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ABSTRACT The cooperative jamming (CJ) and decode–and–forward (DF) protocols for physical layer
security are studied in this paper. We propose a design that aims at maximizing the security gap, which
is defined as the signal–to–noise ratio (SNR) difference between the destination and an eavesdropper,
subject to security and reliability constraints defining the thresholds on the received signals’ SNR values
at the destination and the eavesdropper. A fractional quadratically constrained quadratic program (QCQP)
is formulated, which is solved analytically and closed–form expressions are determined for both protocols.
Numerical results demonstrate that the proposed designs achieve the same performance for the secrecy rate
under both strategies compared with state–of–the–art approaches, for a proper choice of thresholds on SNR
values. Additionally, for relaxed thresholds and at the cost of a slight decrease on the optimal secrecy rate
value, the received SNR values at the eavesdropper are greatly decreased for the CJ protocol and even more
for the DF protocol, while guaranteeing target SNR values at the destination, compared with previous state–
of–the–art approaches.

INDEX TERMS Cooperative jamming, cooperative relaying, fractional programming, low–resource
devices, physical layer security, wireless communications.

I. INTRODUCTION
Physical (PHY) layer security approaches have gained con-
siderable attention over the past years as they can secure
transmissions by exploiting the physical characteristics of the
wireless medium against adversaries that intercept the trans-
mitted messages or degrade the signals’ strength received at
the destination [2], [3], [31]. Wyner showed that the com-
munication of a source–destination pair is perfectly secure
provided that the source–eavesdropper channel is a degraded
version of the main channel and rates are below the secrecy
capacity of the channel [25], [28], [36]. The work of Wyner
on the wiretap channel has been later extended to a variety of
channel settings [6], [20], [21], [33].

The single–antenna systems’ efficiency strongly depends
on the channel conditions; secrecy capacity is zero if the chan-
nel between the source and eavesdropper is better than the
channel between the source and destination [36]. On the other

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Fu Cheng .

hand, multiple antenna systems [23], [33], [37, Ch. 6] seem
to have no such limitations. However, due to cost and device
limitations, network nodes may not have multiple antennas.
Notable example of these simple systems is the Internet of
Things (IoT), where many devices, e.g. sensors and embed-
ded systems with limited capabilities need to communicate
securely in the presence of an untrusted node/eavesdropper
with similar capabilities. The IoT ecosystem will be facil-
itated by Fifth Generation (5G) wireless networks, and
beyond, that aim to connect the surrounding devices of our
everyday life through the network with much higher speed,
low latency and ubiquitous connectivity [1], [15]. Under such
scenarios, node cooperation is an effective way to enable
single-antenna nodes to mimic multiple antenna systems
and enjoy their benefits. In the latter case, communication
between source and destination is aided by a set of helpers
aiming at maximizing the secrecy capacity. Examples of
cooperative transmission protocols are the decode–and–
forward (DF), amplify–and–forward (AF) and cooperative
jamming (CJ) [8]–[10], [16], [35]. Problems dealing with
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secrecy capacity maximization typically lead to fractional
quadratically constrained quadratic problems (QCQP). In the
case of a single eavesdropper, closed–form optimal solu-
tions have been derived subject to a transmit power con-
straint. When multiple eavesdroppers are considered [11],
[22], suboptimal solutions are mainly sought. The global
channel state information (CSI) is assumed to be known in
the above works, though there have been proposals for similar
schemes with partial CSI knowledge and statistical infor-
mation about the eavesdroppers’ CSI [27], [29]. Instead of
utilizing jamming signals, artificial noise has also been pro-
posed to confuse passive eavesdroppers [24], [26]. Recently,
a mixture of cooperative beamforming and jamming strate-
gies, combined with a helper selection scheme, has been
proposed [5], [12], [14], [19], [30], [38].

In this paper, we consider a wireless network that consists
of low–resource devices with limited capabilities, such as
in the case of IoT paradigm. Multiple helpers (relays or
jammers) assist a source to communicate securely with a des-
tination in the presence of an untrusted node/eavesdropper.
Perfect secrecy (i.e., perfectly zero information leakage to
the untrusted node/eavesdropper) is not always needed to pro-
vide a perfectly secure service. In practical scenarios where
services have different quality of service (QoS) require-
ments, if we ensure that the eavesdropper is operating below
these requirements, then practical service-based secrecy can
be guaranteed [15]. Instead of the achievable secrecy rate,
we target at the use of the signal–to–noise ratio (SNR) to
drive decisions. Measurement of the SNR at the receiver
is efficiently done by using filtering techniques with a pri-
ori, or limited, knowledge of the signal even in complex
communication environments [32]. Therefore, we focus on
the maximization of the SNR difference between the des-
tination and the eavesdropper, referred to as security gap.
As demonstrated in our past work [17], [18], this approach
can potentially lead to more efficient communication systems
binding desired reliability and security constraints, in terms
of SNR targets, along with the resources available at network
nodes.We formulate a unified fractional QCQP problemwith
total transmit power, QoS constraints on the received SNR
values at the destination and the eavesdropper that can be
viewed as reliability and security constraints, allowing the
joint investigation for optimal CJ and DF strategies under
the presence of a single eavesdropper. Closed–form solutions
are obtained in each case that are evaluated through exten-
sive simulations and compared with direct transmission (no
cooperation) and state–of–the–art algorithms, for the specific
network, given in [11], [22]. We show that our proposed
models, for proper choice of the thresholds on the SNR
values, achieve the exact same performance as the analytical
optimal solutions for the maximization of the secrecy rate
subject to power constraints [11], [22]. On the other hand,
if the SNR thresholds are relaxed, thenwe obtain significantly
better performance for both protocols – specifically for the
CJ protocol – for the security gap and the received SNR at
the eavesdropper, while the received SNR at the destination

is guaranteed, at the cost of a slight decrease on the secrecy
rate. The main contributions of this paper are summarized as
follows:

• The proposed approach ensures that different QoS
requirements for security and reliability – modeled as
constraints on the received SNR values at the destination
and the eavesdropper – are guaranteed. This allows us
to relax perfect secrecy requirements, whenever such a
relaxation is tolerable [15], to achieve higher reliability
at the destination or to slightly lower its attainable SNR
accompanied by a considerable increase in the security.
Instead of using the secrecy capacity, we maximize a
tight bound of the secrecy rate, which is referred to as
the security gap.

• We provide analytical solutions for the proposed scheme
of DF and CJ protocols.

• We evaluate the proposed solutions by comparing them
with low–complexity state–of–the–art algorithms [22]
for solving the secrecy maximization problem subject
to power constraints for network models Fig. 1. Our
results shown that the proposed designs can achieve the
exact same optimal secrecy rate as in [22]. Addition-
ally, by properly choosing the SNR requirements of our
model, at the cost of a negligible decrease of the opti-
mal secrecy rate, we can further increase the perceived
security (by decreasing the received SNR value at the
eavesdropper) while guaranteeing the SNR value at the
destination.

FIGURE 1. The source node S is assisted by helpers H1, · · · ,Hn to
communicate with the destination D in the presence of an
eavesdropper E.

The rest of the paper is organized as follows. In Section II
we introduce the system model and the SNR based approach
for the CJ and DF cooperative strategies. The theoretical
results and closed–form solutions for the resulting fractional
QCQP are provided in Section III. Simulation results and
comparison with other proposed schemes are discussed in
Section IV, while SectionV provides the concluding remarks.

A. NOTATION
Boldface lowercase and uppercase letters denote column vec-
tors and matrices, respectively; ‖ · ‖ is the Euclidean norm,
and E[·] denotes expectation. The conjugate of the complex
number z is written as z∗. IN denotes the order N identity
matrix and 0N the N×N all-zero matrix (the index is omitted
when the dimension is clear from the context). Conjugate and
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conjugate transpose of the matrix A are written as A∗ and
A†, respectively. A < 0 and A � 0 mean that A is positive
semidefinite and positive definite, respectively. The circularly
symmetric complex Gaussian distribution with mean µ and
variance σ 2 is denoted as CN (µ, σ 2).

II. COOPERATIVE PHY SECURITY STRATEGIES
Consider the wireless network of Fig. 1 where the source S
and destination D communicate securely in the presence of a
passive eavesdropper E. We assume the presence of a fixed
number of helping nodes H1, · · · ,Hn that assist S by either
causing interference to E or by relaying the messages to D.
The number n of helpers and the cooperative protocol (CJ or
DF) used are assumed to be public information. All nodes
are operating in half–duplex mode and are equipped with a
single omni–directional antenna. Global CSI is assumed to
be available at the trusted nodes to allow for efficient coop-
eration [11], [22]; consequently, not only are the baseband
complex channel gains h∗0 and h

†
= (h∗1 · · · h

∗
n) between the

source/destination and the helping nodes known, but also g∗0
and g† = (g∗1 · · · g

∗
m), that correspond to source/eavesdrop-

per and relays/eavesdropper, respectively. In practice, this
assumption is common and is used to model an honest–but–
curious (e.g. untrusted) node [2]. Furthermore, all channels
are assumed to experience Nakagami-m fading.

Let Γd, Γe be equal to the values of γd, γe in dB, which
are the SNR at the destination and the eavesdropper, respec-
tively. Instead of maximizing directly the secrecy rate, our
objective is to determine max (Γd − Γe), or equivalently
max γd/γe subject to constraints pertaining to the total trans-
mit power, reliability, and security. The expression 1Γ =
Γd−Γe represents the security gap and βd (resp. βe) is used
below to denote the lower (resp. upper) bound on the received
SNR at the destination (resp. eavesdropper). Specifically, our
model is written mathematically as

max
γd

γe
s.t. γd ≥ βd, γe ≤ βe (1)

where βd, βe denote service requirements for reliability and
security, respectively.

In the sequel we present several communication schemes
between S and D when an E is in the vicinity of the for-
mer; specifically when there is no cooperation, i.e. direct
transmission, and two cooperative transmission protocols,
the CJ and DF protocol. When the source–eavesdroppers
channel is better than the source–destination channel the
secrecy rate is zero, or very low. Hence, for these cases coop-
erative transmission protocols, i.e., CJ and DF, can greatly
improve the secrecy rate, especially for such scenarios where
low–resource nodes are employed, e.g., IoT, with single
antenna and restricted capabilities. That will be clear in the
evaluation of the protocols in Section IV. For the cooperative
transmission protocols we assume that all helpers are used.
There are several works in the literature dealing with relay
selection schemes [12], [19], but this is out of the scope
of this work. Therefore, we assume that since the phase of

relay selection has been completed, a trusted communication
cluster has been formed among the source node S and all
helpers H, and S decides how the total power budget is
allocated among the nodes, e.g. it plays the role of a central
coordination unit.

A. DIRECT TRANSMISSION
Let P be the total power budget available for transmitting
a symbol x, with E

[
|x|2

]
= 1, from the source to the

destination. If the source transmits x with maximum power
P, the signal at the destination and the eavesdropper are given
by yd =

√
Ph∗0 x + ηd and ye =

√
Pg∗0 x + ηe , where

ηd, ηe ∼ CN (0, σ 2) represent the noise at the receivers.
These expressions correspond to the direct transmission
(DT) case, where the received SNR at the destination and
the eavesdropper are γ dt

d = P|h0|2/σ 2 and γ dt
e = P|g0|2/σ 2,

respectively.

B. COOPERATIVE JAMMING
Let the destination and the helping nodes share knowledge
on a common jamming signal z to utilize, where E[|z|2] = 1.
The source transmits x using a fraction of the power budget
αP, whereas the ith helper transmits a weighted version of
the jamming signal wiz with the remaining power (1 − α)P.
The signals received at the destination and the eavesdroppers
are yd =

√
(1− α)Ph∗0 x +

√
αPh†wz + ηd and ye =√

(1− α)Pg∗0 x +
√
αPg†wz+ ηe , where w†

= (w∗1 · · · w
∗
n)

gathers the weights used by the helpers, with ‖w‖ = 1.
If h†w and ηd (resp. g†w and ηe) are independent random
variables, the received SNR values at the destination and the
eavesdropper are given by

γ
cj
d =

(1− α)P|h0|2

σ 2 + αP|h†w|2
(2)

γ
cj
e =

(1− α)P|g0|2

σ 2 + αP|g†w|2
(3)

where ηd, ηe ∼ CN (0, σ 2). From (2) and (3) we have that
γ

cj
d ≤ γ

dt
d and γ cj

e ≤ γ
dt
e by non-negativity of all terms, and

the bounds hold with equality when α = 0.

C. DECODE–AND–FORWARD
The protocol is divided in two phases. During Phase–I, the
source node transmits a signal x using a fraction of the power
budget P that is received by the helping nodes. As in [11],
[22], we assume that all helpers successfully decode the
received signal. This happens if the rate at each helper is no
less than the rate at the destination [11], and hence no less
than the secrecy rate [22]. Hence,

min
i

1
2
log

(
1+ (1− α)

P|fi|2

σ 2

)
≥ Rs (4)

where 1 ≤ i ≤ n, fi the channel between source
and the ith helper, and Rs is the secrecy rate. The trans-
mitted signal is also received by the destination and the
eavesdropper as y(1)d =

√
(1− α)Ph∗0 x + η

(1)
d and

119314 VOLUME 8, 2020



K. Fytrakis et al.: Optimal Cooperative Strategies for PHY Security Maximization Subject to SNR Constraints

y(1)e =
√
(1− α)Pg∗0 x+η

(1)
e , respectively, where η(1)d , η

(1)
e ∼

CN (0, σ 2). During Phase–II, cooperative transmission takes
place, where the helpers transmit the re–encoded signal x
with the remaining power; more precisely, the ith helper
sends a weighted version wix to the destination and the
signals received are y(2)d =

√
αPh†wx + η(2)d and y(2)e =

√
αPg†wx + η

(2)
e , where η(2)d , η

(2)
e are independent from

η
(1)
d , η

(1)
e and identically distributed, and likewise ‖w‖ =

1. By utilizing maximal ratio combining (MRC) [13], the
destination and the eavesdropper achieve the following SNRs

γ df
d = (1− α)γ dt

d + α
P|h†w|2

σ 2 (5)

γ df
e = (1− α)γ dt

e + α
P|g†w|2

σ 2 (6)

equal to the SNRs of direct transmission by letting α = 0.

D. ALGORITHMIC CONSIDERATIONS
Optimal solutions for the problem max γd/γe , subject to
constraints pertaining to the total transmit power, reliability,
and security, are computed in this paper, for both the CJ and
the DF cooperative protocols. These are computed in O(1)
time for the CJ protocol by simply evaluating the closed-form
expressions in Section III. This is roughly the case for the
DF protocol as well, where the additional ‘‘correct decoding’’
constraint (4) adds a few more steps in the process; however,
as added, this constraint is decoupled from the problem, and is
thus efficiently solved using a similar bisection method like
in [22, Sec. II]. More specifically, in each step we need to
solve our maximization problem with 0 < α ≤ α̂ < 1, where
α̂ is derived from the bisection procedure in each iteration.
The procedure converges pretty fast, in just a few iterations,
and finally solves the problem in the case of DF while taking
into account the constraint (4).

III. THEORETICAL RESULTS ON SYSTEM DESIGN
In this paper we study the solvability of the problem (1)
independently for CJ and DF protocols and evaluate their
performance for each case. However, in this section we pro-
vide a unified approach in determining the optimal design for
solving problem (1) for both the CJ and DF security strategies
presented in Section II. In particular, letB,C < 0 be matrices
of rank one, with B = bb† and C = cc†, for b, c ∈ CN .
Both PHY security strategies lead to the following fractional
QCQP problem

(αo,wo) = arg max
α,w6=0

(1− δα)r1 + αw†Bw
(1− δα)r2 + αw†Cw

(7)

s.t. α ∈ (0, 1) (7a)

w†w = 1 (7b)

w†Bw ≥ p1(α) (7c)

w†Cw ≤ p2(α) (7d)

where δ ∈ {0, 1} is the parameter modeling the PHY security
protocol —it is δ = 0 for CJ and δ = 1 for DF— and p1, p2

are functions directly related to the targeted SNR values, i.e.
betas; moreover, we assume 0 < r1 < ‖b‖2 and 0 < r2 <
‖c‖2. The relation among the parameters of this subsection
and those of the CJ and DF protocols is illustrated in Table 1.

TABLE 1. The relation between CJ, DF and the parameters of (7).

Next, we assume that b, c are not co-linear and that (7) has a
nonempty feasibility set —i.e. p1(α) ≤ ‖b‖2 and p2(α) ≥ 0.
To solve (7), we reformulate the problem in accordance with
an approach due to Dinkelbach [7]. Let f (t, α,w) = (1 −
δα)(r1 − tr2)+ αw†(B− tC)w and

F(t) = max
α,w6=0

f (t, α,w) , s.t. (7a)–(7d). (8)

Problems (7) and (8) are related via the following result.
Proposition 1: F(t) is strictly decreasing and F(t) = 0

has a unique root to. Moreover, the optimal (αo,wo) of the
original problem (7) associated with to is also the solution
of (8) and to is the optimal value taken by the objective
function [22].

We proceed with the analysis of problem (8) by first defin-
ing the Lagrangian and then computing the Karush–Kuhn–
Tucker (KKT) conditions that must be satisfied by an optimal
solution [4]. The Lagrangian of (8) is given by

L(t, α,w,λ) = −f (t, α,w)+ λ0
(
w†w− 1

)
+λ1

(
p1(α)− w†Bw

)
+ λ2

(
w†Cw− p2(α)

)
(9)

where λ = (λ0 λ1 λ2)T are the Lagrange multipliers corre-
sponding to constraints (7b)–(7d).
Proposition 2: Let q1, q2 be such that (1 − δ)r1 < q1 <
‖b‖2, (1 − δ)r2 < q2 < ‖c‖2, and let p1, p2 be given by
pi(α) = (qi − ri)/α − (−1)δηi for i = 1, 2 , where ηi =
(1− δ)qi + δri. Then, the optimal solution of (8) is such that
either (7c) or (7d) hold with equality.

Proof: Let us first assume that qi 6= ri for i = 1, 2. The
partial derivatives of (9) are

∂L
∂α
= δ(r1 − tr2)− w†(B− tC)w

+

2∑
i=1

(−1)iλi
qi − ri
α2

,

∂L
∂w† = −α(B− tC)w+ λ0w− λ1Bw+ λ2Cw .

At the optimal solution (αo,wo) of problem (8) the KKT
conditions must be satisfied. Specifically, from the partial
derivatives of (9) evaluated at the optimal solution and the
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complementarity conditions we have

δ(r1 − tor2)− wo
†(B− toC)wo +

2∑
i=1

(−1)iλi
qi−ri
α2
= 0

−αo(B− toC)wo + λo0w
o
− λo1Bw

o
+ λo2Cw

o
= 0

λo1(p1(α
o)− wo†Bwo) = 0

λo2(w
o†Cwo − p2(αo)) = 0

After some manipulations we get the following expression

δαo(r1 − tor2) = λo0 +
2∑
i=1

(−1)iλoi

(
pi(αo)−

qi − ri
αo

)
.

Due to Proposition 1, F(to) = 0. Therefore αo(r1 − tor2) =
λo1(q1− r1)−λ

o
2(q2− r2) and thus λ

o
0 = (−1)δ

(
λo2q2−λ

o
1q1
)
.

Recall that λo1, λ
o
2 ≥ 0 and q1, q2 > 0, thus if λo0 6= 0

necessarily one of λo1, λ
o
2 is phstrictly positive. The same

result would be obtained if qi = ri for some i = 1, 2, but
with ηi in place of qi. Thus, the complementarity conditions

λo1(p1(α
o)− wo†Bwo) = 0,

λo2(w
o†Cwo − p2(αo)) = 0

along with the above establish the claim.
Next, we consider separately the cases where the con-

straints (7c), (7d) hold with equality, and determine the opti-
mal solutions for the resulting problems.

A. EQUALITY IN (7d)
Let us assume that constraint (7d) holds with equality; then,
we need also have p2(α) ≤ ‖c‖2, as (8) is assumed to have a
nonempty feasibility set. Then

α ∈ A = [a1, a2], (7a′)

w†Cw = p2(α) (7d′)

where A ⊂ (0, 1), and the box constraint (7a′) is derived from
the inequalities p1(α) ≤ ‖b‖2 and 0 ≤ p2(α) ≤ ‖c‖2, and
α ≤ α̂ (only for δ = 1). Hence, the objective function (8)
becomes

F(t) = max
α∈A

(1− δα)(r1 − tr2)+ α
(
max
w6=0

w†Bw
)
− tαp2(α).

The above optimization problem can be solved in two
stages. First, we solve the inner QCQP to compute wo =
argmaxw6=0 w†Bw, subject to constraints (7b)–(7c) by taking
(7d) with equality. Next, the optimal value of α is determined
for w = wo subject to (7a′).
Theorem 1: Let θ = b6 c be the angle between b, c and

θ 6= 0 (mod π ). Assuming that problem (7) has nonempty
feasibility set, the optimal solution wo := wo(α) of

max
w 6=0

w†Bw s.t. (7b), (7c), (7d′) (10)

is given by wo = w1(α)b+ w2(α)c with

w1(α) =
1
|�|

√
‖c‖2 − p2(α)ej(φ+θ−ω), (11a)

w2(α) =
1
‖c‖2

(
|w1||b†c| −

√
p2(α)

)
ejφ (11b)

where � = ‖b‖‖c‖ sin θ and φ ∈ [0, 2π ); ω = π/2 if
p2(α) = ‖c‖2 cos2 θ , and ω = π otherwise.

Proof: See Appendix A.
Using the solution wo provided by Theorem 1 we can find

αo by substitutingwo in f (t, α,w). After somemanipulations,
and a change of variables x := x(t), we get the function

f (x, α) =

{
r − x(1− α)+ l

√
s(α) , if δ = 0

x − r(1− α)+ l
√
s(α) , if δ = 1

(12)

where l = 2|�||b†c|/‖c‖4 and

x =
�2

‖c‖2
+ (−1)δ(t − k)q2, (13a)

r =
�2

‖c‖2
+ (−1)δ(r1 − k r2) (13b)

with k = (|b†c|2 − �2)/‖c‖4. The function s in (12), which
is non-negative by construction, equals the quadratic poly-
nomial s(α) := p2(α)

(
‖c‖2 − p2(α)

)
α2 = −s0 + s1α −

(−1)δs2α2, whose coefficients are given by s0 = (q2 − r2)2 ,
s1 = (q2 − r2)

(
‖c‖2 + (−1)δ2η2

)
, and s2 = η2

(
‖c‖2 +

(−1)δη2
)
. From (7) and Proposition 2 we have that 0 < η2 <

‖c‖2 and therefore s2 > 0. If l = 0 (which holds if and only if
b, c are either co-linear or orthogonal) or q2 = r2 (for δ = 1),
f becomes a linear function of α; it is maximized at one of the
endpoints of the intervalA in (7a′). As this does not depend on
x, αo can be substituted in (11) to determine the optimal wo.
Otherwise, αo is provided by the following theorem.
Theorem 2: Let u =

(
(1−δ)x+δr

)
/l, and assume q2 6= r2

and θ 6= 0 (mod π/2). The optimal solution αo := αo(x) of
maxα∈A f (x, α) is determined as follows.
1) If δ = 1 and s2 > u2 then αo = a2.
2) If δ = 1 and s2 = u2 then αo = a1 (resp. αo = a2) for

u < 0 (resp. u > 0).
3) Otherwise, let 1s = s21 − (−1)δ4s0s2 and

α? = (−1)δ
1
2s2

(
s1 + u

√
1s

(u2 + (−1)δs2)

)
. (14)

Then, αo = α? if α? ∈ A, and αo = a1 (resp. αo = a2)
if α? < a1 (resp. α? > a2).
Proof: See Appendix B.

Finally, the optimal value of the original problem when
(7d) holds with equality, and the actual values of (αo,wo) are
determined by computing the root of F(x) = f (x, αo).
Theorem 3: The equation F(x) = 0 has a unique root xo

given by

xo =


r(2s2 − s1)+

√
1s(r2 + l2z)

2z
, if δ = 0 and α? ∈ A

r(1− αo)δ + (−1)δl
√
s(αo)

(1− αo)1−δ
, otherwise

where z = r2 (‖c‖2+r2) > 0; the optimal value of the original
problem (7) is then

to = k + (−1)δ
1
q2

(
xo −

�2

‖c‖2

)
. (15)

Proof: See Appendix C.
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B. EQUALITY IN (7c)
Next, we assume that constraint (7c) holds with equality; in
this case we also require p1(α) ≥ 0, since (8) has a nonempty
feasibility set. Likewise, we have

α ∈ Ã = [ã1, ã2], (7a′′)

w†Bw = p1(α) (7c′)

where Ã ⊂ (0, 1), and the box constraint (7a′′) is derived from
the inequalities 0 ≤ p1(α) ≤ ‖b‖2 and p2(α) ≥ 0, and α ≤ α̂
(only for δ = 1). Hence, the objective function (8) becomes

F(t) = max
α∈Ã

(1− δα)(r1 − tr2)+ αp1(α)− tα
(
min
w6=0

w†Cw
)
.

Theorem 4: Let θ = b6 c be the angle between b, c and
θ 6= 0 (mod π ). Assuming that problem (7) has nonempty
feasibility set, the optimal solution wo := wo(α) of

min
w6=0

w†Cw s.t. (7b), (7c′), (7d) (16)

is given by wo = w1(α)b+ w2(α)c with

w1(α) =
1
‖b‖2

(
|w2||b†c| +

√
p1(α)

)
ejϕ, (17a)

w2(α) =
1
|�|

√
‖b‖2 − p1(α)ej(ϕ−θ+ω) (17b)

where � = ‖b‖‖c‖ sin θ and ϕ ∈ [0, 2π ); ω = π/2 if
p1(α) = ‖b‖2 cos2 θ , and ω = π otherwise.

Proof: The proof is similar to that of Theorem 1 and is
therefore omitted. The only difference is that we now have to
deal with a minimization problem instead, which is solved by
using Propositions 3, 4 that still hold in this case.

Substituting wo found by Theorem 4 in f (t, α,w), and
performing the change of variables x := x(t), we obtain

f (x, α) =
(
k − (−1)δ

1
q1

(
x +

�2

‖b‖2

))−1
f ′(x, α)

where f ′ is given by (12) but with x, r, l defined as

x = −
�2

‖b‖2
+ (−1)δ

(
k −

1
t

)
q1, (18a)

r = −
�2

‖b‖2
+ (−1)δ

(
k r1 − r2

)
(18b)

and l = 2|�||b†c|/‖b‖4. In addition, k = (|b†c|2−�2)/‖b‖4

and the coefficients of s(α) := p1(α)
(
‖b‖2−p1(α)

)
α2, which

retains the form given in the first case, are now defined as
s0 = (q1− r1)2 , s1 = (q1− r1)

(
‖b‖2+ (−1)δ2η1

)
, and s2 =

η1
(
‖b‖2+(−1)δη1

)
. Likewise, if l = 0 or q1 = r1 (for δ = 1),

f becomes a linear function of α and is maximized at one of
the endpoints of Ã in (7a′′). Note that f (x, α) = tf ′(x, α) due
to (18a), with t > 0 by definition, and that only f ′ depends
on α. Since the coefficients of f ′ share the same structure and
properties with f in (12), we obtain the following when q1 6=
r1 (in which case it is s0, s2 > 0) and θ 6= 0 (mod π/2);
this could be easily shown following the same steps as in the
proof of Theorem 2.

Theorem 5: Let u =
(
(1−δ)x+δr

)
/l, and assume q1 6= r1

and θ 6= 0 (mod π/2). The optimal solution αo := αo(x) of
maxα∈Ã f (x, α) is determined as follows.

1) If δ = 1 and s2 > u2 then αo = ã2.
2) If δ = 1 and s2 = u2 then αo = ã1 (resp. αo = ã2) for

u < 0 (resp. u > 0).
3) Otherwise, α? is defined as in (14). Then, αo = α? if

α? ∈ Ã, and αo = ã1 (resp. αo = ã2) if α? < ã1 (resp.
α? > ã2).

Finally the root of F(x) = f (x, αo), allowing to determine
the actual values of the optimal solution (αo,wo), is computed
by the following Theorem.
Theorem 6: With the above notation, the equation F(x) =

0 has a unique root xo given by Theorem 3, with the difference
that α∗ ∈ Ã, where z = r1 (‖b‖2+ r1) > 0; the optimal value
of the original problem (7) is then

to =
(
k − (−1)δ

1
q1

(
xo +

�2

‖b‖2

))−1
. (19)

Proof: Let F ′(x) = f ′(x, αo). Since F(x) = tF ′(x) due
to f (x, α) = tf ′(x, α), and to > 0 by definition, F(xo) = 0 if
and only if F ′(xo) = 0. Analogous arguments with those used
in the proof of Theorem 3, since F ′ admits the same structure
and properties with the function F in the proof of Theorem 3,
lead to xo; the only difference is the particular value taken by
s(1) = −r1 (‖b‖2 + r1) = −z. The optimal value to is then
can be computed from (18a).

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed
algorithms. In [22], the authors suggested low complexity,
closed–form, optimal solutions for themaximization problem
of the secrecy rate subject to power constraints only. Our
proposed optimal strategies are of similar complexity as in
[22] since we provide analytical optimal solutions for our
optimization problems. Additionally, the security gap, our
objective function, by definition, provides a lower bound
on the secrecy rate. The introduction of the inequality con-
straints on the received SNR values at the destination and the
eavesdropper further restricts the feasibility set defined by
power constraints only. Therefore, the optimal secrecy rate
achieved from the proposed optimal solutions in [22] defines
the benchmark of our proposed solutions, i.e. evaluating the
secrecy rate with our optimal strategies cannot be greater than
its optimal value derived in [22]. Specifically, we compare
our proposed CJ strategy with the optimal solution (CJopt)
in [22, Sec. III-A.2], where the problem is recast as an
one-dimensional optimization problem. In the case of DF,
our protocol is compared with the optimal solution (DFopt) in
[22, Sec. III-A.1], where the problem is solved analytically
but with the correct decoding constraint decoupled by using
a bisection method.

We choose such a network configuration focusing on the
distances and fading effects among the nodes, where the
source, eavesdropper and destination are placed along a hor-
izontal line as illustrated in Fig. 2. Furthermore, the helpers
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FIGURE 2. The simulation model; the source (S), helpers (H),
eavesdropper (E), and destination (D) are placed along a line. The
distances shown are measured from the source and E,D are allowed to
move in the range [25m,75m].

are assumed to be located randomly inside a two–dimensional
grid. Despite the fact that the eavesdropper and destination
can be at the same location, the different phases of their cor-
responding channels can result in differences at their received
SNR values. The channels between any pair of nodes (k, l)
are modeled as fk,l =

√
d−ck,l |fk,l | e

jθ , where dk,l is the
distance between the kth and lth node, c = 3.5 is the path
loss exponent, |fk,l | denotes the fading coefficient of the
channel, which is assumed to be distributed according to
the Nakagami-m distribution, and θ is the phase uniformly
distributed in [0, 2π ). The Nakagami-m distribution has the
ability to model a wide class of fading channel conditions
based on the value of the parameterm; for instance form = 1,
it becomes equivalent to the Rayleigh distribution.We assume
m = 3, in order to indicate the existence of a strong LOS
component which represents less-severe fading conditions.
Specifically, for such small distances between the nodes,
at most 75m ( see also Fig. 2),m = 3 is an appropriate choice
to model generic fading in the experimental setup. During
the experiments, the source–destination distance is fixed at
50m (see also Fig. 2), and a number of n = 10 helpers are
employed with random location inside a two–dimensional
window of range 2m (at both horizontal and vertical axis),
where the beginning of this area is fixed at 5m and extends
towards destination’s direction. In one case the SNR bounds
βD and βE were adaptively chosen in each distance step as the
optimum values in terms of the security gap, e.g. one decision
could be the optimal SNR values derived from CJopt and
DFopt, and the results for both protocols denoted by CJgap-opt
and DFgap-opt. Additionally, as a second case, we relax the
values of previous optimal betas and the results for both
protocols in this case are denoted by CJgap-rel and DFgap-rel.
The power budget and noise power are fixed at P = 30dBm
and σ 2

= −40dBm, respectively. The experimental results
for both the DF and CJ protocols are obtained after 1000 inde-
pendent Monte Carlo simulations.

For the CJ protocol, in Fig. 3 it is observed that the
secrecy rate for the CJopt and CJgap-opt is exact the same
for every position of the eavesdropper from 25 − 75m.
Hence, by solving our proposed alternate physical layer secu-
rity scheme CJgap-opt we achieve exact the same perfor-
mance for the secrecy rate with the optimal solution of the
information–theoretic approach. The same behavior holds
for the security gap, the received SNR at the destination
and eavesdropper illustrated in Fig. 4, Fig. 5 and Fig. 6,
respectively. When we relax the choice of betas, i.e. CJgap-rel,
it is seen in Fig. 3 that the secrecy rate is slightly decreased,
as expected since the optimal value is the upper bound on

FIGURE 3. Secrecy rate versus source–eavesdropper distance for the CJ
protocol. Results are shown for n = 10 helpers with the destination fixed
at 50m from the source.

FIGURE 4. Security gap versus source–eavesdropper distance for the CJ
protocol. Results are shown for n = 10 helpers with the destination fixed
at 50m from the source.

FIGURE 5. Received SNR value at the destination versus
source–eavesdropper distance for the CJ protocol. Results are shown for
n = 10 helpers with the destination fixed at 50m from the source.

our proposed scheme, by 2% on average and the received
SNR at the destination Fig. 5 is decreased by 14% on average
(pure number) compared with their optimal values. However,
the received SNR at the eavesdropper is greatly decreased
by 40% on average (pure number) compared with its opti-
mal value Fig. 6. Consequently, the security gap is further
improved compared with its optimal value by 45% on average
(pure number) Fig. 4. Hence, by letting a small decrease on
the received SNR at the destination CJgap-rel compared with
its value at the optimal solution CJopt, we can achieve a great
decrease on the received SNR at the eavesdropper.

For the DF protocol, the secrecy rate and the security gap,
in Fig. 7 and Fig. 8 respectively, show the advantage of
using the proposed DF protocol over the DT, since for the
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FIGURE 6. Received SNR value at the eavesdropper versus
source–eavesdropper distance for the CJ protocol. Results are shown for
n = 10 helpers with the destination fixed at 50m from the source.

FIGURE 7. Secrecy rate versus source–eavesdropper distance for the DF
protocol. Results are shown for n = 10 helpers with the destination fixed
at 50m from the source.

FIGURE 8. Security gap versus source–eavesdropper distance for the DF
protocol. Results are shown for n = 10 helpers with the destination fixed
at 50m from the source.

particular setup the secrecy rate of the latter is almost zero.
In addition, we see that DFopt and DFgap-opt achieve exact
the same secrecy rate and security gap, as in the CJ protocol.
Consequently, the same holds for the received SNR values at
the destination and eavesdropper depicted in Fig. 9 and 10,
respectively. Hence, our proposed solution of the alternate
physical layer security approach DFgap-opt, provides exact the
same performance compared with the optimal solution DFopt
of the information–theoretic approach, which is our scheme’s
benchmark. Finally, by a relaxation on the SNR thresholds
DFgap-rel it is observed that the SNR at the eavesdropper is
decreased for about 7% to 22% (pure numbers) as depicted
in Fig. 10 at the interval 60 − 75m, which further results
to an increasing of security gap for about 7% to 27% (pure
numbers) at this range of distances. This improvement comes

FIGURE 9. Received SNR value at the destination versus
source–eavesdropper distance for the DF protocol. Results are shown for
n = 10 helpers with the destination fixed at 50m from the source.

FIGURE 10. Received SNR value at the eavesdropper versus
source–eavesdropper distance for the DF protocol. Results are shown for
n = 10 helpers with the destination fixed at 50m from the source.

with a negligible cost to the received SNR at the destination
and the secrecy rate.

V. CONCLUSION
Two cooperative PHY security protocols, CJ and DF, were
studied in this paper aiming at maximizing effectively the
SNR difference between the destination and an eavesdropper.
QoS constraints that allow one to explicitly define a target
reliability and security level were also included, so as to
avoid situations where the resulting SNR at the destination is
undesirably low (likewise high at the eavesdroppers) although
the secrecy rate is maximized. Closed–form expressions were
provided for both strategies for optimal problems whose
performance was evaluated by extensive numerical analysis
and comparisons with the state–of–the–art designs. It was
shown that our approach achieves the same performance with
the state–of–the–art algorithms for both protocols while it
improves the performance —in terms of the security gap and
received SNR at the eavesdropper— while ensuring reliabil-
ity and security levels. That comes with a negligible cost for
secrecy rate and the received SNR at the destination, com-
pared to previous approaches. Ongoing researchwork focuses
on improving our results to multiple eavesdroppers where our
techniques are expected to allow overcoming the limitation
on the number of helpers whenever nulling constraints should
be imposed. In these cases, the proposed solutions for the DF
protocol ( see e.g. [11]) work only if the number of helpers is
larger than that of the eavesdroppers. Additionally, we want
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to study our approach in different and more complex wireless
networks where the capabilities of nodes are not necessarily
so limited, i.e. multiple antennas systems, multiple eaves-
droppers, smart eavesdroppers, etc.

APPENDIX A
PROOF OF THEOREM 1
For simplicity, the functions p1 and p2 will be treated as
positive constants since the optimization problem is solved
with respect to w, assuming α to be fixed. This is also the
case for other quantities, e.g. w1,w2, depending on α. As a
result, we write p1, p2 instead of p1(α), p2(α), etc.

A. INTERMEDIATE RESULTS
Since (10) has a nonempty feasibility set, its optimal solution
is found by solving

max
w6=0

w†Bw s.t. (7b), (7d′) . (20)

To prove the theorem, we need two intermediate results,
stated in Propositions 3 and 4 below.
Proposition 3: Let θ = b 6 c, θ 6= 0 (mod π ), and D =

(b c). The problem (20) is equivalent to

max
z6=0

z†B̃z s.t. z†Ĩz ≤ 1 , z†C̃z = p2 (21)

where Ĩ = D†D, B̃ = D†BD and C̃ = D†CD.
Proof: The Moore-Penrose pseudoinverse is defined as

D#
= (D†D)−1D†. Let P = DD# and P⊥ = IN − P be

the orthogonal projection operators on the range and the null
space ofD, respectively. By writing w = Pw+P⊥w = u+v,
note that the objective function and the equality constraint do
not depend on v; the power constraint becomes u†u+v†v = 1
due to u ⊥ v (i.e. u†v = 0). The optimal value of (20) is
obtained at wo = (uo, v) for any v in the null space of D
satisfying ‖u‖2 + ‖v‖2 = 1 and ‖v‖ ≥ 0, which implies
‖u‖2 ≤ 1. The proof is concluded by noting that w = Dz for
some z ∈ C2, as it holds PD = D and P⊥D = 0.
Proposition 4: With the above notation, (21) is equivalent

to

max
z6=0

z†B̃z s.t. z†Ĩz = 1 , z†C̃z = p2 . (22)

Proof: The Lagrangian of the problem (21) is given by

L(z, ζ ) = −z†B̃z+ ζ0(z†z− 1)+ ζ2(z†C̃z− p2) (23)

where ζ = (ζ0 ζ2)T are the Lagrange multipliers. From the
KKT conditions (omitted due to space limitations), we get
B̃zo = ζ o0 z

o
+ ζ o2 C̃z

o , where ζ o0 ≥ 0 and ζ o2 6= 0. Let us
first assume that ζ o0 = 0; then (B̃ − ζ o2 C̃)z

o
= 0. Due to

zo 6= 0, we necessarily have that rank(B̃ − ζ o2 C̃) < 2. After
straightforward manipulations, the determinant det(B̃−ζ o2 C̃)
is computed as −ζ o2�

4, where � is defined in Theorem 1.
Thus, it must be� = 0 since ζ o2 6= 0 by definition. But� = 0
if and only if θ = 0,±π , which leads to a contradiction
(note that b, c 6= 0). As a result, ζ o0 > 0 and by the
complementarity condition we have that the optimal solution
zo satisfies zo†Ĩzo = 1.

B. PROOF OF THEOREM 1
Since w = Dz ( see the proof of Proposition 3), by letting
z = (w1 w2)T ∈ C2 we obtain that w = w1b + w2c. From
Proposition 4, the problem (22) becomes

max
z∈C2
‖b‖2 − |w2|

2
(
‖b‖2‖c‖2 − |b†c|2

)
(24)

s.t. |w1|
2
‖b‖2 + |w2|

2
‖c‖2 + 2<

(
w∗1w2b†c

)
= 1 (24a)

|w1|
2
=

‖c‖2 − p2
‖b‖2‖c‖2 − |b†c|2

. (24b)

Note that if p2 = ‖c‖2 or θ = ±π/2 (i.e. b ⊥ c), the problem
becomes trivial and z = (w1 w2)T is easily found to be given
by (11). Indeed, in the first case (24a), (24b) immediately lead
to |w1| = 0 and |w2| = 1/‖c‖; the second case yields |w1| =√
‖c‖2 − p2/‖b‖‖c‖ and |w2| =

√
p2/‖c‖2.

In the rest of the proof we therefore assume that p2 <

‖c‖2 and θ 6= 0 (mod π/2) that gives 0 < |b†c|2 <

‖b‖2‖c‖2. The optimization problem (24) is then simplified
to minz∈C2 |w2|

2 subject to (24a)–(24b). Let w1 = |w1|ejϕ ,
w2 = |w2|ejφ and b†c = |b†c|ejθ . Substitution into (24a)
leads to the following quadratic equation with indeterminate
|w2|

‖c‖2|w2|
2
+
(
2|w1||b†c| cosω

)
|w2| +

(
|w1|

2
‖b‖2 − 1

)
= 0

where ω = φ+ θ − ϕ. The above equation has real solutions
if and only if 1 ≥ 0, where

1 = 4|w1|
2
|b†c|2 cosω2

− 4‖c‖2
(
|w1|

2
‖b‖2 − 1

)
= 4|w1|

2
|b†c|2

(
p̃2 − sin2 ω

)
(25)

and p̃2 = p2/|w1|
2
|b†c|2. By hypothesis, (24) has a nonempty

feasibility set, and hence we necessarily have 1 ≥ 0, where
equality holds if and only if p̃2 = sin2 ω. The root(s) of the
quadratic equation are given by

|w2| = |w1|
|b†c|
‖c‖2

gi(ω) , i = 0, 1 (26)

where gi(ω) = − cosω + (−1)i
√
p̃2 − sin2 ω must satisfy

gi(ω) ≥ 0. Therefore, in order to minimize |w2|, we have to
minimize the value of gi. If 1 = 0, then gi(ω) = − cosω
and therefore the optimal ωo minimizing gi is clearly its root
gi(ωo) = 0, which is equal to ωo = ±π/2 ⇔ ϕ = φ +

θ ∓ π/2. This, combined with 1 = 0 yields p̃2 = 1. On the
other hand, for 1 > 0, we have gi(ω) = 0 if and only if
(−1)i cosω ≥ 0 and p̃2 = 1. In both of the above cases, from
(24a) and (24b) we get |w2| = 0 and |w1| = 1/‖b‖, which
are special cases of (11), and may be obtained by substituting
p2 = |w1|

2
|b†c|2 or p2 = ‖c‖2 cos2 θ due to (24b).

In the sequel, we confine ourselves to 1 > 0 and p̃2 6= 1;
this implies that both gi and |w2| are positive. The first- and
second-order derivatives of gi are given by

dgi(ω)
dω

=
gi(ω) sinω
gi(ω)+ cosω

,

d2gi(ω)
dω2 =

dgi
dω (ω) sinω cosω + gi(ω)(1+ gi(ω) cosω)

(gi(ω)+ cosω)2
.
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The angle(s) ωo minimizing gi necessarily satisfy
dgi(ωo)/dω = 0 or equivalently sinωo = 0 therefore giving
ωo ∈ {0, π} as the candidate values for each root. In this case

d2gi(ωo)
dω2 = gi(ωo)

1+ gi(ωo) cosωo

(gi(ωo)+ cosωo)2
> 0

⇔ 1+ gi(ωo) cosωo > 0⇔ (−1)i cosωo > 0

and the ith root in (26) attains its minimal value at ωo = iπ ,
with gi(ωo) = −(−1)i(1−

√
p̃2) = (1−

√
p̃2)ej(ω

o
−π ). As a

result of the above, we can write

|w2| = |w1|
|b†c|
‖c‖2

(
1−

√
p̃2
)

(27)

according to (26), and incorporate the extra term ej(ω
o
−π ) in

the exponential representation ofw2; this implies that we have
the equation ωo = (φ + (ωo − π )) + θ − ϕ from which we
get ϕ = φ + θ − π and φ is a free variable.

APPENDIX B
PROOF OF THEOREM 2
Let u =

(
(1 − δ)x + δr

)
/l. Setting the first-order partial

derivative of f (x, α) equal to zero, and squaring both sides
of the resulting equation, we have that

∂f (x, α)
∂α

= lu+ l
(
s1 − (−1)δ2s2α

)√s(α)
2
= 0

⇔ 2u
√
s(α) = (−1)δ2s2α − s1

⇒
(
s21 + 4u2s0

)
− 4vs1α+ (−1)δ4vs2α2= 0 (28)

where v = u2 + (−1)δs2. Note that if v ≤ 0, which can only
happen if δ = 1, the above polynomial either degenerates to a
constant term (v = 0) or its discriminant is negative (v < 0).
In these cases, ∂f /∂α has no root and its sign determines the
optimal value αo; it will be one of the endpoints of the interval
A in (7a′). In particular, by taking the second-order derivative
of f we get (after some manipulations) the expression

∂2f (x, α)
∂α2

= −
l
√
s(α)

((
u−

1
l
∂f (x, α)
∂α

)2
+ (−1)δs2

)
and therefore the extreme points of ∂f /∂α, for δ = 1, satisfy(
u − 1

l
∂f (x,α)
∂α

)2
+ (−1)δs2 = 0. If v = 0, the extreme point

is such that ∂f /∂α = 2ul, leading to sgn(∂f /∂α) = sgn(u),
with sgn(·) denoting the signum function. Likewise, if v < 0,
we have ∂f /∂α > 0 and thus αo = a2. Let us next assume
v > 0. Then, the roots of the quadratic polynomial derived
from (28) by squaring both sides are

αi = (−1)δ
1
2s2

(
s1 + (−1)i|u|

√
1s

v

)
, i = 0, 1

where1s = s21− (−1)δ4s0s2 equals the discriminant of s and
hence1s > 0 due to q2 6= r2. Substitution of αi in (28), only
one of which is a root of ∂f /∂α, leads to the conclusion that
it must be (−1)i = sgn(u). Thus, the only root of ∂f /∂α is

α? = (−1)δ
1
2s2

(
s1 + u

√
1s

v

)
. (29)

What remains to be shown is that α? is indeed the point where
f attains its maximum. From the second-order derivative of
f we get, using ∂f (x, α?)/∂α = 0, that ∂2f (x, α?)/∂α2 =
−lv/
√
s(α?) < 0. Hence, αo = α? if α? ∈ A; otherwise,

αo = a1 (resp. αo = a2 ) if α? < a1 (resp. α? > a2).

APPENDIX C
PROOF OF THEOREM 3
Note that for δ = 1, we get u = r/l and therefore the value
of α? in (14) is independent of x. We can directly compute
the root of F(x) = f (x, αo) from (12) since it is then a linear
function. The same holds if δ = 0 and α? 6∈ A, where αo is
set in Theorem 2 to be one of the endpoints of A. Next we
assume δ = 0 and α? ∈ A; by Theorem 2 and (28) we get

F(x) = r − x(1− αo)+ l
√
s(αo)

= r − x
(
1−

1
2s2

(
s1 +

x
l

√
1s

v

))
+
l
2

√
1s

v

= r − x
(
1−

s1
2s2

)
+

l
2s2

√
1sv

where v := v(x) = (x/l)2 + s2. To find the optimal value of
the original problem, we have to determine the root of F .

F(x) = 0⇔ x
(
2s2 − s1

)
− 2rs2 = l

√
1sv

⇒

(
x
(
2s2 − s1

)
− 2rs2

)2
= 1s

(
x2 + l2s2

)
⇔ d(x) = d0 − d1x + d2x2 = 0 (30)

where the coefficients of d are given by d0 = 4r2s2 − l21s,
d1 = 4r(2s2 − s1) and d2 = 4(s0 − s1 + s2) = −4s(1). Only
one of d’s roots, which are given by

xi =
d1 + (−1)i

√
d21 − 4d0d2

2d2
, i = 0, 1 (31)

is also a root of F . Note that the discriminant of d is equal to
161s(r2− l2s(1)), which is positive since from the definition
of s we find that s(1) = −r2 (‖c‖2 + r2) < 0 and 1s > 0.
In particular, from (30), (31) we see that xi should satisfy

xi
(
2s2 − s1

)
− 2rs2 > 0⇔ sgn(r)ξ0 + (−1)iξ1 > 0 (32)

where ξ0 = |r|
√
1s and ξ1 = (2s2 − s1)

√
r2 − l2s(1) in the

above relation are both positive. It may be further shown that
ξ0 < ξ1 since for all θ 6= 0 (mod π ) we have ξ0 < ξ1 ⇔

−s(1)
(
4r2s2+l2(2s2−s1)2

)
> 0. From the above analysis we

derive that x0 is the unique root of F , as otherwise we would
get sgn(r)ξ0 > ξ1 from (32) for i = 1, which does not hold.
Finally, the value of the optimal to is directly computed from
(13a).
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