IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 22, 2020, accepted June 24, 2020, date of publication June 29, 2020, date of current version July 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005519

Applying Model-Driven Engineering to
Distributed Ledger Deployment

TOMASZ GORSKI“, (Member, IEEE), AND JAKUB BEDNARSKI

Department of Computer Science, Polish Naval Academy of the Heroes of Westerplatte, 81-127 Gdynia, Poland

Corresponding author: Tomasz Gorski (t.gorski @amw.gdynia.pl)

ABSTRACT Distributed Ledger Technology (DLT) enables data storage in a decentralized manner among
collaborating parties. The software architecture of such solutions encompasses models placed in the relevant
architectural views. A lot of research is devoted to smart contracts and consensus algorithms, which are
realized by distributed applications and can be positioned within the Logical view. However, we see the
need to provide modeling support for the Deployment view of distributed ledger solutions. Especially
since the chosen DLT framework has a significant impact on implementation and deployment. Besides,
consistency between models and configuration deployment scripts should be ensured. So, we have applied
Model-Driven Engineering (MDE) that allows on the transformation of models into more detailed models,
source code, or tests. We have proposed Unified Modeling Language (UML) stereotypes and tagged values
for distributed ledger deployment modeling and placed them in the UML Profile for Distributed Ledger
Deployment. We have also designed the UML2Deployment model-to-code transformation for the R3 Corda
DLT framework. A UML Deployment model is the source whereas a Gradle Groovy deployment script is the
target of the transformation. We have provided the complete solution by incorporating the transformation into
the Visual Paradigm modeling tool. Furthermore, we have designed a dedicated plug-in to validate generated
deployment scripts. In the paper, we have shown how to design transformation for generating deployment
scripts for the R3 Corda DLT framework with the ability to switch to another one.

INDEX TERMS Distributed ledger, model-driven engineering, architectural views model 145, deployment
view, unified modeling language extensibility mechanisms.

I. INTRODUCTION

In a distributed ledger there is no central data store. Details
of transactions among peers are stored in multiple places.
A distributed ledger, defined by Xu et al [l], is an
append-only store of transactions, which is distributed across
many machines. An append-only means that new transac-
tions can be added but existing ones can not be modified
or deleted. A new transaction might reverse a previous one,
but both of them remain part of the ledger to allow audits
and ensure integrity. The ledger is distributed and stored
by the nodes of a peer-to-peer (P2P) network where each
block is created at a predefined interval in a decentralized
fashion employing a consensus algorithm that guarantees
data integrity. A consensus algorithm is a primary element
of DLT and is used to synchronize a distributed ledger at
multiple nodes. There are four the most popular algorithms

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of finding consensus in distributed systems: practical byzan-
tine fault tolerance (PBFT), proof-of-stake (PoS), delegated
proof-of-stake (DPoS), and proof-of-work (PoW). In order
to create a block, in the PoW consensus algorithm, a block
creator (miner) must solve a cryptographic riddle to produce
a hash [2]. That computationally complex task consumes a lot
of electricity and causes delays. To overcome these problems,
a proof-of-stake consensus mechanism has been developed
recently, which enables achieving the consensus by proving
the stake ownership [3]. The core idea of the PoS consensus
algorithm evolves around the concept that the nodes willing
to participate in the block creation process must prove that
they own a certain number of coins at first and must lock a
specified number of them, called stake.
A distributed ledger has at least the following set of
features:
« distributed consensus on the ledger’s state — capability
to achieve a distributed consensus on the state of the
ledger without being reliant on any trusted third party,

118245

https://orcid.org/0000-0002-8393-1585
https://orcid.org/0000-0003-3264-185X

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

« immutability and irreversibility of the ledger’s state —
achieving a distributed consensus ensures that the
state of the ledger becomes practically immutable and
irreversible after a certain period of time,

« data persistence — data is stored in a distributed fashion
ensuring its persistency as long as there are participating
nodes in the P2P network,

« data non-repudiation — every transaction needs to be
digitally signed using cryptography public key which
ensures the authenticity of the source of data,

o distributed data control — storing or retrieving data
in/from the ledger can be carried out in a distributed
manner that exhibits no single point of failure.

We can indicate two dominant distributed ledger types:

o public ledger — allows anyone to modify the ledger’s
state by storing new blocks and updating data by means
of transactions among participating entities. The infor-
mation stored in the ledger is transparent and accessible
to everyone, which raises privacy concerns. It is also
known as the permissionless ledger.

 private ledger — only authorized and trusted entities
can participate in transactions within the ledger, which
ensures the privacy of the ledger’s data. It is also known
as the permissioned ledger.

A blockchain is a distributed ledger that is structured into

a linked list of blocks. Each block contains an ordered set
of transactions. A block is linked to its predecessor using a
cryptographic hash to secure the whole chain. Data stored in
a blockchain can be verified even in a decentralized environ-
ment, which leads to numerous blockchain applications.

We can think of software architecture as a structure.
Software architecture comprises software elements and rela-
tions among them. As far as software architecture is con-
cerned, those elements exist at the highest level breakdown of
a software system. We can look at the software system from
different angles. In other words, we have different software
architectural views. Kruchten [5] presents kind of reference
model of software system with different architectural views:
Logical, Process, Physical, Development and Scenarios.
Another term for the Scenarios view is the Use cases view.
Unified Modeling Language is the most commonly used
graphical notation to model software elements. UML is
especially useful for modeling systems designed under the
object-oriented approach [6].

Transformations are central to Model-Driven Engineering,
where they are used to transform models between different
languages or different levels of abstraction. Kleppe et al. [7]
provide the following definition of the Model-to-Model
(M2M) transformation: Transformation is the automatic gen-
eration of a target model from a source model, according
to a transformation definition. A transformation definition
is a set of transformation rules that together describe how
a model in the source language can be transformed into a
model in the target language. A transformation rule is a
description of how one or more constructs in the source
language can be transformed into one or more constructs

118246

in the target language (p. 24). Those that generate tex-
tual representation from models are called Model-to-Text
(M2T) transformations. Besides, we can further divide M2T
transformations into three subtypes: model-to-code (M2C),
model-to-documentation (M2D), and as far as the quality of
the software is concerned, model-to-test (M2Q) [8].

To be transformable, models have to be expressed in a
modeling language. A model needs to be consistent with
the metamodel, which defines the syntax and semantics of a
certain type of model and is usually depicted in the UML class
diagram. Mens and van Gorp [9] distinguish endogenous
and exogenous transformations. Endogenous transformations
occur between models expressed in the same modeling lan-
guage. The latter transform models expressed in different
modeling languages. Transformations can also be categorized
as horizontal and vertical. A horizontal transformation occurs
when both the source and the target models represent the
same abstraction level. When they are at different levels
of abstraction, we have a case of vertical transformation.
Moreover, model transformations can be unidirectional or
bidirectional. In the case of unidirectional transformation,
the target model can be generated from the source model,
whereas for bidirectional transformation, the source and the
target models remain consistent. A traceability relationship
is useful to establish links between elements of the models
being transformed and help in checking the consistency [10].

The deployment environment provides conditions for run-
ning distributed applications. There is a lack of modeling
means for distributed ledger solutions at the deployment
level. Another important issue is the capability of modeling
various types of DLT deployment environments, e.g.: dev,
test, prod. For such a complex distributed solution with many
deployment environments, we see the need to use MDE to
support the automation of creating DLT deployment scripts
with ensuring consistency of models and configuration files.

Our contribution consists of three elements. First of all,
we have proposed new stereotypes, and tagged values, that
describe the needed semantic UML enrichment for dis-
tributed ledger deployment. We have placed those elements
in the UML Profile for Distributed Ledger Deployment.
Secondly, we have designed UML2Deployment M2C trans-
formation to automate the deployment of various runtime
environments for distributed ledger solution. Thirdly,
we have provided a consistency check between the UML
Deployment model and deployment scripts. The proposed
UML2Deployment transformation generates deployment
scripts for DLT network configuration. The transformation
is vertical, which means that the source and the target are
at different levels of abstraction. The source of our trans-
formation is the UML Deployment model enriched with
stereotypes and tagged values from the proposed UML pro-
file. Whereas, the target of our transformation is runnable
Gradle script for DLT nodes deployment configuration. The
transformation is also exogenous because the source and the
target are expressed in different notations: UML and Groovy
Domain Specific Language (DSL). In its current form, it is

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

also a unidirectional transformation. We have incorporated
the transformation, as a plug-in, into the Visual Paradigm
modeling tool.

The paper is structured as follows. Section 2 shows our
model-driven approach in light of the current research.
Section 3 locates the main area of interest of the paper
within the Architectural views model 1+5. Section 4 describes
the R3 Corda DLT framework. Section 5 contains a
detailed description of dedicated UML Profile for Distributed
Ledger Deployment. Section 6 presents the design of the
UML2Deployment transformation that generates deployment
scripts for DLT network configuration. According to our
design principle, the implementation of the transformation
was loosely coupled with the selected DLT framework.
Section 7 reveals the options of the transformation usage
on the example of the Electricity Consumption and Supply
Management (ECSM) system [4]. Section 8 introduces
assumptions for validation of our transformation and design
of Java application for consistency checking between models
and generated scripts. Section 9 encompasses discussion and
limitations. The last one concludes the paper and outlines the
direction of further work.

Il. RELATED WORK
The paper focuses on distributed ledger (blockchain) technol-
ogy and the Model-Driven Engineering approach. So we have
searched for papers concerning those two issues. We divided
the literature review results in three paragraphs. The first
paragraph describes papers that treat blockchain technology.
In the second one, we present articles that show recent
advances in MDE. The third paragraph is focused on the
research results of applying MDE to blockchain solutions.
Many scientists have paid attention to blockchain tech-
nology because it can bring benefits to various industries.
Al-Jaroodi and Mohamed [11] and Monrat et al. [12] explore
the advantages and challenges of incorporating blockchain
in different industrial applications. The technology is a
natural choice when designing supply chain solutions.
Gonczol et al. [13] present the current state of research and
summarize the benefits and the challenges of the distributed
organization and management of supply chains. Whereas,
Leng et al. [14] propose a public blockchain of Chinese
agricultural supply chain system based on double chain
architecture. The healthcare sector can greatly benefit from
the distributed ledger technology due to decentralization and
privacy. Shahnaz et al. [15] present a framework that could
be used for the implementation of blockchain technology
for the Electronic Health Record system. Ismail et al. [16]
propose blockchain architecture for healthcare data man-
agement. They divide network participants into clusters and
use the PBFT consensus algorithm, which has low energy
demand. Many blockchain networks have adopted the PoW
consensus mechanisms, in which the consensus is reached
through the intensive mining process [2]. On the other hand,
Nguyen et al. [3] investigate the PoS mechanisms, from fun-
damental to advanced ones along with performance analysis.

VOLUME 8, 2020

Furthermore, we believe that blockchain has enormous poten-
tial in the military sector. Gorski et al. [17] present a solution
that persists warship position coordinates in the blockchain
that is hosted in a cloud environment. In the energy sector,
next-generation grid demands technologies, which enable the
integration of distributed energy resources and consumers
that both seamlessly buy and sell electricity. Wang et al. [18]
developed an optimization model and blockchain-based
architecture on IBM Hyperledger Fabric to manage the oper-
ation of crowdsourced energy systems, with peer-to-peer
energy trading transactions. Lu et al. [19] propose a secure
and efficient renewable energy trading mechanism based on
blockchain that improves system availability. The authors of
the paper have previously proposed software architecture of
ECSM [4]. The ECSM has been designed on the R3 Corda
distributed ledger platform [20]. A comparative analysis that
evaluates the feasibility of the most well-established, both
private and public DLT platforms, has been presented by
Chowdhury et al. [21].

Model-Driven Engineering is also a field of recent studies.
Because transformations play a significant role in MDE,
practical methods are needed to help detect errors in transfor-
mations and automate their verification. Cuadrado et al. [22]
present a method for the static analysis of ATL model trans-
formations whereas Burgueno ef al. [23] discuss static fault
localization in model transformations. Guaranteeing the qual-
ity of early models is essential for a successful applica-
tion of MDE techniques and related tool-supported model
refinements. Autili et al. [24] propose a tool that derives
a set of customizable questionnaires expressed in natural
language from each model to be validated by domain experts.
Macedo et al. [25] focus on inconsistency handling in MDE,
particularly in model repair techniques. Consistency between
the UML class model and its Java implementation is the field
of study of Chavez et al. [26]. The quality and maintainability
of model transformations are considered by Fleck et al. [27].
They propose an automated approach to modularize model
transformations. Software models are usually expressed in
Unified Modeling Language and may use Object Constraint
Language (OCL) to provide precise semantics. Lu et al. [28]
show application of OCL constraints to medical rules, in can-
cer registries, to ensure the quality of cancer data. The correct-
ness of UML class diagrams annotated with OCL constraints
can be checked using bounded verification techniques.
Clariso et al. [29] present approach which may increase
the usability of UML/OCL bounded verification tools and
improve the efficiency of the verification process. Looking
at recent applications of the MDE technique we can give
an example of Nufiez et al. [30]. They describe the MDE
approach for mobile business applications focusing on the
data layer. Yousaf et al. [8] propose an approach to test case
generation for user interfaces from Interaction Flow Model-
ing Language (IFML) models. Moradi et al. [31] propose a
framework that allows on services modeling, in a graphical
environment, and transforming them into executable context
web services. Magalhaes et al. [32] describe the iterative and

118247

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

incremental process that guides model-to-model transforma-
tion development from requirements specification to imple-
mentation. Jacome and De Lara [33] propose a mechanism
that allows specifying customization and extension rules for
meta-models. Whereas, Hebig er al. [34] present a survey
on approaches to support the co-evolution of metamodel and
model.

Research results are also available for applying soft-
ware engineering and model-driven engineering in designing
blockchain solutions. Xu et al. [35] discuss two approaches
for model-driven code generation. In the first, code of the
smart contract is generated for collaborative business pro-
cesses. The second application of MDE is a generator of
blockchain registries for assets such as land titles, cars, or dig-
ital assets. They describe the Regerator tool which can gen-
erate and deploy smart contracts representing registries on
the Ethereum blockchain. Goérski and Bednarski [36] present
the manner of smart contracts’ modeling in blockchain solu-
tion. They propose the UML Profile for Smart Contracts
and present static aspect of Smart Contract Design Pattern.
Gao et al. [37] propose an automated approach and
SmartEmbed prototype to clone or bug detection and
validation of smart contracts.

Current research results focus mainly on smart contracts.
We believe that the broader architectural description is advis-
able. Smart contracts are an essential part of distributed appli-
cations. Those applications must be installed on distributed
ledger nodes, which make up the deployment environment.
Thus, the paper concentrates on applying the MDE approach
to the deployment aspect of a distributed ledger solution.

lll. DEPLOYMENT VIEW OF DISTRIBUTED LEDGER

There are many other architectural views models apart from
Kruchten’s one. Rozanski and Woods [38] give examples of
architectural views models, e.g.: 4 4+ 1, RM-ODP, Siemens,
SEIL But, there is no architectural description adapted to
blockchain solutions. The Architectural views model 1 + 5
was designed to model collaborating systems in the context
of business processes [39] (see Fig. 1).

Integrated processes

@ Integrated services

Deployment

FIGURE 1. Architectural views model 1+5.

The purpose of Integrated processes view is the identi-
fication of business processes that should be supported by
software systems. The Use cases view defines functions that
those software systems should realize. The Logical view
presents realizations of the use cases identified in the Use
case view. The Contracts view presents contracts imposed

118248

on collaborating parties. The Integrated services view con-
centrates on communication between service providers and
service consumers. The Deployment view defines the physical
runtime environment for the solution. A broader description
of those architectural views and the use of this model for
designing software systems in Service-Oriented Architecture
was presented by Gorski [40].

As far as distributed ledger and blockchain solutions are
concerned the 1 + 5 model fits perfectly. In distributed
ledger solution we have collaborating parties (e.g.: seller
and buyer) that act on the basis of rules defined in a smart
contract. So, we have previously proposed modeling elements
for representing the collaboration of parties through smart
contracts [36]. We have placed those elements within the 1+5
model in new and unique, in the context of smart contracts,
view — Contracts View. For description of smart contracts
we have proposed dedicated Unified Modeling Language
stereotypes, i.e.: «State>>, <Flow>, «Contract>>>, and
& VerificationRule>>>. We have included them in the UML
Profile for Smart Contracts. We have proposed a flexible
approach for designing smart contracts with verification rules
as a Smart Contract Design Pattern. The UML class diagram
presents classes and interfaces that constitute the Smart Con-
tract Design Pattern (see Fig. 2).

<<Interface>>
<<VerificationRule>>

@ <<Contract>> a
<<abstract>> <<use>>

@ <<Interface>>

Contract ¢ - - - VRContract |- —-coooo D VRule
+verify() —rules : List<VRule> +runRule(tx)
+setRules(rules) +errorMsgd
i
o
T [
<<Contract>> @ <<VerificationRule>> Co
I0UContract DifferentSellerAndBuyerVRule Lo
L4 1 1
I
'
'
'
'
'
'

'
3 <<VerificationRule>>
NolnputVRule
1
@ <<VerificationRule>>

@ <<VerificationRule>>
OneOutputVRule
1

a <<VerificationRule>>

Producer ignersVRul

S
S

[a <<VerificationRule>>

{ TwoSignersVRule
i

FIGURE 2. Classes and interfaces of Smart Contract Design Pattern.

A smart contract’s logic is realized by a distributed appli-
cation that run on multiple nodes simultaneously. The nodes,
in the same network, communicate with each other in an
effort to complete a specific transaction. The Deployment
view describes a runtime environment that hosts artifacts
of distributed ledger solution development process. For that
reason, the Deployment view of the 1 4+ 5 model is crucial for
the whole distributed ledger solution. Thus, there is a need
to model the deployment environment of distributed ledger
solutions and automate the creation of deployment scripts.

IV. R3 CORDA FRAMEWORK

The R3 Corda is an authenticated peer-to-peer network of
nodes where each node is a Java Virtual Machine run-time
environment. Each node hosts Corda services and executes

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

applications known as Corda Distributed Applications.
We can distinguish the following node types: Network Map,
Notary, Oracle, and DLTNode. Fig. 3 presents a fragment of
the distributed ledger network for the ECSM system.

Thomas windmill
(DLTNode)

Lucy windmill
(DLTNode)

Network Map Node

FIGURE 3. Example of a Corda network graph of connections.

Moreover, the following services are an integral part of
the framework: permissioning, network map, notary, oracle,
identity, and support. Using nodes and services we can consti-
tute a Corda network, which is a fully connected graph. The
graph edges do not represent persistent connections but the
potential for communication. Network Map Node publishes a
list of peers while Notary Node hosts notary service that pro-
vides transaction ordering and time stamping. The R3 Corda
framework uses Advanced Message Queuing Protocol over
Transport Layer Security (AMQP/TLS) among DLT nodes.
Corda is a permissioned network. All participants of the
network must use public-key infrastructure to have verifiable
identities. Corda does not broadcast each transaction to the
network. Only directly involved nodes are aware of transac-
tions. Distributed ledgers are systems that enable parties who
do not fully trust each other to form and maintain a consensus
about a set of shared facts. The ledger from each node’s point
of view is the union of all intersections with other network
nodes. Each network node maintains a separate vault of facts.
For example, the figure shows three nodes with stored facts
(see Fig. 4).

Thomas

FIGURE 4. Distributed ledger facts.

VOLUME 8, 2020

Those nodes have facts in their vaults, i.e.: Thomas =
{1, 4}, Jacob = {1, 2, 3}, Lucy = {2, 3}. All facts from
1 to 4 constitute facts in the distributed ledger. Only facts
from 1 to 3 are shared between nodes. Corda transactions
operate using consumable states which are analogous to the
latest entry of a blockchain ledger that can be used to validate
a new transaction.

A significant number of comparative analysis concerns
the Distributed Ledger Technology frameworks. In one of
the recent analysis, Chowdhury et al. [21] evaluate the
feasibility of the most well-established, both private and
public DLT platforms, i.e.: Bitcoin, Ethereum, Hyperledger
Fabric, Hyperledger Sawtooth, Hyperledger Burrow, EOS,
Multichain, Cardano, IOTA, Walton-Chain, and R3 Corda.
They have selected a broad range of quantitative evaluation
criteria. They have found that Corda consumes almost neg-
ligible energy. Secondly, Corda is a private (permissioned)
DLT framework, which ensures data privacy stored. It means
that the consensus in Corda is reached at the transaction
level by involving relevant nodes only. It has a tremen-
dous impact on scalability because transactions engage only
two DLT and one notary node (in some cases oracle node
may be also be needed). Scalability is strictly connected
with performance. They have also shown that Corda is
among frameworks with the shortest block creation time (B,
0.5-2.0 seconds). In addition, the block size (By) is con-
figurable. One of the basic measures of distributed ledger
performance is the number of Transactions completing Per
Second (TPS). The value of TPS can be calculated according
to the formula (1), where TXj is the transaction size [3].

By
TPS = ———. (1)
TXs X B

With the growth of (configurable) By value and having
constant value of TX we can increase TPS value. The shortest
block creation time for the framework results from a consen-
sus mechanism that engages only two DLT nodes. For exam-
ple, the Corda network with B; = 1.0 [MB], TX; = 100.0 [B],
and B, = 0.5 [s], can process 20,000.0 transactions per
second. For comparison, the Bitcoin network can process
from 7.0 to 27.0 transactions per second [3]. Moreover,
the field experience has shown that Corda has broad applica-
bility. Having all advantages in mind, we have decided to use
software engineering techniques to support the deployment of
distributed ledger solutions using the R3 Corda framework.

V. UML PROFILE FOR DLT DEPLOYMENT

Unified Modeling Language uses the following extensibility
mechanisms: stereotypes, tagged values, and constraints [6].
These three constructs provide the ability to customize
UML diagrams for a specific need. The UML specifica-
tion defines stereotype as a new type of modeling element
that extends the semantics of the metamodel. Stereotypes
must be based on certain existing types or classes in the
metamodel. Stereotypes may extend the semantics, but not
the structure of pre-existing types and classes. Notation of

118249

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

stereotype encloses the name in guillemets (French quotation
marks), e.g., Kinclude>>> or «Boundary>>>. As far as tagged
value is concerned, the UML specification states the explicit
definition of a property as a name-value pair. In a tagged
value, the name is referred to as the tag. The purpose of a
tagged value is to assign a parameter to a model element.
This enables you to enhance the description of a model
element while still adhering to the UML metamodel. Tagged
values must not alter or contradict the existing definition of a
metaclass. Tagged values are expressed in the form ‘name =
value’, e.g.: author = “Tom”, maxLoad = 256. Constraints
define rules to protect the integrity of a diagram element.
The goal of a profile is to facilitate modeling in a domain by
defining a set of common concepts and constructs. Profiles
gather extension mechanisms to adjust UML notation.

We have used UML extensibility mechanisms for defining
a profile that can be applied to the UML Deployment model
of a distributed ledger solution. All proposed stereotypes and
tagged values describe the needed semantic UML enrichment
for the Deployment view. We have placed them in the UML
Profile for Distributed Ledger Deployment.

A. STEREOTYPES IN THE PROFILE

We have used stereotypes to represent nodes, services, and
communication protocols characteristic for a Corda network.
We have defined the following stereotypes for nodes:

o &KNetworkMapNode>>> — node that runs the network
map,

o <&NotaryNode>> — node that signs transactions if their
input states are valid,

e KOracleNode>> — node that links the ledger to the
outside world by providing facts that affect the validity
of transactions,

o &<DLTNode>> — node that has a vault and may com-
municate with other nodes,

o &KCordaNode>> — an abstract node that gathers com-
mon properties for all types of nodes.

A Corda network comprises nodes that communicate using
protocols to create and validate transactions. Nodes host and
run services. We have identified the following UML stereo-
types for services:

o <KpermissioningService>>> — service used to provision

TLS certificates,

o <networkMapService>> — service that enforces rules
regarding the information that nodes must provide
before being admitted to the network,

o <KnotaryService>> — service, which is used to provide
transaction ordering and time stamping,

o <KoracleService>> — service, which signs transactions
if they state a fact, and that fact is considered to be true,

o <identityService>> — service that controls admissions
of participants into Corda Network,

o <KsupportService>> — service that resolves inquiries
and incidents relating to the identity and notary services.

Fig. 5 shows stereotypes declared for services in the UML
Profile diagram.

118250

<<Stereotype>>

permissioningService (Artifact)

<<Stereotype>>

networkMapService (Artifact)

<<Stereotype>>
notaryService (Artifact)

<<Stereotype>>
oracleService (Artifact)

<<Stereotype>>
identityService (Artifact)

<<Stereotype>>
supportService (Artifact)

FIGURE 5. UML Profile diagram with stereotypes for DLT services.

In order to mark communication protocols we have added
the following stereotypes for connection links:
o KHTTPS>» — Hypertext Transfer Protocol encrypted
using Transport Layer Security (HTTPS),
o KAMQP/TLS>»> — Advanced Message Queuing
Protocol encrypted using Transport Layer Security.
Table 1 contains the summary of proposed stereotypes with
extended UML elements.

TABLE 1. The summary of stereotypes in the profile.

Stereotype ‘ Extended UML element
< CordaNode>> Node
< DLTNode>> Node
< OracleNode>> Node
< NotaryNode>> Node
< NetworkMapNode > Node
< permissioningService>> Artifact
< networkMapService> Artifact
< notaryService>> Artifact
< oracleService>> Artifact
<KidentityService>> Artifact
< supportService>> Artifact
<HTTPS> Generic Connection
< AMQP/TLS> Generic Connection

B. TAGGED VALUES

Deployment parameters can be set up for a single node con-
figuration. Each parameter has its name and a value. In order
to model deployment parameters, we have used tagged val-
ues. The full list contains 52 tagged values that represent the
configuration parameters of Corda nodes. During declaring
tagged values, we have intentionally omitted those deploy-
ment parameters of R3 Corda 4.3 version which are marked
as deprecated, internal options, or unsupported configuration.
Complete documentation of R3 Corda v.4.3 can be found
at the enclosed link [20]. Starting from UML 2.0, tagged
values are considered to be attributes of a stereotype. We have
applied tagged values to identified stereotypes for distributed
ledger nodes. In order to properly allocate tagged values to the
node’s stereotype, we have used an inheritance relationship
from the object-oriented approach. First, we have identified
tagged values that describe deployment configuration com-
mon for all types of nodes. That set of tagged values we have

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

placed in the «CordaNode>>> stereotype. Table 2 contains
selected tagged values that describe the properties of all types
of distributed ledger nodes.

TABLE 2. Selected tagged values for «CordaNode>> stereotype.

Tagged value name ‘ Type ‘ Default value ‘

additionalP2PAddresses Text Not defined
attachmentCacheBound Integer 1024
custom.jvmArgs Text Not defined
database.initialiseSchema Boolean true
detectPublicIp Boolean false
flowMonitorPeriodMillis Integer 60
flowTimeout.timeout Integer 30
flowTimeout.maxRestartCount Integer 6
h2Settings Text NULL
jarDirs Text Not defined
jmxMonitoringHttpPort Integer Not defined
jmxReporterType Text JOLOKIA
keyStorePassword Text cordacadevpass
messagingServerAddress Text Not defined
messagingServerExternal Text Not defined
myLegalName Text Not defined
networkServices.doormanURL Text Not defined
networkServices.pnm Text Not defined
p2pAddress Text Not defined
rpcSettings.useSsl Boolean false
systemProperties Text Not defined
trustStorePassword Text trustpass

The rest stereotypes for nodes inherit from the
«CordaNode>>>. Thanks to that all stereotypes for DLT
nodes have the same basic set of tagged values. There is
an additional set of tagged values for the <«NotaryNode>>>
which is available only for nodes running notary service.

Table 3 contains tagged values characteristic for the
<« NotaryNode>>> stereotype.

TABLE 3. Tagged values for «<NotaryNode>> stereotype.

Tagged value name ‘ Type ‘ Default value

notary.validating Boolean false
notary.serviceLegalName Text Not defined
notary.dftSMaRt.clusterAddresses Text Not def.
notary.raft.clusterAddresses Text Not def.
notary.raft.nodeAddress Text Not defined
notary.bftSMaRt.replicald Text Not defined

Finally, we have assigned tagged values to previously
declared stereotypes for distributed ledger nodes. Tagged
values, common to all stereotypes, we have assigned to the
«CordaNode>>> generic stereotype. Then we have used a
generalization relationship and connected this generic stereo-
type with each of the DLT stereotypes. As a result, each
of these stereotypes inherits a common subset of tagged
values. This subset we defined once for the «CordaNode>>>
stereotype and is available in all others. In addition, we have

VOLUME 8, 2020

assigned to the <«NotaryNode>> stereotype a subset of
tagged values characteristic only for this stereotype. The
UML profile diagram presents the inheritance tree of stereo-
types with tagged values (see Fig. 6).

<<Stereotype>>
CordaNode (Node (Deployment))

additionalP2PAddresses : Text
attachmentCi acheSizeMegaBy
attachmentCacheBound : Integer = 1024
blacklistedAttachmentSigningKeys : Text
cordappSignerKeyFingerprintBlacklist : Text

criCheckSoftFail : Boolean = True

custom.jvmArgs : Text

database.transactionlsolationLevel : Text = REPEATABLE_READ
database.exportHibernateJMXStatistics : Boolean = False
database.initialiseSchema : Boolean = True
database.initialiseAppSchema : Text = NONE
dataSourceProperties.dataSourceClassName : Text
dataSourceProperties.dataSource.url : Text
dataSourceProperties.dataSource.user : Text
dataSourceProperties.dataSource.password : Text
detectPubliclp : Boolean = False

devMode : Boolean = False

emailAddress : Text = company@example.com
extraNetworkMapKeys : Text

flowMonitorPeriodMillis : Integer = 60

fl i i ingThresholdMillis : Integer = 60
flowTimeout.timeout : Integer = 30
flowTimeout.maxRestartCount : Integer = 6
flowTimeout.backoffBase : Float = 1.8

h2Settings : Text = NULL

jarDirs : Text

i itoringHttpPort :

jmxReporterType : Text = JOLOKIA

keyStorePassword : Text = cordacadevpass
messagingServerAddress : Text

messagingServerExternal : Text

myLegalName : Text
networkParameterAcceptanceSettings.autoAcceptEnabled : Boolean = True
networkParameterAcceptanceSettings.excludedAutoAcceptableParameters : Text
networkServices.doormanURL : Text
networkServices.networkMapURL : Text

networkServices.pnm : Text

p2pAddress : Text

rpcSettings.address : Text

rpcSettings.adminAddress : Text
rpcSettings.standAloneBroker : Boolean = False
rpcSettings.useSsl : Boolean = False
rpcSettings.ssl.keyStorePath : Text
rpcSettings.ssl.keyStorePassword : Text

rpcUsers : Text

security : Text

sshd.port : Integer

systemProperties : Text

transactionCachesSi. 3 =8
tisCertCriDistPoint : Text = NULL

tisCertCrllssuer : Text = NULL

trustStorePassword : Text = trustpass

: Integer = 10

<<Stereotype>>
NetworkMapNode (Node (Deployment))

<<Stereotype>>
DLTNode (Node (Deployment))

<<Stereotype>>
NotaryNode (Node (Deployment))

notary.validating : Boolean = False
notary.serviceLegalName : Text
notary.raftnodeAddress : Text
notary.raft.clusterAddresses : Text
notary.bftSMaRtreplicald : Text
notary.dftSMaRt.clusterAddresses : Text

< <Stereotype>>
OracleNode (Node (Deployment))

FIGURE 6. UML Profile diagram presents stereotypes for nodes with
tagged values.

We have modeled the profile in Visual Paradigm
Enterprise. We have placed the designed profile in the GitHub
repository [41].

VI. UML2Deployment TRANSFORMATION DESIGN

Modular design is a desirable property of a transforma-
tion. Despite the fact that language support for modularisa-
tion of transformations is emerging, their designs in many
cases are monolithic and contain a huge number of rules.
The subject is vital and attracts researchers to tackle that

118251

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

problem. For example, Fleck et al. [27] have proposed an
automated search-based approach to modularise transforma-
tions based on higher-order transformations. Their idea was
to improve the maintainability of the model transformation
program.

Having that in mind, we have applied several architec-
tural principles for the design of our transformation. First
of all, modularity caused that we have divided our solution
into the following modules: UML Profile for Distributed
Ledger Deployment, UML Deployment model, Object-
oriented model, Configuration files templates, and Configu-
ration files. We present the overview of our MDE solution
to automate the R3 Corda distributed ledger deployment
(see Fig. 7).

Visual Paradigm

Java plug-in
Pig UML Profile for

Distributed
UML Deployment e Ledger
model Deployment

API

v

Java UML2Deployment transformation

IntelliJ IDEA Configuration files

templates

Object-oriented uftm
model

<!— temp —>
<!— temp —>
<!— temp —>
<!— temp —>
<!— temp —>

Configuration files

<!— value —>
value —>

<!— value —> value —>

value —>

<!— value —> value —>
<!— value —>
<!— value —>
<l— value —>

<!— value —>

FIGURE 7. The MDE solution overview.

As far as separation of responsibility is concerned we
have designed the transformation as two separate Java
projects: transformation application that transforms a UML
Deployment model into deployment configuration scripts and
plug-in application that integrates the transformation with
Visual Paradigm modeling tool. At a lower level that prin-
ciple involves the clear division of provided functions among
identified modules.

We have also applied DLT version configurability architec-
tural principle. In order to achieve the possibility of changing
the R3 Corda version without the need of changing the trans-
formation we have used two following elements: configura-
tion files templates and UML Profile for Distributed Ledger
Deployment. Both elements use the same set of stereotypes

118252

and tagged values. That set complies with the specification
of the current 4.3 version of the R3 Corda framework. The
structure of the generated configuration file is configurable.
The transformation fills only matching elements in files. The
transformation is designed in that way that we need to provide
only the new version of the profile with corresponding config-
uration files templates to generate configuration files for the
new version of the framework. It gives us an option to manage
configuration between consecutive versions of the platform
also when the structure of configuration files changes. From
the technical point of view, the template mechanism ensures
independence from a distributed ledger platform provider.
Currently, there are no standards in this area and platforms
providers are managing the configuration in distinct ways. So,
proposed template mechanism may be not enough to switch
between various distributed ledger platforms.

In addition, our goal was also to keep independence from
the modeling tool. Thus, we have applied the interchange-
ability of modeling tools architectural principle. We have
introduced that architectural principle because we would like
to keep the possibility to integrate easily with other modeling
tools (e.g., Eclipse Papyrus). We have chosen Visual
Paradigm because it has a wide spectrum of features:

« versions are available at various platforms, e.g.: macOS,

Linux, Windows, Unix,

o free Community Edition is available,

« Enterprise Edition offers full support for UML extensi-

bility and MDE,

« exposes API which allows on full access to UML models

from Java source code level.
Moreover, we have a commercial license available for Visual
Paradigm Enterprise at our university. It is worth emphasiz-
ing, that our approach resolves the issue of vendor lock-in.

And the last architectural principle is simplicity. As a
result, we have identified a few modules with simple rules of
transition between them. The source of the transformation is
the UML Deployment model of the distributed ledger solution
with the UML Profile for Distributed Ledger Deployment
applied. The UML Deployment model may be stored in var-
ious formats depending on the modeling tool. So, we have
used the Application Programming Interface (API) of the
Visual Paradigm modeling tool to get the complete set of
nodes with specified tagged values. That set is stored in
the Object-oriented model. Then the Java UML2Deployment
transformation application reads the proper Configuration
files templates and generates deployment Configuration files.
The transformation generates a Gradle Groovy DSL file
(deployNodesTask.gradle). The file contains the fulfilled
Gradle task with the required deployment configuration
parameters of the distributed ledger network. For each node,
the transformation also generates a file with the complete set
of deployment parameters.

Next, we have presented elements of our transformation,
i.e.. the UML deployment model, the Object-oriented
model, configuration files templates, and configuration files.
We have also described the transformation algorithm.

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

A. THE UML DEPLOYMENT MODEL

The definition of the UML Deployment model requires pro-
viding meta-model syntax and semantics [33]. A meta-model
(M2) is a model that describes the artifacts of and rules for
a model, e.g., classes, nodes, stereotypes, and tagged values.
A model (M1) is the model that describes the artifacts and
rules for the problem domain. At that level, we draw UML
diagrams. We can depict the UML Deployment model into
two types of UML diagrams: component and deployment.
The first one represents physical pieces of software used by
the implemented system. The latter shows the deployment
environment of the designed system. Together the component
and deployment diagrams describe how a software system is
installed on the runtime environment. Fig. 8 shows a fragment
of the mapping between the M2 meta-model and the
M1 model for our Deployment model.

[Classifier | Association | [Stereotype] TaggedValue
AN

A ~

-->

'
'

'
\

|
“ i

N . ' |
<<instantiate>> ! \ <<instantiate>> '
' 1 ' 1

! ‘

:

<<instantiate>>
v

<<instantiate>> \

<<instantiate>>
\

\ |
[Node | ccusers DLTNode |
I E— |
|

_____________ '

Model (M1) AN T

FIGURE 8. The mapping between the M2 meta-model and the M1 model.

The first module is the UML Deployment model. At that
level, network nodes are represented by UML Nodes objects
with configuration attributes defined as tagged values. Each
node has a proper stereotype and predefined list of tagged
values with default values. Stereotypes and tagged values
definitions are provided by the UML Profile for Distributed
Ledger Deployment. Packages group nodes. The package
represents one deployment environment, e.g.: dev, test, uat,
pre-prod, prod. The source of the transformation is one of the
deployment environments in the UML Deployment model of
the DLT solution with the UML Profile for Distributed Ledger
Deployment applied. Thus, the source of the transformation
comprises nodes, services, and communication links. We can
use a single UML Deployment diagram or many of them to
describe the UML Deployment model of the DLT solution.
Fig. 9 presents an example of the UML Deployment diagram
for a fragment of the ECSM system [4], [36].

Visual Paradigm tool stores models in binary flat files
(with.vpp extension). Other tools can not read them without
understanding the tool’s internal format. We identified two
ways to extract needed data in the format which we can
use in our transformation. The first one relies on the UML
model export of to the XML file, which shows data in a
readable format. The second approach, selected by us, relies

VOLUME 8, 2020

<<NetworkMapNode>>
NetworkMap

<<artifact>> O <<uses> <<artifact>> D
<<networkMapService>> |- ----->> <<permissioningService>>
Network Map service Permissioning service

|

1 1
<<HTTPS>> <<HTTPS>>

<<HTTPS>>
<<DLTNode>> \
Thomas windmill <<AMPQ/TLS>>
<<DLTNode>>
Jacob windmill
<<AMPQ/TLS>>
<<AMPQ/TLS>>
4
<<DLTNode>>
Lucy windmill
HTTPS:
<<AMPQ/TLS>> << >>
<<AMPQ/TLS>>
<<AMPQ/TLS>> <<HTTPS>>
<<NotaryNode>> Y <<HTTPSh> <<OracleNode
Notary Oracle
<<artifact>> 0O <<artifact>> O

<<oracleService>>
Oracle service

<<notaryService>>
Notary service

FIGURE 9. The UML Deployment diagram for the ECSM system.

on the usage of the delivered API. It allows for reading and
manipulating data contained inside the UML Deployment
model. That method allows us to read data directly into the
source code of the Object-oriented model and speed up the
process of data extraction.

Table 4 shows the mapping between the UML Deployment
model and Visual Paradigm API elements.

TABLE 4. The mapping between the UML Deployment model and Visual
Paradigm APl modeling elements.

UML element API element
Package com.vp.plugin.model.IPackage
Node com.vp.plugin.model.INode
TaggedValue com.vp.plugin.model.ITagged Value

We have designed the transformation for the generation of
deployment configuration at two levels:

« deployment environment level — we generate deploy-
ment configuration for a UML package which represents
deployment environment,

« node level — we generate deployment configuration for
a single node.

In case of deployment environment level, the transfor-
mation gathers all objects that implement INode interface,
which are children of the IPackage interface. Fig. 10 shows
the source code of the getNodes method that gathers UML
nodes and creates collection of objects that implement /Node
interface.

In the case of node level, the transformation reads only
a single object implementing /Node interface that represents
the UML node.

118253

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

public Collection<INode> getNodes (IPackage vpPackage) {
UIHelper.logMessage ("Collecting nodes details...");

Iterable<INode> nodesIterable = () ->
vpPackage.childIterator (IModelElementFactory.MODEL TYPE NODE) ;

List<INode> nodes = StreamSupport
.Stream(nodesIterable.spliterator(), false)
.collect (Collectors.toList());

UIHelper.logMessage ("Nodes search finished
(" + nodes.size() + " nodes found)");

return nodes;

}

FIGURE 10. The source code of the getNodes method.

B. THE OBJECT-ORIENTED MODEL
The Object-oriented model (OOM) comprises Java classes
and interfaces that directly correspond to classes from the
Visual Paradigm API and indirectly to UML nodes. We have
added the interface CordaObject and the class CordaNode
to provide a higher level of abstraction for all objects cre-
ated on the basis of the UML Deployment model. From the
Java source code perspective, such an approach allows us on
designing and developing the transformation algorithm in a
generic and extendable way. The actual object class is hidden
under the parent class or interface.

Fig. 11 presents interfaces and classes in the inheritance
tree of the Object-oriented model.

<<Interface>>
CordaObject

A

CordaNode
-name : String
-properties : Map<String, Object>

N

DLTCordaNode OracleCordaNode

NotaryCordaNode

NetworkMapCordaNode

FIGURE 11. The Object-oriented model reference types.

Using the tool’s API we have loosely coupled the UML
Deployment model and the OOM. Table 5 shows the mapping
between the Visual Paradigm API and the OOM classes.

TABLE 5. The mapping between the tool APl and the Object-oriented
model.

API element Object-oriented model class ‘
INode with < DLTNode>> DLTCordaNode
INode with <NotaryNode>> NotaryCordaNode
INode with < OracleNode>> OracleCordaNode
INode with <NetworkMapNode>> NetworkMapCordaNode

118254

The transformation creates Java objects, in the OOM,
based on the collection of objects that implement the INode
interface. Each Java object has its reference type. The type
depends on the stereotype applied to the INode interface.
We can read the stereotype by using the hasStereotype method
provided by INode interface. The API allows us to manip-
ulate the UML Deployment model with the usage of an
object-oriented approach where UML elements are reflected
inside the source code as interfaces, classes, and objects.
At the Java source code level, the creation of proper objects
is done with the usage of the StereotypesEnum data type
(see Fig. 12).

public enum StereotypesEnum {
DLTNode, OracleNode, NetworkMapNode, NotaryNode;
public CordaNode getInstance() {
switch (this) {
case NotaryNode:
return new NotaryCordaNode () ;
case OracleNode:
return new OracleCordaNode () ;
case NetworkMapNode :
return new NetworkMapCordaNode () ;
case DLTNode:
return new DLTCordaNode () ;
default:
return new CordaNode () ;

}

FIGURE 12. StereotypesEnum enum data type.

We have applied inheritance and polymorphism to store
objects of all that classes in one generic list of type
List<CordaNode>. Moreover, we have also applied Java
generic HashMap type to store tagged values in Java classes,
Map<String, Object>. The values of tags can be read by
using the API. The INode interface has convenient methods
for that purpose. Fig. 13 presents the source code of the
readTaggedValue method.

private Object readTaggedValue (String key, INode vpNode) {

ITaggedValue vpTaggedValue =
vpNode. getTaggedValues () .getTaggedValueByName (key) ;

if (vpTaggedValue == null) {

return null;

return vpTaggedValue.getValue();
}

FIGURE 13. The source code of the readTaggedValue method.

We retrieve the actual list of all tagged values from the
UML Profile for Distributed Ledger Deployment using the
tool API. The last activity is setting proper values for proper-
ties of objects from the List<CordaNode> corresponding to
tagged values read from INode interfaces.

C. CONFIGURATION FILES TEMPLATES

Templates are flat files that have the same structure as con-
figuration files. The difference lays in placeholders. We have
used them to distinguish the value part of the tagged value.
Placeholder for value has the same name as the tagged value

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

in the UML Deployment model wrapped by ‘<!-’ prefix and
‘-->’ suffix. Table 6 contains examples of mapping between
UML tagged values and template placeholders.

TABLE 6. Mapping between UML tagged values and template
placeholders.

UML tagged value Template placeholder
myLegalName <!-- myLegalName -->
p2pAddress <!-- p2pAddress -->
custom.jvmArgs <!-- custom.jvmArgs -->
rpcSettings.useSsl <!-- rpcSettings.useSsl -->

Fig. 14 presents a fragment of the nodeConfig.template
configuration file template.

myLegalName = "<!--myLegalName-->"
additionalP2PAddresses =
<!--additionalP2PAddresses—->
attachmentContentCacheSizeMegaBytes =
<!--attachmentContentCacheSizeMegaBytes—->
attachmentCacheBound = <!--attachmentCacheBound-->
blacklistedAttachmentSigningKeys =
<!--blacklistedAttachmentSigningKeys—->
cordappSignerKeyFingerprintBlacklist =
<!--cordappSignerKeyFingerprintBlacklist-->
crlCheckSoftFail = <!--crlCheckSoftFail-->
custom = {
jvmArgs = <!--custom.jvmArgs-->
}
database = {
transactionIsolationLevel =
<!--database.transactionIsolationLevel-->
exportHibernateJMXStatistics =
<!--database.exportHibernateJMXStatistics—->

}

FIGURE 14. Fragment of configuration file template.

The transformation selects proper configuration template
files for objects from the List<CordaNode>. Table 7 shows
template files corresponding to the OOM elements.

TABLE 7. Mapping between the Object-oriented model and template
files.

OOM element Template file ‘
List<CordaNode> deplyNodesTask.template
DLTCordaNode nodeConfig.template
deployNodesTask_node.template
NetworkMapCordaNode nodeConfig.template
deployNodesTask_node.template
OracleCordaNode nodeConfig.template
deployNodesTask_node.template
NotaryCordaNode notaryNodeConfig.template
deployNodesTask_notaryNode.template

D. CONFIGURATION FILES

Gradle is a general-purpose build management system [42].
Gradle supports the automatic download and configuration
of dependencies or other libraries. It supports Maven repos-
itories for retrieving these dependencies. Gradle builds are
described via one or multiple build.gradle files. At least one
build.gradle file is typically located in the root folder of the
project. Each of these files defines a project and its tasks.

VOLUME 8, 2020

In Gradle, we have projects that mean something to build or
work to do. Each project comprises tasks. A task represents a
piece of work that a build performs, e.g., compile the source
code or generate the Javadoc. These build files are based on
a Groovy Domain Specific Language. In this file, you can
use a combination of declarative and imperative statements.
You can also write Groovy or Kotlin code whenever you need
it. Tasks can also be created dynamically at runtime. The
build.gradle file comprises three types of elements:

« task — a task represents a single atomic piece of work
for a build, such as compiling classes. We have incorpo-
rated the deployNodes task into generation.

e block — a build script is made up of zero or more
statements and script blocks. Statements can include
method calls, property assignments, and local variable
definitions. We have used the node block for node con-
figuration in the transformation.

« property — in the node block, we set values of properties
based on corresponding values of tagged values.

Gradle uses the following files to configure and deploy a
distributed ledger network:

o build.gradle — expressed in Groovy DSL or Kotlin
DSL. We have used Groovy DSL due to performance
reasons,

« node.conf — complete set of configuration options for a
specific node.

We have customized deployNodes task to configure and
generate a set of distributed ledger nodes. That task is used
by build.gradle to configure the network of nodes. The
transformation also generates a configuration file for node.
The file uses the Human-Optimized Config Object Nota-
tion (HOCON) format [43]. HOCON format is a superset of
JavaScript Object Notation (JSON) [44].

The transformation generates configuration files by pop-
ulating the content of each file with templates. It replaces
placeholders with proper tagged values (see Fig. 15).

private String populateTemplateWithTags (String template,
Map<String, Object> tagsAndValues) {
for (Map.Entry<String, Object> entry
: tagsAndValues.entrySet()) {
String key = entry.getKey();
Object value = entry.getValue();
String tag = TemplateTags.getInstance().buildTemplateTag (key);
template = template.replace(tag, getValueAsString(tag, value));
}
return template;

}

FIGURE 15. The source code of the populateTemplateWithTags method.

For tagged values not set in the UML Deployment model
placeholders remain in the generated file.

The transformation stores configuration files, generated
with nodeConfig and notaryNodeConfig templates, in sep-
arate node configuration files (e.g.: NetworkMap.config,
Oracle.config, Notary.config, Jacob windmill.config, Lucy
windmill.config, Thomas windmill.config).

118255

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

Fig. 16 presents the fragment of generated configuration
file for the Windmill Thomas node.

myLegalName = "O=Windmill Thomas,L=Gdynia,C=PL"
additionalP2PAddresses =
<!--additionalP2PAddresses—-->
attachmentContentCacheSizeMegaBytes = 10
attachmentCacheBound = 1024
blacklistedAttachmentSigningKeys =
<!--blacklistedAttachmentSigningKeys-->
cordappSignerKeyFingerprintBlacklist =
<!--cordappSignerKeyFingerprintBlacklist-->
crlCheckSoftFail = True
custom = {
jvmArgs = -Xms256m -Xmx768m
}
database = {
transactionIsolationLevel = REPEATABLE READ
exportHibernateJMXStatistics = False
}

FIGURE 16. The fragment of the generated configuration file.

All configuration files generated with deployNodeTask
types templates are combined into one file. The content pre-
pared in that way is injected into deplyNodesTask.template.
The transformation uses that template and creates deployN-
odesTask.gradle configuration file.

E. THE TRANSFORMATION ALGORITHM

There are two entry points of the transformation algo-
rithm: all nodes, from the selected environment, configura-
tion generation, and a single node configuration generation.
Thus, we have enumerated initial steps of the algorithm as
la and 1b, respectively. Similarly, the Step 3a applies to the
generation of deployment configuration for the selected UML
package and the Step 3b refers to the generation of a single
node configuration. The transformation acts according to the
following algorithm:

o Step 1a. A user invokes Generate Nodes configuration
option to generate the configuration of all nodes for the
selected UML package.

o Step 1b. A user invokes Generate Node configuration
option to generate the configuration for the single node,

o Step 2. A user selects destination folder for generated
configuration files.

o Step 3a. The transformation gathers all UML nodes,
which are places in the selected package, and builds a
list of objects that implement the /Node interface.

o Step 3b. The transformation selects the UML node and
creates a list that contains one object, which implements
INode interface.

o Step 4. For each object on the list, the transfor-
mation creates a Java object of the proper class,
based on the applied stereotype, e.g., an object of
DLTCordaNode class for <<DLTNode>>> stereotype.
The transformation creates a collection of objects,
Collection<CordaNode>.

o Step 5. The transformation reads template file for the
Gradle deployNodes task.

118256

o Step 6. For each Java object from the collection,
the transformation:

— Step 6.1. reads template for the Gradle node block,

— Step 6.2. populates values in the Gradle node block
template with values stored in the Java object,

— Step 6.3. adds generated Gradle node block to the
Gradle deployNodes task template,

— Step 6.4. reads template for node configuration file,

— Step 6.5. populates values in node configuration file
template with values stored in the Java object,

— Step 6.6. saves the single node configuration file to
the selected destination.

e Step 7. The transformation saves the

deployNodes task to the proper destination.

o Step 8. The transformation informs the user about the

finished generation.

We have designed the transformation in IntelliJ IDEA.
We have used the Lombok library, which is a fully-featured
builder [46]. By using annotations of the library we were
able to automatically generate class methods, e.g.: a get-
ter, setter, equals, or constructor. That allowed us to limit
the program code to statements related to business logic.
As a result, the source code is shorter and clearer. We have
placed the designed transformation application in the GitHub
repository [47]. Furthermore, we have designed the Java
plug-in and integrated the transformation with Visual
Paradigm Enterprise. We have placed the designed Java
plug-in application in the GitHub repository [48].

Gradle

VII. THE TRANSFORMATION USAGE
We have designed two options to run the transformation in
the Visual Paradigm modeling tool:

« generation of single-node deployment configuration -
we have added the option Generate Node configuration
to the UML Node context menu in the UML Deployment
diagram or Model Explorer,

o generation of deployment configuration for a set of
nodes declared in the UML Package - we have added
the option Generate Nodes configuration to the UML
Package context menu in Model Explorer.

Thus, the transformation can be run at two levels. At the
node level, the transformation generates deployment configu-
ration for a single node. At the deployment environment level,
the transformation generates deployment configuration for
a UML package which represents deployment environment,
e.g.: dev, test, uat, pre-prod, prod.

Fig. 17 shows the context menu of the Visual Paradigm tool
extended with the Generate Node configuration option.

n | |
a < <<AMPQ/TLS>>
<<DLTNode> > | LA—J

Thomas windmill
I =

FIGURE 17. Extended context menu of the UML node.

<<artifact>

<<notaryServi
Nntary

A Open Specification... Jd -
Generate Node configuration

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

We can run the transformation for a single node Thomas
windmill marked with < DLTNode>> stereotype. As a result,
we will get two files: deployNodesTask.gradle and Thomas
windmill.config. We present a fragment of generated script
file (deployNodesTask.gradle) for configuration of Thomas
windmill distributed ledger node (see Fig. 18).

node {
name "O=Thomas windmill,L=Gdynia,C=PL"
devMode false
p2pAddress "thomas.corda.amw.gdynia.pl:10002"
rpcSettings {
useSsl false
standAloneBroker false
address "thomas.corda.amw.gdynia.pl:10003"
adminAddress "thomas.corda.amw.gdynia.pl::10103"
}

rpcUsers = [[user: "thomas", "password": "password",
"permissions'": ["ALL"]]]
configFile = "./build/nodes/thomas/thomas.conf"

}

FIGURE 18. Fragment of the deployNodesTask.gradle script.

The second option is to generate a deployment configu-
ration for all nodes in a specific UML package. The option
is available in the Model Explorer. In software engineering,
we usually need several environments that organize the devel-
opment process, e.g.: development, tests, user acceptance
tests, pre-production, and production. We present the
Model Explorer view with three UML packages that rep-
resent deployment environments, i.e.: dev, test, and prod
(see Fig. 19).

e'es Model Explorer
O -H-#-a-2
ECSM(Current) u

Tecsm
v E.environmen(s
[Sdev
[Sprod
v
[El)acob windmill
[Lucy windmill
» [@ENetworkMap
» [@ENotary
» [@oracle
[EThomas windmill

FIGURE 19. Model Explorer with several deployment environments.

A clear and repeatable deployment process is crucial for
Continuous Delivery. The second option of the transforma-
tion allows for managing multiple deployment environments
within the software development project. UML packages
reflect deployment environments. We can include UML
modeling into the Continuous Delivery process and support
automatic environments building and deployment. Config-
uration managers responsible for managing configurations
across multiple environments after introducing changes or
adding new environments generate actual setup and save it in
dedicated network localization. When the new deployment
is in progress (e.g., with the usage of automation servers
like Jenkins or Bamboo), the proper configuration can be
automatically read from defined localization and included in
the deployment.

VOLUME 8, 2020

VIil. THE TRANSFORMATION VALIDATION

One of the important aspects of the paper is the validation
of the proper functioning of the transformation. According
to IEEE 610.12-1990 Standard, validation is the process of
evaluating a system or component during or at the end of
the development process to determine whether it satisfies
specified requirements [53]. Therefore, we have concluded
that it requires comparing the source and the target of the
transformation, and thus checking the consistency of both
elements. We have adopted the following assumptions for
validation: the source is a UML node in the UML Deployment
model and the target is the deployment configuration file for
that UML node.

Both those elements comprises a set of parameters. The
source encompasses set M that comprises tagged values m,
m € M. The target contains set C, which consists of deploy-
ment configuration parameters c, ¢ € C (see Fig. 20).

Set C SetM

O(

FIGURE 20. Two separate sets of parameters to validate.

Intersection of two sets C and M is denoted by C N M, and
is the set containing all elements of C that also belong to M
(or equivalently, all elements of M that also belong to C). We
have to check that intersection of those two sets satisfies the
following equation (see formula (2)).

CAM=C=M. 2)

To do that, we have to verify whether those two sets contain
the same elements with the same values (see Fig. 21).

P
SetC / > SetM

FIGURE 21. The intersection of identical sets C and M.

Conditions for checking intersection C "M encompass the
following formulas. The cardinality of both sets should be the
same (see formula (3)).

IC| = IM]. 3)

We should define how to compare elements in both sets.
The deployment configuration parameter c is an ordered pair,
¢ = (n°,v°), where:

« n¢ —name of the deployment configuration parameter c,

o V¢ —value of the deployment configuration parameter c.

118257

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

The tagged value m is an ordered pair, m = (n™, V"),
where:

« n™ —name of the tagged value m,
o V" —value of the tagged value m.

For each deployment configuration parameter ¢ € C there
should be corresponding tagged value m € M which has the
same name and value (see formula 4).

AV @ =" A=)
ceC meM
The same must be fulfilled from the opposite side. For
each tagged value m € M there should be corresponding
deployment configuration parameter ¢ € C which has the
same name and value (see formula 5).

A V@™ =n) A=) (5)

meM ceC

We also need to check the relative complement of C in M,
denoted by M \ C, to verify that the set of elements in M but
not in C is empty (see formula (6).

M\C=2. (0)

We have also done a reverse check of the relative complement
of C\M to verify the set of elements in Cbut not in M is empty
(see formula (7).

C\M=2. ©

At the design level, we have developed a separate val-
idation application that does not use any element of the
transformation application. The Java validation application
checks two HashMap collections. The first one contains
objects corresponding to deployment configuration parame-
ters. Whereas, the second one comprises objects that refer to
tagged values from the UML node. The validation application
checks the intersection of those collections in its general form
(see Fig. 22).

SetC SetM

)
/

FIGURE 22. The intersection of sets C and M in general form.

Thus, the validation application looks for objects that
appear in both collections, and it also searches for objects,
which appear only in one of them.

We present the architectural overview of Java applica-
tion UML2DeploymentCheck that validates distributed ledger
deployment configuration files (see Fig. 23).

We have integrated the validation application with the Java
plug-in application. In that way, we have expanded the UML
node context menu in Visual Paradigm with the Validate

118258

Visual Paradigm

Java plug-in
e UML Profile for
Distributed
UML Deployment e Ledger
model Deployment
API
¥
IntelliJ IDEA Validation HTML report

Java UML2DeploymentCheck

<htmi><body>

</body></html>

Generated configuration file

<!— value —>
<!— value —>
<!— value —>
<!— value —>

<!— value —>

FIGURE 23. The validation application overview.

Node configuration option. After invoking the Validate Node
configuration option on the selected UML node, we have
to choose the deployment configuration file for comparison.
The validation application does the following actions:

« reads all tagged values from the selected UML node and
creates corresponding objects in the model HashMap
collection,

« reads all deployment configuration parameters from the
chosen deployment configuration file and creates cor-
responding objects in the deployment HashMap collec-
tion,

« for each object in the deployment HashMap collection,
the validation application looks for the corresponding
object in the model HashMap collection and adds the
result to the HTML report,

o for each object in the model HashMap collection,
the validation application looks for the corresponding
object in the deployment HashMap collection and adds
the result to the HTML report.

As a result of running the validation of the UML node
deployment configuration, the HTML report is created and
saved in the same destination where the deployment config-
uration file resides. In that HTML report:

« matching entries are marked in white,

« entries with differences are marked in red,

« entries found in the configuration file but not found in

the UML node are marked in yellow,

« entries found in the UML node but not found in the
configuration file are marked in orange.

VOLUME 8, 2020

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

Fig. 24 shows a fragment of HTML report from validation
with deliberately made changes to emphasize differences.

No Key UML value Config value
1 ||additionalP2PAddresses null null
2 ||attachmentCacheBound 1024 1024
3 ‘ontentC: y 10 10
4 null null
5 ||cordappSignerKeyFingerprintBlacklist null null
6 | |ctiCheckSoftFail True True
7 ||custom jvmArgs -Xms256m -Xmx768m -Xms256m -Xmx768m
8 r o
9 url null null
10 ies.d user sa sa
11 i org.h2.idbex JdbcDataSource ||lorg.h2.idbex.JdbcDataSource
12 portHib JMXStatistics False False
| 13 ||database.initialiseAppSchema NONE INONE
daabascinitaliseSchema Twe Fke
% [database transactionlsolationLevel |[REPEATABLE READ _||REPEATABLE READ |
16 ||detectPubliclp False False
17 ||devMode False null
18 ||emailAddress thomas @amw .gdynia.pl thomas @amw gdynia.pl
19 [|extraNetworkMapKeys null null
20 ||flowMonitorPeriodMillis 60 60

FIGURE 24. Excerpt of HTML report from the validation.

As a result, we have obtained the tool to validate consis-
tency between UML models and deployment configuration
files for nodes. We have conducted tests for the ECSM model.
Tests have confirmed that the transformation works correctly.
We have designed and developed the validation application
in Intelli] IDEA and integrated it with Visual Paradigm
Enterprise. We have placed the designed validation applica-
tion in the GitHub repository [52].

IX. DISCUSSION AND LIMITATIONS

From the literature review, we can conclude that there is a
very limited amount of research work done on the appli-
cation of Model-Driven Engineering to distributed ledger
and blockchain technologies. Most of them focus on smart
contracts. We used MDE to manage the deployment config-
uration of the R3 Corda distributed ledger solution.

The transformation is designed in such a flexible way
that allows on updating between distributed ledger platform
versions without the need to change the source code. The Java
transformation is loosely coupled with the distributed ledger
platform by using the dedicated UML profile and deployment
configuration files. Templates give the possibility to manage
configuration differences between DLT platform versions,
like new or deprecated deployment parameters or changes in
the deployment configuration file structure. In case of new
deployment parameters appearance or change of the existing
ones, the following steps must be done to accommodate the
consecutive version:

o update of tagged values in the UML Profile for Dis-

tributed Ledger Deployment,

« verification of the UML Deployment model,

« update templates of deployment configuration files.
The Java transformation remains unchanged. It is worth
emphasizing, that we can do the mentioned actions at runtime
with no changes in the source code.

VOLUME 8, 2020

In addition, we tried to achieve a certain level of inde-
pendence from the specific distributed ledger platform.
Unfortunately, due to architectural differences between the
distributed ledger platforms, our solution does not provide a
transition to another platform without changes in the source
code of the transformation. We propose steps with must be
done to change the distributed ledger platform:

« preparation of a new UML profile dedicated to the new

platform,

o preparation of new configuration files templates dedi-

cated to the new platform,

o changes in selected steps of the transformation

algorithm:
— using of new stereotypes dedicated to the new plat-
form,
— creating new classes in the Object-oriented model
that reflect new platform’s stereotypes,
— mapping between new stereotypes and the Object-
oriented model,
— mapping between the Object-oriented model and
deployment configuration templates files.
At the algorithm level, the flow of activities in our transfor-
mation remains the same. It would be worth considering the
design of a platform-independent model that would ensure
the portability of modeled deployment environments between
DLT platforms. The deployment level is strongly associated
with the distributed ledger platform. As a result, we should
manage many various models: one platform-independent
model and a set of platform-specific models.

We have developed the transformation in the Java program-
ming language and integrated it with the Visual Paradigm
Enterprise modeling framework by separate Java plug-in.
The proposed solution makes the transformation application
independent of the modeling tool. We can replace the mod-
eling tool in our solution as long as it provides an API to
read the content of the models and supports UML extension
mechanisms.

It is worth emphasizing that our solution allows for manag-
ing models of different deployment environments in the UML
Deployment model. Moreover, we can generate a deployment
configuration of the distributed ledger network for various
environments. Here is the second advantage of Java. Because
selected Continuous Delivery automation servers are writ-
ten in Java we can incorporate our UML modeling support
into the Continuous Integration / Continuous Deployment
process.

We see two additional limitations to our solution. Fist of
all, our transformation is unidirectional in its current form.
It can generate deployment configuration scripts for the UML
Deployment model, environment, or single node. In addition,
the validation application can check the consistency between
the model and the configuration file. However, we cannot
update the model using the transformation due to changes
made to the configuration file. Secondly, we have focused
mainly on the Deployment view of the distributed ledger solu-
tion. We consider including the Logical and Contracts views

118259

IEEE Access

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

from the Architectural views model 1+5 to encompass smart
contracts and distributed applications that realize business
logic.

X. CONCLUSION AND FUTURE WORK
This article introduces an innovative approach for generat-
ing distributed ledger deployment configuration files from
the UML Deployment model. We have identified modeling
elements of the selected distributed ledger platform and
proposed new UML notation extensions in the form of
dedicated — UML Profile for Distributed Ledger Deploy-
ment. Furthermore, we have automated the generation of the
R3 Coda distributed ledger network configuration. We have
developed the transformation in Java programming language
and plugged-in it into the Visual Paradigm Enterprise model-
ing tool. We have shown the applicability of the Architectural
views model 1+5 in the Deployment view part for decen-
tralized solutions. Our approach comprises UML extension
mechanisms, the Model-to-Code transformation integrated
with the modeling tool, and the validation application.
Future work includes improving and extending the pro-
posed approach to support other distributed ledger platforms.
We plan to propose platform-independent UML modeling
extensions and create a common higher level of abstraction
for deployment modeling. Furthermore, we plan to refine and
combine work done from Logical, Contract and Deployment
views into one solution. We consider including our modeling
support into the Continuous Deployment process. We plan
to directly integrate our transformation application with the
Jenkins open source automation server.

REFERENCES

[1] X. Xu, I. Weber, and M. Staples, Architecture for Blockchain Applica-
tions. Cham, Switzerland: Springer, 2019, pp. 5-7, doi: 10.1007/978-3-
030-03035-3.

[2] V. Gramoli, ““From blockchain consensus back to Byzantine consensus,”
Future Gener. Comput. Syst., vol. 107, pp. 760-769, Jun. 2020, doi: 10.
1016/j.future.2017.09.023.

[3] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, ‘“‘Proof-of-stake consensus mechanisms for future
blockchain networks: Fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85727-85745, 2019, doi: 10.1109/ACCESS.
2019.2925010.

[4] T. Gorski, J. Bednarski, and Z. Chaczko, “Blockchain-based renewable
energy exchange management system,” in Proc. 26th Int. Conf. Syst. Eng.
(ICSEng), Dec. 2018, pp. 1-6, doi: 10.1109/ICSENG.2018.8638165.

[5] P. B. Kruchten, “The 441 view model of architecture,” IEEE Softw.,
vol. 12, no. 6, pp. 42-50, 1995, doi: 10.1109/52.469759.

[6] T.Pender, UML Bible. Indianapolis, IN, USA: Wiley, 2003.

[71 A.J.Kleppe, J. Warmer, and W. Bast, MDA Explained, The Model Driven
Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley,
2003.

[8] N. Yousaf, F. Azam, W. H. Butt, M. W. Anwar, and M. Rashid, “Automated
model-based test case generation for Web user interfaces (WUI) from
interaction flow modeling language (IFML) models,” IEEE Access, vol. 7,
pp. 67331-67354, 2019, doi: 10.1109/ACCESS.2019.2917674.

[91 T. Mens and P. Van Gorp, “A taxonomy of model transformation,”
Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125-142, Mar. 2006,
doi: 10.1016/j.entcs.2005.10.021.

[10] I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati, and
E. Marcos, ‘“Model-driven engineering as a new landscape for traceability
management: A systematic literature review,” Inf. Softw. Technol., vol. 54,
no. 12, pp. 1340-1356, Dec. 2012, doi: 10.1016/j.infsof.2012.07.008.

118260

(11]

[12]

(13]

(14]

(15]

[16]

[17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

J. Al-Jaroodi and N. Mohamed, “Blockchain in industries: A sur-
vey,” IEEE Access, vol. 7, pp.36500-36515, 2019, doi: 10.1109/
ACCESS.2019.2903554.

A. A. Monrat, O. Schelen, and K. Andersson, “A survey of
blockchain from the perspectives of applications, challenges, and
opportunities,” IEEE Access, vol. 7, pp. 117134-117151, 2019, doi: 10.
1109/ACCESS.2019.2936094.

P. Gonczol, P. Katsikouli, L. Herskind, and N. Dragoni, ‘“‘Blockchain
implementations and use cases for supply Chains—A survey,” [EEE
Access, vol. 8, pp. 11856-11871, 2020, doi: 10.1109/ACCESS.2020.
2964880.

K. Leng, Y. Bi, L. Jing, H.-C. Fu, and I. Van Nieuwenhuyse, ‘“Research
on agricultural supply chain system with double chain architecture
based on blockchain technology,” Future Gener. Comput. Syst., vol. 86,
pp. 641-649, Sep. 2018, doi: 10.1016/j.future.2018.04.061.

A. Shahnaz, U. Qamar, and A. Khalid, ““Using blockchain for electronic
health records,” IEEE Access, vol. 7, pp. 147782-147795, 2019, doi: 10.
1109/ACCESS.2019.2946373.

L. Ismail, H. Materwala, and S. Zeadally, “Lightweight blockchain for
healthcare,” IEEE Access, vol. 7, pp. 149935-149951, 2019, doi: 10.
1109/ACCESS.2019.2947613.

T. Gérski, K. Marzantowicz, and M. Szulc, “Cloud-enabled warship’s
position monitoring with blockchain,” in Smart Innovations in Engi-
neering and Technology, R. Klempous and J. Nikodem, Eds. Cham,
Switzerland: Springer, 2020, pp. 53-74, doi: 10.1007/978-3-030-32861-
0_4.

S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy
crowdsourcing and peer-to-peer energy trading in blockchain-enabled
smart grids,” IEEE Trans. Syst, Man, Cybern. Syst., vol. 49, no. 8,
pp. 1612-1623, Aug. 2019, doi: 10.1109/TSMC.2019.2916565.

X. Lu, Z. Guan, X. Zhou, X. Du, L. Wu, and M. Guizani, “A secure
and efficient renewable energy trading scheme based on blockchain
in smart grid,” in Proc. IEEE 5th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 1839-1844,
doi: 10.1109/HPCC/SmartCity/DSS.2019.00253.

Corda Enterprise Version 4.3 Documentation. Accessed: Mar. 19, 2020.
[Online]. Available: https://docs.corda.r3.com/index.html

M. J. M. Chowdhury, M. S. Ferdous, K. Biswas, N. Chowdhury,
A.S.M. Kayes, M. Alazab, and P. Watters, ‘A comparative analy-
sis of distributed ledger technology platforms,” IEEE Access, vol. 7,
pp. 167930-167943, 2019, doi: 10.1109/ACCESS.2019.2953729.

J. S. Cuadrado, E. Guerra, and J. de Lara, “Static analysis of model
transformations,” IEEE Trans. Softw. Eng., vol. 43, no. 9, pp. 868-897,
Sep. 2017, doi: 10.1109/TSE.2016.2635137.

L. Burgueno, J. Troya, M. Wimmer, and A. Vallecillo, *“Static fault local-
ization in model transformations,” IEEE Trans. Softw. Eng., vol. 41, no. 5,
pp. 490-506, May 2015, doi: 10.1109/TSE.2014.2375201.

M. Autili, A. Bertolino, G. De Angelis, D. D. Ruscio, and A. D. Sandro,
“A tool-supported methodology for validation and refinement of early-
stage domain models,” IEEE Trans. Softw. Eng., vol. 42, no. 1, pp. 2-25,
Jan. 2016, doi: 10.1109/TSE.2015.2449319.

N. Macedo, T. Jorge, and A. Cunha, “A feature-based classification
of model repair approaches,” IEEE Trans. Softw. Eng., vol. 43, no. 7,
pp. 615-640, Jul. 2017, doi: 10.1109/TSE.2016.2620145.

H. M. Chavez, W. Shen, R. B. France, B. A. Mechling, and G. Li,
“An approach to checking consistency between UML class model and
its java implementation,” IEEE Trans. Softw. Eng., vol. 42, no. 4,
pp. 322-344, Apr. 2016, doi: 10.1109/TSE.2015.2488645.

M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi, “Model
transformation modularization as a many-objective optimization prob-
lem,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1009-1032, Nov. 2017,
doi: 10.1109/TSE.2017.2654255.

H. Lu, S. Wang, T. Yue, S. Ali, and J. F. Nygard, “Automated refactoring
of OCL constraints with search,” IEEE Trans. Softw. Eng., vol. 45, no. 2,
pp. 148-170, Feb. 2019, doi: 10.1109/TSE.2017.2774829.

R. Clariso, C. A. Gonzalez, and J. Cabot, “Smart bound selection
for the verification of UML/OCL class diagrams,” IEEE Trans. Softw.
Eng., vol. 45, no. 4, pp. 412-426, Apr. 2019, doi: 10.1109/TSE.2017.
2777830.

M. Nuiez, D. Bonhaure, M. Gonzdlez, and L. Cernuzzi, “A model-driven
approach for the development of native mobile applications focusing on the
data layer,” J. Syst. Softw., vol. 161, Mar. 2020, Art. no. 110489, doi: 10.
1016/j.jss.2019.110489.

VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1016/j.future.2017.09.023
http://dx.doi.org/10.1016/j.future.2017.09.023
http://dx.doi.org/10.1109/ACCESS.2019.2925010
http://dx.doi.org/10.1109/ACCESS.2019.2925010
http://dx.doi.org/10.1109/ICSENG.2018.8638165
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/ACCESS.2019.2917674
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1016/j.infsof.2012.07.008
http://dx.doi.org/10.1109/ACCESS.2019.2903554
http://dx.doi.org/10.1109/ACCESS.2019.2903554
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1109/ACCESS.2019.2936094
http://dx.doi.org/10.1109/ACCESS.2020.2964880
http://dx.doi.org/10.1109/ACCESS.2020.2964880
http://dx.doi.org/10.1016/j.future.2018.04.061
http://dx.doi.org/10.1109/ACCESS.2019.2946373
http://dx.doi.org/10.1109/ACCESS.2019.2946373
http://dx.doi.org/10.1109/ACCESS.2019.2947613
http://dx.doi.org/10.1109/ACCESS.2019.2947613
http://dx.doi.org/10.1007/978-3-030-32861-0_4
http://dx.doi.org/10.1007/978-3-030-32861-0_4
http://dx.doi.org/10.1109/TSMC.2019.2916565
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00253
http://dx.doi.org/10.1109/ACCESS.2019.2953729
http://dx.doi.org/10.1109/TSE.2016.2635137
http://dx.doi.org/10.1109/TSE.2014.2375201
http://dx.doi.org/10.1109/TSE.2015.2449319
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1109/TSE.2015.2488645
http://dx.doi.org/10.1109/TSE.2017.2654255
http://dx.doi.org/10.1109/TSE.2017.2774829
http://dx.doi.org/10.1109/TSE.2017.2777830
http://dx.doi.org/10.1109/TSE.2017.2777830
http://dx.doi.org/10.1016/j.jss.2019.110489
http://dx.doi.org/10.1016/j.jss.2019.110489

T. Gorski, J. Bednarski: Applying MDE to Distributed Ledger Deployment

IEEE Access

[31] H. Moradi, B. Zamani, and K. Zamanifar, “CaaSSET: A frame-
work for model-driven development of context as a service,” Future
Gener. Comput. Syst., vol. 105, pp.61-95, Apr. 2020, doi: 10.
1016/j.future.2019.11.028.

[32] A. P. F. Magalhaes, A. M. S. Andrade, and R. S. P. Maciel, “Model
driven transformation development (MDTD): An approach for developing
model to model transformation,” Inf. Softw. Technol., vol. 114, pp. 55-76,
Oct. 2019, doi: 10.1016/j.infsof.2019.06.004.

[33] S.Jacome andJ. De Lara, “Controlling meta-model extensibility in model-
driven engineering,” IEEE Access, vol. 6, pp. 19923-19939, 2018, doi: 10.
1109/ACCESS.2018.2821111.

[34] R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to co-evolution
of metamodels and models: A survey,” IEEE Trans. Softw. Eng., vol. 43,
no. 5, pp. 396-414, May 2017, doi: 10.1109/TSE.2016.2610424.

[35] X. Xu, I. Weber, and M. Staples, “Model-driven engineering for
blockchain applications,” in Architecture for Blockchain Applications.
Cham, Switzerland: Springer, 2019, pp. 149-174, doi: 10.1007/978-3-030-
03035-3_8.

[36] T. Gorski and J. Bednarski, “Modeling of smart contracts in blockchain
solution for renewable energy grid,” in Computer Aided Systems Theory—
EUROCAST (Lecture Notes in Computer Science), vol. 12013, R. Moreno-
Diaz, F. Pichler, and A. Quesada-Arencibia, Eds. Cham, Switzerland:
Springer, 2020, pp. 507-514, doi: 10.1007/978-3-030-45093-9_61.

[37] Z.Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, *“Checking smart contracts
with structural code embedding,” IEEE Trans. Softw. Eng., early access,
Feb. 3, 2020, doi: 10.1109/TSE.2020.2971482.

[38] N. Rozanski and E. Woods, Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives, 2nd ed. New Delhi, India:
Pearson, 2015.

[39] T. Gérski, “Architectural view model for an integration platform,” J. Theor.
Appl. Comput. Sci., vol. 6, no. 1, pp. 25-34, 2012.

[40] T. Gorski, ““Verification of architectural views model 145 applicability,”
in Computer Aided Systems Theory—EUROCAST (Lecture Notes in Com-
puter Science), vol. 12013, R. Moreno-Diaz, F. Pichler, and A. Quesada-
Arencibia, Eds. Cham, Switzerland: Springer, 2020, pp. 499-506, doi: 10.
1007/978-3-030-45093-9_60.

[41] GitHub Repository With the Project of the UML Profile for Distributed
Ledger Deployment. Accessed: Mar. 19, 2020. [Online]. Available:
https://github.com/drGorski/UMLProfileForDLT

[42] Gradle Build Language Reference, Version 6.2. Accessed: Mar. 19, 2020.
[Online]. Available: https://docs.gradle.org/current/dsl/index.html

[43] Human-Optimized Config Object Notation. Accessed: Mar. 19, 2020.
[Online]. Available: https://github.com/lightbend/config/blob/
master/HOCON.md

[44] JSON. Java Script Object Notation Home Page. Accessed: Mar. 19, 2020.
[Online]. Available: www.json.org/json-en.html

[45] J.Boyarsky and S. Selikoff, OCP Oracle Certified Professional Java SE 11
Programmer I Study Guide: Exam 1Z0-815. Toronto, ON, Canada: Wiley,
2020.

[46] Project Lombok, Version 6.2. Accessed: Mar. 19, 2020. [Online]. Available:
https://projectlombok.org

[47] GitHub Repository With the Project of the UML2Deployment Trans-
formation. Accessed: Mar. 19, 2020. [Online]. Available: https://
github.com/drGorski/UML2Deployment

[48] GitHub Repository of the UML2Deployment Plugin Transformation.
Accessed: Mar. 19, 2020. [Online]. Available: https://github.com/
drGorski/UML2DeploymentPlugin

[49] Y. Cai, L. Xiao, R. Kazman, R. Mo, and Q. Feng, “Design rule spaces:
A new model for representing and analyzing software architecture,”
IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 657-682, Jul. 2019, doi: 10.

1109/TSE.2018.2797899.
[50] Systems and Software Engineering—Architecture Description,
International Standard ISO/IEC/IEEE 42010:2011, 2011.

Accessed: Apr. 18, 2020. [Online]. Available: https://www.iso.org/
standard/50508.html

[51] K. Gallaba and S. Mclntosh, “Use and misuse of continuous integra-
tion features: An empirical study of projects that (Mis)Use travis CI,”
IEEE Trans. Softw. Eng., vol. 46, no. 1, pp. 33-50, Jan. 2020, doi: 10.
1109/TSE.2018.2838131.

VOLUME 8, 2020

[52] GitHub Repository With the Transformation Validation Project. Accessed:
May 16, 2020. [Online]. Available: https://github.com/drGorski/
UML2DeploymentCheck

[53] IEEE Standard Glossary of Software Engineering Terminology,
IEEE Standard 610.12-1990, 1990. Accessed: May 16, 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/159342?
arnumber=159342

TOMASZ GORSKI (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science from
the Military University of Technology (MUT),
Warsaw, Poland, in 1997 and 2000, respectively.
For ten years, he has served with the Computer
Science Center, the General Staff of the Polish
Armed Forces, and ended his military service as
a major. After getting the Ph.D. degree, he has
worked in many commercial software develop-
ment projects, such as check-in system for the
Polish Border Guard, and financial systems integration for Zone Vision
Ltd., London. Since 2005, he has run his consulting firm RightSolution,
IBM Authorized Training Provider for Rational brand. He has been an IBM
Rational Certified Instructor for Rational Unified Process, Requirements
Management, Object-Oriented Analysis and Design, and Java programming.
From 2004 to 2017, he has worked as a Professor Assistant with MUT and the
Build Center for Advanced Studies in Systems Engineering. He works as a
Professor Assistant and the Head of the IT Systems Department, Polish Naval
Academy, Gdynia. He teaches object-oriented programming. His research
interests include software engineering, software architecture, model-driven
engineering, and blockchain. He is the author of the Architectural views
model 1+5, UML Profile for Integration Flows, Use Case API Design
Pattern, and UML Diagram for Integration Flows. He shares his experience as
the Program Committee Member of the International Conference on Systems
Engineering and the Editorial Board Member of the Open Computer Science
Journal. He is a member of the IEEE Computer and IEEE Systems, Man,
and Cybernetics societies.

JAKUB BEDNARSKI received the M.Sc. degree
in computer science from the Military University
of Technology, Warsaw, Poland, in 2013. After
graduation, he started working in many commer-
cial software development projects related to the
insurance market, such as business transformation
program for the biggest Polish insurance company
(PZU), a new claim process, and systems imple-
mentation for Polish and worldwide companies
(Zurich Insurance, AXA). From 2015 to 2017,
he has worked as a Lecturer with the Military University of Technology.
Since 2017, he takes the position as the Senior Technical Lead in EY
Company, where he is mainly responsible for delivery of the systems for
the insurance market based on the Guidewire platform. Next to the IT
consultancy position, since 2018, he takes the role of Research and Teaching
Assistant with the Polish Naval Academy, Gdynia. He is an Enthusiast of the
agile approach for software delivery. His research interests include software
engineering, IT architecture, model-driven engineering, and blockchain.

118261

http://dx.doi.org/10.1016/j.future.2019.11.028
http://dx.doi.org/10.1016/j.future.2019.11.028
http://dx.doi.org/10.1016/j.infsof.2019.06.004
http://dx.doi.org/10.1109/ACCESS.2018.2821111
http://dx.doi.org/10.1109/ACCESS.2018.2821111
http://dx.doi.org/10.1109/TSE.2016.2610424
http://dx.doi.org/10.1007/978-3-030-03035-3_8
http://dx.doi.org/10.1007/978-3-030-03035-3_8
http://dx.doi.org/10.1007/978-3-030-45093-9_61
http://dx.doi.org/10.1109/TSE.2020.2971482
http://dx.doi.org/10.1007/978-3-030-45093-9_60
http://dx.doi.org/10.1007/978-3-030-45093-9_60
http://dx.doi.org/10.1109/TSE.2018.2797899
http://dx.doi.org/10.1109/TSE.2018.2797899
http://dx.doi.org/10.1109/TSE.2018.2838131
http://dx.doi.org/10.1109/TSE.2018.2838131

