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ABSTRACT Tissue-like P systems are a type of distributed parallel computing models inspired by actual
biological tissue. In this paper, we consider a new variant of tissue-like P systems, which is called tissue-like P
systems with evolutional symport/antiport rules. Unlike traditional models of this type, in the new P systems,
objects can change during transmission. In biology, an organism that is in ‘‘homeostasis’’ reduces its
dependence on external conditions, thereby keeping it relatively constant and maintaining a relatively stable
internal environment. In our work, we remove the assumption that the quantity of objects in the environment
is infinite, reducing the influence of the environment on this system, so the environment no longer provides
powerful energy for cells. Moreover, the time-free mode is introduced into this type of P systems, which
makes the constructed systems more robust. We investigate the computational power and computational
efficiency of the constructed system. Specifically, by simulating register machines, such a P system can
generate any Turing computable set of numbers. In addition, we prove that this constructed system can
efficiently solve theSAT problem.Althoughwe restrict P systems and consider time-freemanner, the results
show that this system is not only Turing universal, but also can solve NP-complete problem.

INDEX TERMS Membrane computing, homeostasis, time-free, tissue P system, evolutional
symport/antiport rules.

I. INTRODUCTION
Membrane computing is a new research area emerging
rapidly in biocomputing, which is founded by Păun [1],
an academician of the European Academy of Sciences.
Due to his pioneering work, membrane systems can also
be called P systems, which are highly parallel computing
systems. Membrane computing is a cutting-edge research
field involving computer science, mathematics and biology
in recent years, and it has many outstanding advantages
compared with traditional computing models. Theoretically,
the computational efficiency of membrane systems can be
higher than that of current electronic computers. P systems
are mainly composed of three important ingredients: the
membrane structure, objects in various regions, and rules
[2]. At present, scholars mainly focus on three types of P
systems: cell-like P systems [1], [3], tissue P systems [4],
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and neural-like P systems [5]. Recently, some scholars have
proposed many new models of these basic systems [6]–[12].
In terms of computing efficiency, many scholars have proved
that some NP-hard problems can be solved by P systems and
their variants with reasonable computing resources in poly-
nomial time (even linear time), such as Hamiltonian cycle
problem [13], the 3-coloring problem [14], [15], the vertex
cover problem [16], the SAT problem [17]–[20], and have
obtained some important results. In the application field of
membrane computing, it is worth noting that there have been
many practical applications [21]–[26].

In this paper, our work is based on tissue P systems,
which are inspired by biological tissue. In Ref. [4], tissue
P systems have proved to be Turing universal. In recent years,
many literatures have studied the computational efficiency
of this type of system [27], [28]. So far, scholars have pro-
posed some variants of this model [29]–[31]. For these tissue
P systems, objects can be transferred between the environ-
ment and the cells, or between the cells, but objects cannot
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change during the process of moving from one region to
another. In addition, an important feature is that endless
objects in the environment can be usedwhen rules are applied.
Therefore, the environment provides powerful material and
energy for cells.

Moreover, from the perspective of biochemical reactions,
the execution time of each rule is uncertain. Based on the
biological reality, in our work, we consider the time-free
mode, thereby constructing P systems with better fault toler-
ance. Hence, it is important to study P systems in the time-free
mode. Moreover, compared to a standard P system, the exe-
cution time of rules in such a system is uncontrollable, which
causes the system to be more complicated during running
in the time-free mode. Therefore, in this paper, we remove
the condition that the execution time of each rule is a unit
time, and study the computational power and computational
efficiency of this type of system in the time-free mode. In Ref.
[32], the concept of time-free is proposed. In Ref. [33],
the semi-uniform solution of the SAT has obtained for
the first time. Recently, some NP-hard problems have been
solved by various P systems in the time-free mode [34]–[36].
It should be noted that if tissue-like P systems work in a
time-free manner, we call them timed tissue-like P systems.

In our work, for rules in P systems, we consider the new
model proposed by Song [37], that is, objects can be changed
during the process of moving from one region to another,
which is completely different from the traditional models
of tissue-like P systems and it is an interesting model that
deserves further study. However, in this model, the objects
can not only move from one region to another, but also can
be evolved into new multisets, which leads to this model
being too powerful. For this reason, we will restrict system
running mode and influence of the environment. In biology,
substances can be exchanged between the environment and
cells. However, when this communication reaches a certain
level, cells no longer depend on the external environment as
much as possible, keeping it relatively constant and maintain-
ing a relatively stable internal environment. Inspired by the
biological reality, in our work, we introduce the concept of
‘‘homeostasis’’ [38] into this type of tissue P systems, that is,
there are only a limited quantity of objects in the environment,
rather than an infinite number. Therefore, we eliminate the
assumption that objects in the environment is infinite, thereby
constructing a type of new model that can simulate the
biological homeostasis mechanism. Moreover, we consider
that P systems run in the time-free mode, which makes the
constructed systems more robust.

The first contribution of our paper, a novel type of
variant tissue P systems, named timed homeostasis tissue-like
P systems (THTP systems, for short), are introduced. In this
system, we limit the quantity of objects in the environment.
Hence, the environment generates weak energy by the cells
themselves, so it can simulate the computing process of
biological ‘‘homeostasis’’ state. The second contribution of
our paper, we consider that this system runs in the time-free
mode, which make the constructed systems more robust,

and expand the scope of applying this type ofmodel. The third
contribution of our paper is that we investigate the computa-
tional power and computational efficiency of the constructed
system, and obtain some valuable results.

The structure of this paper is as follows. First, the basic
knowledge involved in this paper is briefly reviewed, and
then the model of THTP systems is put forward in section 3.
In section 4, universality of THTP systems is proved. Based
on the model, the classical SAT problem is solved, and an
instance is demonstrated in section 5. Finally, conclusions are
put forward, and several open problems are proposed.

II. FOUNDATIONS
A. FORMAL LANGUAGE THEORY
A finite non-empty set of symbols is called an alphabet V ,
and a sequence of symbols with finite length from V is a
string. For a string x, its length can be denoted by |x|, which
is the quantity of symbols. The empty string (denoted by λ)
does not contain a symbol. All strings from V are denoted by
V ∗, and V+ represents the set of non-empty strings (V ∗−λ).
For two arbitrary strings x and w, the string composed of x
and w is called their concatenation, denoted by xw. If V = a,
then {a∗}, {a+} can be abbreviated as a∗, a+ respectively.
A multiset P over an alphabet V is a map P : V → N,

where N represents a set of natural numbers. If a ∈ V , P(a)
represents the multiplicity of a in P. For a finite set V , V =
{a1, ..., an}, the multiset is {(a1,P(a1)), ..., (a1,P(an))}. For a
multisetM of finite support, {(a1,P(a1)), ..., (a1,P(an))} can
be denoted as a string:

aP(a1)1 aP(a2)2 )...aP(an)n

For more details on formal languages, please refer
to Ref. [39].

B. REGISTER MACHINES
We can prove Turing universality to study the computational
power of a system, and a general research approach is to
simulate register machine or matrix grammar. It has been
proved mathematically that as long as a system can simulate
the computing process of a register machine, then this system
can be proved to be Turing universal. In our work, we obtain
the result by simulating register machine.

A register machine is a five tuple:

M = (m,H , l0, lh, I ),

where,
m is the number of registers, H is instruction set of labels,

l0, lh ∈ H , l0 and lh represent the initial label and halting
label of instructions respectively, I represents the instruction
set, and its specific definition is as follows:
li : (ADD(r),lj, lk ): this instruction adds 1 to the

value in register r , and then execute instruction lj or lk
non-deterministically.
li : (SUB(r),lj, lk ): unlike ADD instruction, a register

machine will check the value of register r . If this value is
non-zero, the register machine will subtract 1, and then the
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FIGURE 1. The execution process of rules in a standard P system.

FIGURE 2. The execution process of rules in a timed P system.

instruction lj is executed; if this value is zero, register machine
will execute the instruction lj;
lh : HALT : the halt instruction.
Initially, the values stored in registers are all empty.

Then, at the first step, the system executes the instruction
l0(ADD instruction). At each subsequent step, the system
executes one of the above three types of instructions. In this
way, the contents of the register can be changed. Finally,
the system stops running, and the value stored in the register
1 is called the number generated by the register machine.

The set of all numerical sequences generated by the
register machine M is denoted by N (M ). It has been proven
that the register machine can generate Turing computable
numbers [40].

C. TIMED P SYSTEMS
If a P system works in the time-free mode, we call it timed
P system. Timed P systems, compared with standard mem-
brane systems, the execution time of each rule in a system
is uncertain. For a rule R, e(R) represents the execution time
of this rule. If R is applied at the instant T , the rule will stop
running at T + e(R). During the execution process, objects
using in this rule cannot be used by any other rules until
T + e(R) + 1. If at least one rule starts to execute at one
step, this step is called a rule starting step (RS-step [30], for
short), which can characterize the computational efficiency
of membrane systems.

Timed P systems and standard membrane systems have
completely different running modes. In what follows, we will
use a simple example to illustrate them with cell-like P sys-
tems. As shown in Fig. 1, there are a multiset ab, rules R1,
R2 and R3 in membrane 1. For standard P systems, at the first
computation step, the system executes the rules R1 and R2
at the same time to generate two copies of c. At the second

computation step, by executing rule R3, two copies of c are
consumed, and two copies of d can be generated. In this way,
the system will halt after two time units. Next, let’s consider
the time-free mode, the execution process of rules is shown
in Fig. 2. When the system starts running, rules R1 and R2
are executed at the same time. However, the execution time
of these two rules is uncertain. Here, it is assumed that the
execution of rule R1 ends first and generates a copy of c.
At this time, by executing rule R3, object c is consumed
and generates a copy of d . Similarly, when the execution
of rule R2 ends, the system executes rule R3 again, and
object c consumes and generates another copy of d at the
same time. At this time, the system stops working after three
RS-steps. It can be seen that timed P systems are generally
more complicated than standard P systems.

III. TIMED HOMEOSTASIS TISSUE-LIKE P SYSTEMS WITH
EVOLUTIONAL SYMPORT/ANTIPORT RULES
In biology, a tissue (also called biological tissue), is the
cellular architecture between cells and organs, which is com-
posed of many cells with similar structure and function, and
it is the constituent element of organs. Specifically, the tis-
sue includes plasma, lymph, tissue fluid and cells, where,
the tissue fluid corresponds to the environment in our model.
The actual biological structure of tissue is shown in Fig. 3.
In biochemical reactions, an organism that is in ‘‘homeosta-
sis’’ reduces its dependence on external conditions, thereby
keeping it relatively constant and maintaining a relatively
stable internal environment. Inspired by the biological reality,
we construct the biological model shown in Fig. 4. In this
model, we introduced the concept of ‘‘homeostasis’’ into
tissue P system, eliminating the assumption that the num-
ber of objects in the environment is infinite. In the sys-
tem, there is very little material exchange between cells and
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FIGURE 3. The actual biological structure of tissue.

FIGURE 4. Homeostasis tissue structure model.

the environment, so the system greatly reduces the depen-
dence on the environment, thereby simulating the computing
process of biological ‘‘homeostasis’’ state.

Moreover, as the key element of membrane systems, rules
play a vital role in the running of a system. In this paper,
we remove the idealized assumption that the execution time
of each rule is a unit time. Hence, the time-free method is
considered during the execution of rules, that is, the execution
time of any rule can be arbitrary. Obviously, even if such a
system has some errors during system running, for example,
some rules are executed incorrectly and lead to long-term
execution, but for our model, which has no influence on the
final execution result. Therefore, such a system obviously
has better performance in terms of fault tolerance, thereby
constructing a robust membrane system that can overcome
the rule execution time.

In Ref. [37], a newmodel of tissue P systems is proposed by
Song, which is based on evolutional symport/antiport rules.
For the model, objects can be changed during the process
of moving from one region to another, which is completely
different from the traditional models of tissue-like P systems.
When apply such a rule of this type of system, a multiset of
objects can not only change its location between two cells
(or between a cell and the environment), but also can change
the multiset itself to other multisets during the transfer pro-
cess. That is to say, when evolutional symport rules are
applied, objects will go to another region and can be changed
to other multisets (may also be empty); when evolutional

antiport rules are applied, two objects in different region will
move to the region where the other object is located, and these
two objects can be changed to other multisets (may also be
empty).

In our work, based on the new model, a type of novel
variant tissue P systems are presented, called timed
homeostasis tissue-like P systems with evolutional sym-
port/antiport rules. For this model, we limit the quantity of
objects in the environment, and remove the assumption that
the quantity of objects in the environment is infinite. Hence,
the environment no longer provides powerful energy for cells,
so the cell and the external environment (i.e. the environment)
maintain relative independence, thereby simulating the com-
puting process of biological ‘‘homeostasis’’ state. Moreover,
we consider the time-free mode, which is introduced into
this type of P systems, thereby constructing a more robust
computing system.
Definition 1: Formally, a THTP system can be defined as

follows:
5 = (V ,w0,w1, . . . ,wm,R, e, iout ),

where
(1) V is the set of objects;
(2) w0(w0 ⊆ V ), whose quantity is finite, represents

objects in the environment;
(3) wi, 1 ≤ i ≤ m, is a finite multiset contained in V in the

corresponding region;
(4) e represents the execution time of rules;
(5) iout is output region;
(6) R represents rules, which can be expressed as follows.

A. EVOLUTIONAL SYMPORT RULES
[u]i[ ]j→ [ ]i[u′]j,
where, i, j ∈ {0, 1, ...,m}, i 6= j, u ∈ V+, u′ ∈ V ∗.
When evolutional symport rules are applied, objects have

one direction (from region i to region j). If amultiset u appears
in regions i (may be a cell or the environment), this type of
rule will start to execute, and the multiset u will move along
the corresponding direction and be evolved to newmultiset in
target region. The execution process of evolutional symport
rules is shown in Fig. 5, where, for the case of ‘‘from the
environment to a cell’’, the quantity of u in the environment is
placed beforehand, which is finite in this region. This model
makes cells less dependent on the environment, thereby keep-
ing cells in ‘‘homeostasis’’ state. Unlike the original model
of tissue P system, the quantity of each object existing in the
environment is assumed to be finite in the new model. The
length of such a rule can be represented by |u| + |u′|;

B. EVOLUTIONAL ANTIPORT RULES
[u]i[w]j→ [w′]i[u′]j,
where, i, j ∈ {0, 1, ...,m}, i 6= j, u, v ∈ V+, u′,w′ ∈ V ∗.
When evolutional antiport rules are applied, objects have

two directions: one is from region i to region j, and the other
is in the opposite direction. If multisets u and w appear in
regions i and j respectively, this type of rule will start to
execute, and then these two multisets (u and w) will move
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FIGURE 5. The execution process of evolutional symport rules.

along corresponding directions and be evolved to new multi-
sets in target regions. The execution process of evolutional
antiport rules is shown in Fig. 6. In this case, the quan-
tity of corresponding objects in the environment are placed
beforehand, which is finite in this region, thereby keeping
cells in ‘‘homeostasis’’ state. The length of this type rule is
denoted by |u| + |w| + |u′| + |w′|;

C. DIVISION RULES
[a]i→ [b]i[c]i,

where, i ∈ {1, 2, ...,m}, a, b, c ∈ V , i 6= iout .
When an object a exists in a cell i, the system will apply a

division rule to divide the cell into two cells with the same
label, and generate object b and object c in the two new
cells, respectively, and other objects in the cell are copied into
the two newly generated cells. It should be emphasized that
the objects a, b, and c are all single symbols. The execution
process of such a division rule is shown in Fig. 7.

A THTP system can be denoted by 5(e), where 5

is a THTP system, and e is the execution time of the
rules. We describe the membrane system by using con-
figuration. The current configuration is denoted with cells
and multisets contained in cells, namely, (w1, . . . ,wm).
Initially, rules have not yet been applied. At this moment,

FIGURE 6. The execution process of evolutional antiport rules.

FIGURE 7. The execution process of division rules.

the current configuration is called the initial configuration.
Next, transitions can be generated by applying rules in the
THTP system. A computation is obtained by a sequence of
transitions. If there are finitely many transitions, the system
will eventually stop running and generate a computing result
in the output area, which can be called halting computation at
that moment; if the sequence is infinite, the system does not
stop. A timed system works as follows: suppose the global
clock starts from time 0, which divides the entire execution
time into equal-length time units. During THTP systems run-
ning, all rules are applied with maximal parallelism: at an
arbitrary moment, in each region, the system has to use a
maximal multiset of rules. For these rules, they can be applied
many times simultaneously. If a rule R from type (a) to type
(c) starts to be applied at instant T , then this rule will halt at
instant T + e(R) + 1. During the execution process, objects
applied by the rule cannot be used by other rules until the
execution of the rule halts. For the cell used by the rule, it can
be applied by other rules at the same time. Moreover, rules
(including objects) are chosen non-deterministically [1].

The advantage of timed membrane systems is that they
have strong fault tolerance. Even though the applica-
tion of a rule does not finish within predetermined time,
the entire system can still obtain the correct computing result.
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Therefore, the time-free mode enhances the fault tolerance of
THTP systems.
Definition 2: In the time-free mode, a recognizer THTP

system can be defined as follows:

5 = (V , 6,w0,w1, . . . ,wm,R, e, iin, iout ),

where, 6 is an input alphabet from set V , iin is the input cell.
The other symbols are similar to Definition 1.

We define a recognizer THTP system to solve decision
problems. In this way, the purpose is to investigate the
computational efficiency of a THTP system.
The initial configuration can be denoted by (w1, . . . (win+

w), . . .wm),where,win represents input cell, andw represents
an input multiset. When the system is running, transitions can
be generated by applying rules. For such system, transitions
are finite. Hence, in the end, a recognizer THTP system has to
halt after certain RS-steps, and generates a computing result
in the output area. At that time, if YES appears in the output
area, we call it accepting computation; if NO appears in the
output area, we call it rejecting computation.
Definition 3: Suppose X = (IX , θX ) is a decision problem,

IX represents instances of the decision problem, and θX repre-
sents a predicate over these instances. In the time-free mode,
a recognizer THTP system 5 can solve a decision problem
in polynomial RS-steps and obtain uniform solution of this
problem, if the following holds:

(1) the family 5 is polynomially uniform by Turing
machines; that is, for a system 5(n), a deterministic Turing
machine can work in polynomial time;

(2) there exists a pair (cod, s) of polynomial-time
computable functions over IX such that:
• u is an instance, u ∈ IX , s(u) is a natural number and
cod(u) is an input multiset of the system 5(s (n)).

• the family 5 is time-free sound with regard to
(X , cod, s). For u ∈ IX of a problem, the system has
an accepting computation with cod(u).

• the family 5 is time-free complete with regard to
(X , cod, s). For u ∈ IX of a problem, in the time-free
mode, computations of5(s(u), e) with cod(u) can be an
accepting one.

• the family 5 is time-free polynomially bounded with
regard to (X , cod, s), that is, for any time-mapping e,
there is a polynomial function p(n) such that for each
u ∈ IX , when the system stops running, it takes at most
p(|u|) RS-steps.

Definition 4: PMC f
THTP(k) represents that a recognizer

THTP system can solve a decision problem and obtain the
uniform solution in polynomial time in time-free manner
(the maximal length rules is k); NOPfm, n(r) represents that
natural numbers can be generated by the P system with
cells no more than m, rule length no more than n, where, f
represents time-free manner, and r represents rule type.
Turing machines have outstanding computational perfor-

mance and can solve any problems computed by algorithms.
When we research membrane computing models, after a type

of model is defined, the general research approach is to inves-
tigate its computational power by comparing it with Turing
machines or other classic computing models. In this way,
we can know how powerful the computational power of such
models is. In addition, an important approach is to research
the computational efficiency of such models. Specifically,
the general research approach is to solve NP-hard problems
using finite computing resources in feasible time. Therefore,
for the theoretical research of membrane computing, the main
approach is to investigate the computational power and
computational efficiency of a system.

IV. UNIVERSALITY OF THTP SYSTEMS
Theorem 1: NOPf1,4((a), (b)) = NRE .

Proof: M = (m,H , l0, lh, I ) is a register machine with
m registers. Next, we construct a system to simulate the
register machine.

5 = (V ,w0,w1,R, e, iout ),

where,
• V = {ar |1 ≤ r ≤ m}∪{l,l ′,l(2),l(3),l(4),l(5),l(6)|l ∈ H};
• w0= {l(3)|l ∈ H};
• w1 = λ;
• e is rule execution time;
• iout = 1.
(1) Rules of the ADD instruction li : (ADD(r),lj, lk ):

R1 : [ ]0[li]1→ [l ′i ]0[ ]1.
R2 : [l ′i ]0[ ]1→ [ ]0[ar lj]1.
R3 : [l ′i ]0[ ]1→ [ ]0[ar lk ]1.

First, the system applies rule R1 to simulate ADD
instruction li. Next step, the value of register r will increase
by 1with using ruleR2 orR3. In addition, the generated lj or lk
will simulate next instruction. Obviously, the results of ADD
instruction li are correct in the time-free mode.
(2) Rules of the SUB instruction li : (SUB(r),lj, lk ):

R4 : [l ′i ]0[li]1→ [l(2)i ]0[l ′i ]1.
R5 : [l

(2)
i ]0[ar ]1→ [ ]0[l

(2)
i ]1.

R6 : [l
(3)
i ]0[l ′i ]1→ [l(4)i ]0[l

(3)
i ]1.

R7 : [l
(4)
i ]0[l

(2)
i ]1→ [l(5)i ]0[ ]1.

R8 : [l
(2)
i ]0[l

(3)
i ]1→ [l(6)i ]0[l

(3)
i ]1.

R9 : [l
(5)
i ]0[l

(3)
i ]1→ [l ′i ]0[lj]1.

R10 : [l
(6)
i ]0[ ]1→ [ ]0[l

(6)
i ]1.

R11 : [l
(4)
i ]0[l

(6)
i ]1→ [l ′i ]0[lk ]1.

The rules constructed above are correct even when running
in the time-free mode. First, the system apply rule R4 to
simulate SUB instruction li. Next step, theremay be two cases
in cell 1:
• the object ar appears
Because there are objects l(2)i and l ′i , rules R5 and R6
will start executing simultaneously. Then, rule R7 is
executed. Hence, there will be in the environment and
in cell 1. After these objects are generated, R9 can
be applied, and the value of register r will decrease
by 1, thereby simulating the SUB instruction correctly.
In this case, the application of rules is listed in Table.1,
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TABLE 1. Process when there is an object ar .

TABLE 2. Process when no object ar appears.

which can be applied in turn. Main objects in the envi-
ronment and objects in cell 1 are listed in the table, but
some objects have been omitted.

• no object ar exists
In this case, rule R5 do not be applied, and rule R6 can
be executed. Next, rule R8, R10 and R11 will be applied
in turn. Finally, the object lk appears, indicating THTP
system is ready to simulate instruction lj. In this case,
the application of rules is listed in Table.2, which can be
applied in turn.
In the end, the system halts, and object lh will appear
in cell 1. It can be verified that the final results of the
system have nothing to do with rules execution time.

V. A UNIFORM SOLUTION TO SAT BY THTP SYSTEMS
Applying cell division rules can generate exponential com-
puting space in feasible time, so time can be obtained by
space. In addition, a parallel computing system is designed
based on THTP systems, so that maximal parallelism can be
used, thereby greatly improving the computational efficiency
of THTP systems. Therefore, theoretically, THTP systems can
solve NP-hard problems in polynomial time (or even linear
time).

A. THEOREM PROVING
Theorem 2: The SAT problem can be solved by a uniform
family of THTP systems in polynomial time.

Proof: For a SAT formula with nBoolean variables and
m clauses, the formula consists of m clauses:

Cj = y1,j ∨ · · · ∨ ypj,j,

where yi,j ∈ {xl, ¬xl |1 ≤ l ≤ n}, 1 ≤ i ≤ pj, 1 ≤ j ≤ m; ¬xl
is the negation of a propositional variable xl .

Next, to solve the SAT , we will construct a system
denoted by 5SAT (m,n)(e). Algorithm 1 gives the computing
process of 5SAT (m,n)(e).

For a given instance γ , it can be encoded as follows:

cod(γ ) = α1,1 · · ·αn,1α1,2 · · ·αn,2 · · ·α1,m · · ·αn,m,

where,

αi,j=


Yi,j if xi appears in C j;

Ni,j if ¬xi appears in C j;

Bi,j both xi and ¬xi do not appear in C j.

Next, we construct the system

5SAT (m,n)(e) = (V , 6,w0,w1,w2,R, e, iin, iout ),

where,
• The set of objects can be denoted as follows:

V = 6 ∪ {ai|1 ≤ i ≤ n+ 1} ∪ {ti,j, fi,j|1 ≤ i ≤ n,

1 ≤ j ≤ m+ 1} ∪ {ei|2 ≤ i ≤ n+ 1}

∪ {Gi,j,Ti,Fi, rj|1 ≤ i ≤ n, 1 ≤ j ≤ m}

∪ {sj|2 ≤ j ≤ m+ 1} ∪ {d, p, q, yes, no};

• 6 = {Yi,j,Ni,j,Bi,j|1 ≤ i ≤ n, 1 ≤ j ≤ m}
• w0 is objects in the environment, wi(1 ≤ i ≤ m) is
multisets in cell i over V ,

w0 = {NO, q2},w1 = p2,w2 = {a1, d};

• iin = 1, iout = 0;
• e is rule execution time;
• R represents the rules.
The computing process consists of the following phases:
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Algorithm 1 The Computing Process of 5SAT (m,n)(e)
Input: an instance of the SAT
Output: YES, or NO
Begin
Initialization: input the instance of in cell 1 as an
input multiset, and input the initialization object in the
corresponding region;
for (i = 1, i ≤ n, i++)
{
By applying division rules, each cell 2 can be divided into
two new cells. /* cell 2 is used for division rules */
for (j = 1, j ≤ m+ 1, j++)
{

(1) Check whether each clause of current
variable assignment (true and false) is satisfied
in each cell 2;
(2) Synchronize rules in cell 1 so that all the
previous rules have been executed;
(3) An object is generated in each cell 2 for
applying the next cell division. In addition,
objects for the evolutional antiport rules of the
next iteration are generated.

}
}
if all the elements in the set {r1, r2, . . . , rm} appear in a cell
with label 2 then
the object YES appears in the environment;

else
the object NO appears in the environment;

End

1) GENERATION PHASE

R1,i : [ai]2→ [ti,1]2[fi,1]2, 1 ≤ i ≤ n.

R2,i,j : [p]1[ti,jYi,j]2→ [p]1[Gi,j]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R3,i,j : [p]1[Gi, j]2→ [p]1[rjti, j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R4,i,j : [p]1[ti, jNi, j]2→ [p]1[ti, j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R5,i,j : [p]1[ti, jBi, j]2→ [p]1[ti, j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R6,i,j : [p]1[fi, jNi, j]2→ [p]1[Gi, j]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R7,i,j : [p]1[Gi,j]2→ [p]1[rjti,j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R8,i,j : [p]1[fi,jYi,j]2→ [p]1[ti,j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R9,i,j : [p]1[fi, jBi,j]2→ [p]1[ti, j+1]2,

1 ≤ i ≤ n, 1 ≤ j ≤ m.

R10,i : [p]1[ti,m+1]2→ [p2Ti]1[ ]2, 1 ≤ i ≤ n.

R11,i : [p]1[fi,m+1]2→ [p2Fi]1[ ]2, 1 ≤ i ≤ n.

R12,i : [TiFi]1[ ]0→ [ ]1[qa2i+1]0, 1 ≤ i ≤ n.

R13 : [q]0[ ]1→ [ ]0[q4]1.

R14,i : [ai]0[d]2→ [ ]0[dai]2, 2 ≤ i ≤ n+1.

For the object ai, it corresponds to variable xi in the SAT .
At the first RS-step, rule R1,1 will start to run. By applying
this division rule, t1,1 and f1,1 can be generated in the two
new cells, which represent true of variable x1 and false of
variable x1, respectively. Under the time-free mode, the com-
putational efficiency of THTP systems is characterized by
using RS-steps. Here, it is obvious that this computing pro-
cess only takes one RS-step. At the next RS-step, rules from
R2,1,j to R9,1,j can be applied selectively. If a multiset t1,1Y1,1
(resp., f1,1N1,1) appears in a cell 2, the evolutional antiport
rule R2,1,1 (resp., R6,1,1) is executed. Next RS-step, R3,1,j
(resp., R7,1,j) will be applied, and object r1 is generated
in cell 2, at this moment, we can conclude that current
clause is satisfied by x1. In other cases, by applying the
corresponding rules, the second subscript of t1,j (resp., f1,j)
continues to increase. Finally, its value will reach m + 1.
However, because the system runs in a time-free manner,
the execution time corresponding to the assignments t1,j and
f1,j cannot be predicted. Here, we design the following rules
to synchronize the previous two computing processes, so that
the computing process of previous assignments by variables
t1,j and f1,j have finished. When the second subscript of t1,j
(resp., f1,j) reach m + 1, rules from R10,1 to R14,2 will be
executed in turn. These rules have two important functions.
First, they can synchronize the previous rules. Since THTP
systems run under the time-free mode, we cannot determine
the execution time of each rule. Here, we adopt the approach
of rule synchronization. Therefore, we need to complete all
the previous rules, where, rule R12,i plays the synchroniza-
tion function. In addition, relevant objects need to be gener-
ated for subsequent computing processes, such as object a2
(for the next division rule), p and q.
At the end of the computing process of assignment

corresponding to the variable x1, the system will generate a
multiset da2 in each cell 2, where, object d corresponds to
the rule R12,2 used in the next computing process; and the
object a2 can be used for rule R1,2, which will be applied
in the next computing process. The rule R1,2 is a division
rule, which corresponds to the following computing process
of generation phase.

The subsequent computing process is similar to the
variable x1, that is, the above computing process is executed
in an iteration manner. When the computing process corre-
sponding to n variables finishes, the generation phase ends.
On the whole, after 3mn+7n RS-steps, 2n copies of cell 2 are
generated.

2) CHECKING PHASE
R15 : [ ]1[an+1]2→ [an+1]1[ ]2.

R16 : [an+1]1[r1]2→ [s2]1[ ]2.

R17,j : [sj]1[rj]2→ [sj+1]1[ ]2, 2 ≤ j ≤ m.
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FIGURE 8. The initial configuration.

FIGURE 9. After the execution of the first iteration.

FIGURE 10. After the execution of the second iteration.

Once an object an+1 appears in a cell with label 2, the
generation phase has been executed. If all the elements in the
set {r1, r2, . . . , rm} appear in a cell 2, we can conclude that
the SAT is satisfiable. By applying the rules in the checking
phase, the purpose is to check whether all the elements in the
set {r1, r2, . . . , rm} exist in this cell. If all the elements exist,
sm+1 will appear in the cell 1, corresponding to a satisfiable
solution.

3) OUTPUT PHASE
R18 : [NO]0[sm+1]1→ [YES]0[ ]1.
Once an object sm+1 appears in cell 1, rule R18 can be

applied. Finally, the system will stop running, and YES
generates in the output area, which shows γ is satisfiable.
On the contrary, if object sm+1 does not appear,NO remains
in the output area in the end, which shows γ is not satisfiable.

B. COMPUTATIONAL EFFICIENCY
The computing resources of 5SAT (m,n)(e):
• size of the set O: 5mn+ m+ 3n+ 6;
• initial number of objects: 5;
• initial number of cells: 2;
• the total number of rules: 8mn+ m+ 4n+ 5;
• the maximal length of rules: 5.

In the time-free mode, the computational efficiency of
5SAT (m,n)(e) is characterized by RS-steps. The following
is the detailed RS-steps of the system at each computing
phase: the generation phase takes at most 3mn+7n RS-steps.
If the formula γ is satisfiable, the checking phase and the
output phase will take at most m RS-steps and 2 RS-steps,
respectively; otherwise checking phase and output phase will
take at most m− 1 RS-steps and no RS-step, respectively.
Theorem 3: SAT ∈ PMC f

THTP(5).
The SAT is a classic computational intractable problem.

With our constructed recognizer THTP systems, it has proved
that the maximal length of P systems is 5 in the time-free
mode. According to the previous definition and proof process,
this result can be obtained, and5SAT (m,n)(e) is complete and
polynomially bounded.
Corollary 1: NP ∪ co − NP ⊆ PMC f

THTP(5)

C. AN INSTANCE
By using of 5SAT (m,n)(e) constructed above, we will
consider a specific instance as follows.

γ = (x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

For the formula, m = n = 3. The initial configuration
can be shown in Fig.8. At RS-step 1, by applying division
rule, the number of cell 2 will increase. Next, by applying
R2,1,j to R9,1,j, t1,4 (resp., f1,4) will appear in the end. When
R14,1 is completed, object a2 will appear in a cell with label 2,
indicating that the first iteration of variable xi has completed.
At this moment, we can obtain the configuration (see Fig.9).

At the end of the execution of the first iteration of variable
xi, because there are objects a2 in the environment and
object d in cell 2, by applying evolutional antiport rule
R14,2, each object a2 in environment can enter each cell 2 at
the same time. In this way, the appearance of the object
a2 will start to apply division rule of the next variable x2,
thus starting to execute the computing process of the fol-
lowing iteration. Next, the variable x2 and x1 have the same
computing process. When the computing process of x2 is
completed, Fig.10 shows the current configuration at that
moment. In this way, when the computing process of x3 is
completed, Fig.11 shows the current configuration. At that
moment, generation phase finishes.

Once an object a4 appears in a cell 2, the system starts to
execute checking phase. By applying rules of this phase, s4
will be generated, and Fig.12 shows the current configuration
at that moment.

FIGURE 11. After the execution of the third iteration.
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FIGURE 12. After the execution of the checking phase.

FIGURE 13. The final configuration.

In the end,5SAT (m,n)(e) has to halt after certain RS-steps,
and generates a computing result in the output area. Once
an object s4 appears in cell 1, by applying the rule of output
phase, YES will be generated in the environment, so we can
conclude that it is an accepting computation and the instance
is satisfiable (see Fig. 13).

VI. CONCLUSIONS
In our work, inspired by the biological reality of homeostasis,
we introduce ‘‘homeostasis’’ into tissue-like P systems with
evolutional symport/antiport rules, so the environment no
longer provides powerful energy for cells. We restricted the
model to be too powerful, and we think that this model will
better reflect ‘‘homeostasis’’. In addition, we have introduced
the time-free mode into such a model, thereby constructing a
more robust computing system, so our work expand the scope
of applying this type of model. Compared with the standard
mode, the time-free mode is a more complicated manner.
However, we still obtain some interesting results: although
running in a time-free manner, this system is not only Turing
universal, but also can solve NP-complete problem.

Finally, we look forward to future work. The readers
can use the P systems constructed in this paper to solve
other NP-complete problems, such as the 3-coloring prob-
lem, subset sum problem, etc. In particular, it is worthy of
further study that the computational efficiency of solving the
PSPACE-complete problems.
In this paper, we apply division rules. From a biological

point of view, it deserves to introduce cell separation [20] to
THTP systems and investigate the computational efficiency
of such a system. Moreover, it deserves study whether the
concept of homeostasis can be extended to other membrane
systems, such as spiking neural P systems.

In addition, under the model framework of this paper,
the readers can investigate the computational power and
computational efficiency running in various modes, such as
the minimal parallel mode [41], the flat maximal parallelism
mode [42], the local synchronization mode [43], etc.
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