. As illustrated in Fig.7, when
the target(man) is occluded by a little boy, due to the similar
appearance and the same category(human), the tracker could
not distinguish the target from such a strong distractor, lead-
ing to drift.

3) QUALITATIVE ANALYSIS
In order to visualize tracking process, we give the qualitative
comparison of our proposed algorithm against other Siamese
based trackers in Fig.8. It can be seen that HA-SiamVGG is
robust to most difficult scenarios. In the sequence of Box and
Bolt, the target is under the complex surrounding with similar
objects, even occlusions. Both original SiamFC and SiamTri
tracker could not distinguish the target from other distrac-
tors and directly lose the target, but ours could follow the
target in each frame. In the sequence of DragonBaby and
MotorRolling, the target moves fast and lead to motion blur.
The recent TADT and SiamRPN tracker could not accurately
estimate the position of the target in some hard frames, for
instance, in the 40th frame of MotorRolling, the results of
TADT and SiamRPN capture the bottom or top part of the
target, respectively, whereas ours always precisely locate the
motorcycle rider. In the sequence of Singer2, due to the
serious background clutter, i.e., the singer and the back-
ground are both black, only our approach and SiamRPN could
find the target and track successfully, this can be attributed
to the proposed channel attention module that makes our
tracker more discriminative to distinguish the target from
background. Moreover, the tracking result in the 185th frame
illustrates that our tracker is robust to illumination variation.
In the sequence of Skiing, the area of the target is relatively
small, our HA-SiamVGG equipped with hierarchical feature
fusion strategy could utilize the spatial information to accu-
rately track, whereas CIRseNet22-FC tracker which only uses
deeper semantic features could not follow the target.
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FIGURE 5. Attribute-based precision plots with 8 trackers on OTB100 benchmark. The digit in the legend of each sub-picture
reflects the precision score of each approach under the corresponding attribute. The digit in the title of each sub-picture means the
number of videos with the corresponding attribute. The proposed HA-SiamVGG performs best under 8 attributes against other
state-of-the-art tarckers.

FIGURE 6. Attribute-based success plots with 8 trackers on OTB100 benchmark. The digit in the legend of each sub-picture reflects
the AUC score of each approach under the corresponding attribute. The digit in the title of each sub-picture means the number of
videos with the corresponding attribute. The proposed HA-SiamVGG performs best under 9 attributes against other state-of-the-art
trackers.

C. RESULTS ON VOT2018
To further validate the generality of the proposed tracker,
we conduct experiments on VOT2018 benchmark, which
is a more challenging dataset with 60 colored sequences

labeled by rotated bounding rectangle. The main evalua-
tion measurement used to rank the trackers is expected
average overlap(EAO) which combines accuracy(A) and
robustness(R).
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FIGURE 7. Failure case on the Human3 sequence in an occlusion scenario on OTB100 benchmark. When the target is occluded by a
little boy, due to the similar appearance and the same category(human), the tracker could not distinguish the target from such a
strong distractor, leading to drift.

FIGURE 8. Qualitative evaluations of 8 trackers on 6 challenging image
sequences(from left to right and from top to bottom are Box, Bolt,
DragonBaby, MotorRolling, Singer2 and Skiing, respectively) on
OTB100 benchmark.

TABLE 2. Baseline experimental results for trackers on VOT2018. The red
fonts, blue fonts and green fonts indicate the best, the second best and
the third best performance. The A, R and EAO evaluate the accuracy,
robustness and expected average overlap of a tracker, respectively.

We select 6 recent outstanding tracking approaches includ-
ing 4 Siamese based methods and 2 correlation filter
based algorithms, including SiamVGG [46], SA-Siam [14],
SiamDW [37], SiamFC [13], ECO [47] and MCCT [38].
Table 2 presents the baseline experimental results on
VOT2018 benchmark. Our HA-SiamVGG still surpasses
SiamFC in a large margin, over 12 percents in the EAO
criteria. Compared with SiamVGG and SiamDW which only
utilize the deeper network, HA-SiamVGG equipped with fea-
ture fusion strategy and attention module could achieve better
performance. Compared with two correlation filter based
tracking approaches, HA-SiamVGG obtains higher accuracy
and competitive robustness.

FIGURE 9. Real-time experiment with 6 trackers on the
VOT2018 benchmark. The proposed HA-SiamVGG could perform best.

TABLE 3. Components analysis of HA-SiamVGG on OTB100 benchmark.
Each component could improve the tracking accuracy of the
baseline(SiamFC), and the proposed HA-SiamVGG integrating all of the
components could achieve the best result.

To verify the real-time performance of our tracker, we also
conduct the real-time experiment on the VOT2018 bench-
mark. As illustrated in Fig.9, the proposed HA-SiamVGG
still performs best, and could meet real-time requirements.

D. ABLATION STUDY
1) PARAMETERS ANALYSIS
To analyze the influence of the kernel size(k) in our channel
attention mechanism, we compare three different parame-
ter settings on OTB100 benchmark. Fig.10 shows that as
we increase the value of k, the tracking performance drops
rapidly, and the best parameter setting is 3. We infer that
the last layer with 256 channels which is equipped with
the attention module does not need long-range interaction
between the channels, the short-range interaction could pro-
vide enough importance differences to help the network pay
more attention on the dominant features.

2) COMPONENTS ANALYSIS
To verify the contributions of each component in the proposed
HA-SiamVGG, we implement and evaluate three variations
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FIGURE 10. The overall precision plot(a) and success plot(b) for the
analysis of the parameter k in attention module on OTB100 benchmark.
The digit in the legend denotes the precision score and AUC score,
respectively. The best value of k is 3.

FIGURE 11. The first column(a),(e) are snapshots of the used sequence
Basketball on OTB100 benchmark. The target is in the red bounding box.
The second column(b),(f) and the third column(c),(g) show the response
map generated by Crop4-1 and Conv5-1, respectively. And the last
column(d),(h) show the final fused response map.

of our approach. We use the OTB100 benchmark for the
ablation analysis.

As shown in Table 3, SiamFC is our baseline algorithm.
The improvement is huge when the backbone(AlexNet)
is replaced by the modified VGG network. Furthermore,
the channel attention mechanism and hierarchical feature
fusion strategy both help promote performance. Finally,
the proposed HA-SiamVGG integrating all of the compo-
nents achieves the best result.

3) FEATURE FUSION VISUALIZATION
We visualize the response maps generated by two utilized
layers to qualitatively analyze that our hierarchical feature
fusion strategy can improve the final result. Fig.11 illus-
trates that it is unreliable to depend only on one response
map when distractors appear and easily lead tracker to drift.
For instance, in the 25th frame, response map from the
last layer is ideal, whereas in the 656th frame, response
map from the last layer is noisy but the response map
from the former layer is concentrated. Thus, response maps
from different layers are complemental, and the proposed
fusion strategy can make use of both spatial and seman-
tic information to generate a high-quality response map,
to alleviate mentioned problems and make the tracker more
robust.

4) CHANNEL ACTIVATION VISUALIZATION
In order to analyze the effect of the proposed channel atten-
tion mechanism, we first visualize the activation of the last
layer with this module or not. Similarly, we use the first frame
of the Basketball sequence on OTB100 benchmark. Fig.12(a)
illustrates that the proposed residual attention mechanism can
expand the influence of important channels whilemaintaining
the capacity of the less important features. Thus, the learnt
feature representation is more discriminative and help the
tracker discriminate the target from background.

FIGURE 12. The top (a) shows the last layer(Conv5-1) activation of each
channel with attention mechanism or not, and bottom (b) shows the
former layer(Crop4-1) activation of each channel with attention
mechanism or not.

From our experiments, it is better to employ only the last
layer with the attention module. In other words, the former
convolutional layer cannot benefit from the attention block
even we fuse the features from two layers. We also provide
the visualization of activation of the former layer in Fig.12(b).
Compared to the last layer, the response values of the former
layer are restricted within a small range. Furthermore, even
if we add the attention block to this layer, the activations are
quite small and the gap between different channels still cannot
be enlarged, which makes it difficult to define the importance
of each channel.

V. CONCLUSION
In this paper, we present a real-time tracking approach
that can unveil the power of deep network. The proposed
HA-SiamVGG first utilizes a modified VGG16 as the back-
bone to extract more discriminative features of the target.
Then a hierarchical feature fusion strategy in a data-driven
manner is introduced to improve the quality of the final
response map. Finally, a lightweight residual channel atten-
tion mechanism is adopted to make the network focus on
dominant features. Extensive experiments on OTB100 and
VOT2018 benchmarks demonstrate the effectiveness of the
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proposed tracker with a favorable performance against the
state-of-the-art tracking approaches.
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