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ABSTRACT In the manufacturing industry, cross-enterprise resource sharing has emerged among
micro-and-small-scale manufacturing enterprises (called social manufacturing nodes, SMNs) with similar
manufacturing resources. In this context, social manufacturing is proposed to promote resource sharing
among SMNs through order sharing in manufacturing communities (MCs) on the network platform. In social
manufacturing, SMNs are geographically distributed and peer-to-peer, and MCs are formed by the self-
organization among SMNs. However, because of the distributed and peer-to-peer characteristic of SMNs,
the efficiency of SMNs self-organizing into MCs is relatively low, and the scope of self-organization is also
relatively narrow. After MCs are formed, the structure of MCs is time-varying, and the evolution information
of MCs is helpful for the smooth operation of the network platform. For these problems, this paper proposes
a manufacturing network modeling and evolution characterizing approach. Firstly, distributed SMNs are
clustered into overlapping MCs by the speaker-listener label propagation algorithm. Based on the clustering
result, SMNs are recommended to each other as potential partners, by which they can quickly self-organize
into MCs. On the other hand, seven fundamental events are defined to characterize the evolution of MCs
on the network platform. From the evolution of MCs, the manager of the network platform get useful
information for the smooth operation of the network platform. The feasibility of the proposed approach
is verified by a simulation case.

INDEX TERMS Micro-and-small-scale manufacturing enterprises, social manufacturing, self-organization,
overlapping manufacturing community, evolution.

I. INTRODUCTION
The application of information and communication technol-
ogy in the manufacturing industry has expanded the resources
sharing of manufacturing enterprises from internal to cross-
enterprise [1]. Along with this process, many manufacturing
models have also been proposed to solve the problem of
resource sharing under different market demands, including
virtual enterprise [2], agile manufacturing [3], service-
oriented manufacturing [4], cloud manufacturing [5], etc.
These manufacturing models have one thing in common,
that is, they all integrate manufacturing resources through

The associate editor coordinating the review of this manuscript and

approving it for publication was Hocine Cherifi .

network platforms, such as virtual enterprise platforms [6],
cloud manufacturing service platforms [7]. These plat-
forms realize the cross-enterprise sharing of manufacturing
resources to a certain extent, which improve the resource
utilization and flexibility of manufacturing enterprises. How-
ever, the focus of these platforms is to achieve resource shar-
ing among enterprises with different manufacturing resources
through outsourcing, crowdsourcing, or crowdfunding.

Recently, cross-enterprise resource sharing among enter-
prises with similar manufacturing resources has emerged
in the manufacturing industry. Micro-and-small-scale man-
ufacturing enterprises (MSMEs) form physical groups to
share their similar manufacturing resources through order
sharing [8]. In this way, MSMEs can quickly respond to
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service-oriented, personalized, diverse and dynamic mar-
ket demands. This trend has emerged in many field of the
manufacturing industry, such as, apparel industry [9], [10],
3D printing [11], and the emerging shared factory [12]. In this
context, a new service-oriented advanced manufacturing
paradigm called social manufacturing is proposed [13]–[15].
Its purpose is to integrate socialized manufacturing resources
from distributed micro-and-small-scale manufacturing enter-
prises (called social manufacturing nodes, SMNs) and realize
the cross-enterprise resource sharing among them by physical
groups (called manufacturing communities, MCs) [15], [16].
Within an MC, SMNs share their similar manufactur-
ing resources by order sharing. Between different MCs,
SMNs share different types of manufacturing resources
through outsourcing, crowdsourcing, etc. Through this
cross-enterprisemanufacturing resource sharing, the resource
utilization and flexibility of SMNs are further improved.
Like the aforementioned manufacturing model, the cross-
enterprise resource sharing in social manufacturing is also
implemented through a network platform [17].

In social manufacturing, the practitioners are the amount
of geographically distributed SMNs and they self-organize
into manufacturing communities (MCs) [8]. However, SMNs
are geographically distributed all over the world so that they
do not know each other well. On the other hand, SMNs are
usually in a peer-to-peer relationship, which means there are
no core-enterprises to act as organizers of MCs [17]. All
these characteristics lead to that the efficiency of SMNs self-
organization to form MCs is relatively low on the network
platform, and the scope of self-organization is also relatively
narrow. So, in order to help SMNs quickly identify potential
partners to form MCs, it is necessary to recommend MCs
for SMNs. After that, SMNs can quickly self-organize into
real MCs. In addition, in the actual operation of social manu-
facturing, SMNs will participate in different MCs at different
times so that the structure of MCs changes dynamically with
time. Characterizing the evaluation of MCs contributes to the
smooth operation of the network platform in social manufac-
turing. However, in the manufacturing industry, there is little
research on the evaluation of MCs.

For the above problems, this study focused on clustering
SMNs into overlappingMCs and characterizing the evolution
of MCs. Firstly, several definitions of social manufacturing
are given, at the same time, the time-varying characteristic of
MCs is clarified and MCs are further divided into transient
manufacturing communities (TMCs) and dynamic manufac-
turing communities (DMCs). Then, a domain ontology is
constructed to describe the manufacturing interests (MIs)
of SMNs. Based on this, SMNs select the MI features they
are interested in to form their MI entities. Then, a feature-
based approach is adopted to calculate MI similarity between
SMNs according to their MI entities, and a threshold is
given to judge whether there are MIRs between SMNs.
After that, SMNs are clustered into overlapping TMCs by
the speaker-listener label propagation algorithm (SLPA).
Furthermore, DMCs are formally described, and seven

fundamental events are defined to characterize the evolution
of DMCs. The purpose of the above research is to improve
the efficiency of SMNs self-organizing into MCs on network
platform, and at the same time, provide guidance for the oper-
ation of network platform by characterizing the evaluation
of MCs.

The rest of this paper is arranged as follows. After a brief
review of concept subsumption based cross-ontology seman-
tic similarity calculation, label propagation-based over-
lapping communities detecting in the static network and
community evolution characterizing in the dynamic network
in Section 2. In Section 3, the formation of overlapping
TMCs is elaborated, and the evolution of DMCs is character-
ized. Section 4 shows a demonstrative case study. Discussion
and conclusion are presented in Section 5 and Section 6,
respectively.

II. LITERATURE REVIEW
A. CONCEPT SUBSUMPTION BASED CROSS-ONTOLOGY
SEMANTIC SIMILARITY CALCULATION
Most of the existing research calculated the ontology-based
semantic similarity according to ontological structure, con-
cept subsumption, information content, or with a hybrid
approach [18], [19]. For examples, Al-Mubaid H. et al.
used the minimum path length and the taxonomical depth
in ontological structure to calculate the semantic similarity
between concepts [20]. Pirró G. et al. calculated the seman-
tic similarity between words by concept subsumption and
information content [21]. Further, Gao J. B. et al. combined
the weighted shortest path length and information content to
evaluate the semantic similarity between concepts [22]. In the
above methods, concept subsumption is the most suitable
for cross-ontology semantic similarity calculation, and it was
first implemented by Rodríguez and Egenhofer [23], who
computed semantic similarity between independent ontolo-
gies by the weighted sum of words matching, feature match-
ing and semantic-neighborhood matching. Based on this
work, Petrakis et al. [24] proposed an X-Similarity method to
calculate cross-ontology semantic similarity between ontol-
ogy concepts based on the matching between synsets and
term description sets. Afterward, Sánchez et al. [19] proposed
a feature-based approach to assess normalized dissimilar-
ity between ontology concepts based on their taxonomical
features, and this approach could also be used in cross-
ontology. But the premise to apply the above methods was
that all ontologies must be predefined complete with no
features or terms missing. To enable the similarity estimation
across multiple ontologies when there is a term missing on
some ontology, Batet et al. [25] proposed several heuris-
tics based on three cases by comparing concept pairs on
ontologies. Further, in order to consider implicit evidence,
Solé-Ribalta et al. [26] combined concept subsumption
and ontological structure between ontologies to realize
multi-ontology similarity assessment. In this paper, because
the feature-based approach [19] can obtain normalized
semantic similarity and it is effective and convenient,
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we adopt this approach to calculate MI similarity between
MI ontologies of SMNs.

B. LABEL PROPAGATION-BASED OVERLAPPING
COMMUNITY DETECTING IN STATIC NETWORK
Palla et al. [27] first introduced the clique percolation
method (CPM) to detect overlapping communities. And then,
many approaches were proposed for overlapping community
detection, including LFM [28], SLPA [29], CDAEO [30],
OSLOM [31], Game [32] etc. According to the detection
style, Xie et al. [33] divided into these approaches into five
categories, i.e., clique percolation, line graph and link par-
titioning, local expansion and optimization, fuzzy detection,
and agent-based and dynamical algorithms. Among these
approaches, the speaker-listener label propagation algorithm
(SLPA) in link partitioning has better performance in detect-
ing overlapping communities, which is an extension of the
label propagation algorithm (LPA) [34] and community over-
lap propagation algorithm (COPRA) [35]. LPA is first pro-
posed by Raghavan et al. [34] to fast detect community based
on network structure, but it wasn’t suitable for overlapping
community detecting. Then, Leung et al. [36] examined the
performance of the label propagation algorithm by compar-
ing asynchronous updating with synchronous updating, and
found that synchronous updating was more stable in commu-
nity detecting. In order to improve the quality of communities
detected by the label propagation algorithm, Szymanski [37]
introduced new update and label propagation rules for label
propagation algorithm. Gregory [35] enabled the label propa-
gation algorithm to find overlapping communities by extend-
ing the label and propagation step, whose key was that each
vertex could belong to up to a given number of communities.
Following the idea in [34, 35], Xie et al. [29] proposed
the speaker-listener label propagation algorithm (SLPA) by
introducing listener rule and speaker rule into LPA, which
enabled each vertex to accumulate label knowledge so that
the result of overlapping community detecting was more
stable. Furthermore, Xie and Szymanski [38] proposed the
LabelRank algorithm where four operators, i.e. propagation,
inflation, cutoff, conditional update, were introduced into
label propagation algorithm to control and stabilize its propa-
gation process. Inspired by the confidence of human commu-
nication, Dai et al. [39] presented a multi-label propagation
algorithm (MLPA) to detect overlapping communities, whose
propagation process was guided by propagating intensity.
In this study, because SLPA has an attractive potential to fast
detect overlapping communities, it is introduced to cluster
SMNs into overlapping MCs based on MIRs between SMNs.

C. COMMUNITY EVOLUTION CHARACTERIZING IN
DYNAMIC NETWORK
Palla et al. [40] firstly defined six fundamental events to
characterize the dynamic change of a community in struc-
ture, and they proposed two basic quantities (the size and
the age of a community) to quantify and characterize the
community evolution. Lin et al. [41] proposed the FacetNet

framework to characterize evolution in a unified process by
Bayesian theory, where a Dirichlet distribution-based prob-
abilistic model was used to capture community evolution.
Asur et al. [42] introduced five fundamental events to char-
acterize the evolutionary behavior of communities and four
basic transformations to characterize the behavioral patterns
of individuals over time, and then, a series of indexes were
proposed to characterize the behavior of communities and
individuals. Greene et al. [43] defined six fundamental events
to track the evolution of dynamic communities over time,
which was motivated by using a heuristic threshold-based
method to realize many-to-many matching between com-
munities at different time steps. Takaffoli et al. [44] mod-
eled community evolution in social networks based on five
fundamental events and defined two basic quantities (life-
time and member fluctuation) to characterize a community.
Saganowski et al. [45] defined seven fundamental events,
and adopted a group evolution discovery (GED) method to
track community evolution. Oliveira et al. [46] introduced
two time window models to characterize the evolution of
customer communities: one is the landmark window model
for characterizing the long-term evolution of communities
over the entire period, and the other is sliding window model
for characterizing current evolution of communities at fixed
time span. Diakidis et al. [47] applied the GED method to
track community evolution, at the same time, extracted three
community features to predict the continuation, shrinking,
growth and dissolution of community. From the above liter-
ature, it can be seen that the evolution of communities in a
dynamic network is characterized by defining fundamental
events. SMNs will join different MCs at different times,
which makes MCs overlap with each other during evolution.
Therefore, the heuristic threshold-based method is adopted to
realize many-to-many matching between TMCs and DMCs.

III. METHODOLOGY
A. PRELIMINARIES
1) DEFINITIONS
This section elaborates six definitions related to this paper,
including social manufacturing (SMNs), manufacturing
interest (MI), manufacturing interest relationship (MIR),
manufacturing community (MC), and social manufacturing
network (SMNet). In addition, the relationships among the
above six definitions is also clarified.
Definition 1: Social manufacturing nodes (SMNs) mean

socialized micro-and-small-scale manufacturing enterprises
that are geographically distributed and own diverse man-
ufacturing resources. Those SMNs are capable to provide
specialized manufacturing services for customers/prosumers,
and are willing to share their orders with other SMNs through
the network platform.
Definition 2:Manufacturing interest (MI) means the pref-

erence of an SMN in providing manufacturing services dur-
ing a period. MI of an SMN depends on which socialized
manufacturing resources the SMN owns. And it is also
closely related to how the SMN to manage its socialized
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FIGURE 1. The relationships among the above six definitions.

manufacturing resources. MI has time-varying characteristic,
whose reasons include three aspects: market demands change
over time, socialized manufacturing resources of SMN trans-
form with time, and SMN subjectively change its MIs at
different times.
Definition 3:Manufacturing interest relationship (MIR) is

defined as a kind of social relationship between two SMNs.
and it depends on the MI similarity between two SMNs.
This paper judges whether there is a relationship bewteen
two SMNs by a given threshold θ ∈ [0, 1]. If MI similarity
between two SMNs exceeds the threshold θ ∈ [0, 1], we con-
sider there is an MIR between them, because the greater
MI similarity between two SMNs, the more likely they are
to form a MC. And MIRs between SMNs are dynamic since
MIs of SMNs change over time.
Definition 4: Manufacturing community (MC) is defined

as a physical group composed of SMNs with com-
monMIs. MC is formed by self-organization between SMNs.
In essence, the self-organization is a spontaneous process
where SMNs pursuit more business interests. Therefore,
MC can be regarded as a relatively stable community of
interest where SMNs share their socialized manufactur-
ing resources by sharing their product orders. SMNs in
MCs autonomously coordinates socialized manufacturing
resources to complete product orders, such as distributing
orders according to the real-time manufacturing capacities
of SMNs. During the operation of an MC, SMNs will join
or leave the MC in different periods because of the time-
varying characteristic ofMIs, which leads to theMC structure
changing over time, including its members and commonMIs.
For analyzing the evolution of MCs, MCs are further divided
into transient MCs (TMCs) and dynamic MCs (DMCs).
TMCs refer to a snapshot of MCs at one time step and they
are composed of SMNs and their MIRs at the time step.
TMCs reflect the static structure of MCs at one time step.
DMCs cover the whole lifecycle of MCs and are composed
of TMCs at successive time steps. DMCs reflect the evolution
of MCs during their lifecycle.
Definition 5: Social manufacturing network (SMNet) is an

MI-based transient network which is a snapshot of SMNs,
TMCs and MIRs between SMNs at one time step. From the

view of complex network theory, SMNs are abstracted as the
nodes of SMNet, and MIRs between SMNs are considered as
the edges. SMNet can be modeled as SMNet t = {SMN ,E},
where SMN = {SMN1, SMN2, . . . , SMNn} represents the
set of SMNs, E = {e1, e2, . . . , em} represents the set of
MIRs between SMNs, t is the time step corresponding to
SMNet t . TMCs are the clusters in SMNet t , and they can be
formulated as a set TMC t

=
{
TMC t

1,TMC
t
2, . . . ,TMC

t
k

}
,

where k is the number of TMCs in SMNet t at the time step t ,
TMC t

k =
{
SMN1, SMN2, . . . , SMNp

}
denotes a TMC and

p is the number of SMNs contained in TMC t
k .

Definition 6: Dynamic social manufacturing network
(DSMNet) is the set of SMNet at successive time steps.
In DSMNet, SMNs, MIs of SMNs and MIRs between SMNs
are all time-varying. DSMNet can be formally described
as DSMNet =

{
SMNet1, SMNet2, . . . , SMNet t

}
, where

SMNet t means the network snapshot at time step t . FIGURE 1
presents the relationships among the above definitions. Social
manufacturing nodes (SMNs) have diverse manufacturing
interests (MIs) in provide manufacturing services, and there
are a mass of underlying manufacturing interest relationships
(MIRs) between SMNs. Based on this, SMNs with similar
MIs self-organize into overlapping manufacturing communi-
ties (MCs) to share their socialized manufacturing resources.
Considering the time-varying characteristic of MIs, MCs are
divided into transient MC (TMC) and dynamic MC (DMC).
SMNs, TMCs and MIRs between SMNs constitute social
manufacturing network (SMNet). And the set of SMNet at
successive time steps constitutes dynamic social manufactur-
ing network (DSMNet).

2) RESEARCH IDEA
The purpose of this paper is to cluster distributed SMNs
into MCs, and then characterize the evolution of MCs. The
research idea of this paper is presented in FIGURE 1. Based
on the above six definitions, firstly, a domain ontology is used
to describe theMIs of SMNs. Then, theMI similarity between
SMNs is calculated through a feature-based approach, based
on that, a manufacturing interest relationship network is built
by a given threshold θ ∈ [0, 1]. Afterward, SMNs are
clustered into overlapping MCs based on the speaker-listener
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FIGURE 2. The research idea of this paper.

FIGURE 3. MI domain ontology.

label propagation algorithm (SLPA). According to the clus-
tering result, SMNs in the sameMCs will be recommended to
each other as potential partners, by which SMNs can quickly
self-organize into diverse MCs. During the operation of the
network platform in social manufacturing, MCs are time-
varying and overlap with each other. Finally, in order to
characterize the evolution of MCs, seven fundamental events
are defined.

B. FORMING TRANSIENT MANUFACTURING COMMUNITY
1) MI DOMAIN ONTOLOGY
The MIs of SMNs are described as a domain ontology, and
it is composed of a series of concepts, features and their
relationships, as shown in FIGURE 3.

MI domain ontology includes three rough concepts, i.e.
product order interest, machining interest and other interest.
The three rough concepts are further divided into refined con-
cepts, for example product order interest is divided into batch
and product type. Every refined concept can be described
by one or more MI features, such as the refined concept
‘‘batch’’ corresponds to three MI features: single, small and
mass.

When SMNs participate in the network platform,
SMNs select the MI features in MI domain ontology to form
their MI entities. The MI entity of SMNi can be formally
described as

MI (SMNi) = {single, small, . . . , turning,Beijing} (1)
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TABLE 1. The pseudo-code of SLPA-based overlapping TMCs clustering.

whereMI (SMNi) means theMI entity of SMNi, sin gle, small,
. . . , turning,Beijing are the MI features of MI entity
MI (SMNi).

2) NORMALIZED MI SIMILARITY CALCULATION
Based on the MI entities of SMNs, the feature-based
approach [19] is used to calculate MI similarity
between SMNs. MI similarity between SMN1 and SMN2 is
calculated as (2) and (3), as shown at the bottom of the page,
where Dis(SMN1, SMN2) denotes normalized MI dissimi-
larity between SMN1 and SMN2, |MI (SMN1)\MI (SMN2)|
means the number of MI features in MI (SMN1) but not
in MI (SMN2), |MI (SMN1)/MI (SMN2)| means the num-
ber of MI features in MI (SMN2) but not in MI (SMN1),
|MI (SMN1) ∩MI (SMN2)| means the number of MI fea-
tures belonging to both MI (SMN1) and MI (SMN2),
Sim(SMN1, SMN2) is the normalized MI similarity between
MI (SMN1) and MI (SMN2).

3) CLUSTERING SMNs INTO OVERLAPPING TMCs
After MI similarity between SMNs is obtained, by the given
threshold θ ∈ [0, 1], MI relationships between SMNs are
obtained. Based on that, SMNs can be clustered into default
TMCs according to their MIRs. During this process, the
overlap among TMCs must take into account because SMNs
can join different TMCs based on their diverse MIs. There-
fore, the speaker-listener label propagation algorithm (SLPA)
[29], [48] is adopted.

In the SLPA algorithm, each SMN is associated with one
or more labels. A label corresponds to an SMN’s id, and
SMNswith the same label belong to the same TMC. An SMN
can hold multiple labels in the propagation process of SLPA
according to the underlying network structure, which means
that an SMN can belong to many TMCs. The propagation
process of SLPA is realized by mimicking human commu-
nication behavior. At the same time, in order to take into
account old label knowledge observed in the past, each SMN
has a memory to store the label set observed from the first
time step to the current time step.

At each propagation step, SMNs are selected as listeners
in turn. Each neighbor of the selected SMN is considered as
a speaker. And it sends out a single label based on speak-
ing rule: randomly sending a label from its memory with a
probability that is proportional to the frequency of the label
in its memory. After that, the selected SMN will accept one
label from the sent label set by listening rule: selecting the
most popular label from the sent label set. The algorithm ter-
minates when a predefined maximum number of iterations T
is reached. After the algorithm is terminated, post-processing
is executed to output overlapping TMCs. In post-processing,
a threshold r ∈ [0, 1] is set to determine whether a label
in the SMN memory is saved. If the probability of seeing a
label is less than the threshold, the label will be removed from
the SMN memory. When this process is completed, SMNs
with the same label in their memories are divided into the
same TMC. If there are multiple labels in the memory of an
SMN, it is considered to belong to many TMCs. The pseudo-
code of SLPA-based overlapping MCs clustering is depicted
in Table 1.

C. CHARACTERIZING THE EVOLUTION OF DYNAMIC
MANUFACTURING COMMUNITIES
1) CLUSTERING SMNs INTO OVERLAPPING TMCs
After SMNs are given some recommended TMCs, SMNswill
quickly self-organize into real TMCs. In the operation of the
network platform in social manufacturing, SMNs have differ-
ent MIs at different time steps and will join different TMCs.
At each time step, SMNs, TMCs and MIRs between SMNs
constitute a SMNet. DSMNet is a set of SMNets at successive
time intervals. DMCs are obtained by combining TMCs at
different time steps in chronological order. A DMC can be
regarded as a set of TMCs that have been detected from the
initial time step of DSMNet to the current time step. In each
DMC, there is a TMC in the set that appears at the most recent
time step, and it is considered as the front of the DMC. And
the front of a DMC is constantly updated with its evolution.
DMCs can be formally described as

DMC = {DMC1,DMC2, . . . ,DMCh} (4)

Dis(SMN1, SMN2) = log2

(
1+

|MI (SMN1)\MI (SMN2)| + |MI (SMN1)/MI (SMN2)|
|MI (SMN1)\MI (SMN2)| + |MI (SMN1)/MI (SMN2)| + |MI (SMN1) ∩MI (SMN2)|

)
(2)

Sim(SMN1, SMN2) = 1− Dis(SMN1, SMN2) (3)
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DMCh =
{
TMCe

h, . . . ,TMC
d
h

}
, o≤ t ∧ d≤ t ∧ o≤d (5)

FMC = {FMC1,FMC2, . . . ,FMCh} (6)

where DMC is the set of DMCs in DSMNet, DMCh refers to
a DMC, h denotes the number of DMCs in DSMNet, e is the
time step that DMCh emerges, TMCe

h is the TMC of DMCh
at time step e, d is the most recent time step that DMCh is
observed, TMCd

h is the TMC of DMCh at time step d , t is the
current time step, FMC is the set of fronts of DMCs, FMCh
is the front ofDMCh. At the time step d , TMCd

h is considered
as the front FMCh of DMCh. By equation (4), equation (5)
and equation (6), DMCs can be clearly presented.

2) FUNDAMENTAL EVENTS
The evolution of DMCs means the continuous changes of
DMC structures over time, which is characterized by a series
of fundamental events. The fundamental events are used to
connect TMCs to DMCs, which reflects the evolutionary
relationships between DMCs.

There is a broad consensus on fundamental events
that characterize the evolution of dynamic communities.
Palla et al. [40] considered the fundamental events in commu-
nity evolution as growth, contraction, merging, splitting, birth
and death. Asur et al. [42] defined five fundamental events
for the evolution of the dynamic community, i.e. continue,
k-merge, k-split, form and dissolve. Takaffoli et al. [44]
regarded form, dissolve, survive, split and merge as fun-
damental events to characterize the evolution of dynamic
communities. Greene et al. [43] adopted six fundamental
events, including birth, death, merging, splitting, expansion
and contraction, to track the evolution of dynamic commu-
nities. According to the above research, for the evolution of
DMCs, we define seven fundamental events, i.e. birth, death,
merging, splitting, expansion, contraction and continuation.
The seven fundamental events are elaborated as follows:
Birth: Birth of a DMCmeans that the DMC emerges at the

current time step, but it has not been identified at the previous
time steps. It indicates that some SMNswith similar MIs self-
organize into a new TMCs at the current time step.
Death: The death of a DMCmeans that it can’t be detected

any more in DSMNet at serval consecutive time steps. It indi-
cates that SMNs in the DMC have changed their MIs so
that they have low MI similarity, which drives SMNs out of
the DMC.
Merging:When a TMC is observed to match two separate

DMCs at the current time step, the two DMCs merge into
one DMC. The merging of two DMCs means that SMNs in
the two DMCs have changed their MIs towards a common
direction, and they tend to provide similar manufacturing
services at the current time step. The reason may be that
SMNs can earn more business benefits by providing such
manufacturing services.
Splitting: A DMC is considered to have a splitting when

its front matches two TMCs at the current time step. The
splitting of a DMC implies that SMNs in the DMC have been

distracted from their common MIs, which has led SMNs to
part ways and join different DMCs.
Expansion: The expansion of a DMC occurs when it con-

tains more SMNs at the current time step than the most recent
time step (growth > 10%). The main motivation behind this
is that more and more SMNs have changed or expanded
their MIs to the common MIs of the DMC for more business
benefits.
Contraction: If the number of SMNs in a DMC at the

current time step is less than the most recent time step, the
DMC is believed to have experienced a contraction
(reduction> 10%). It indicates that in the DMC, competition
among SMNs has become increasingly fierce, which forces
some SMNs to change their MIs. Another reason for the
contraction may be that market demands for manufacturing
services provided by the DMC are declining.
Continuation: The continuation of a DMC means that the

change in the number of SMNs in the DMC is relatively stable
(no more than 10%) from the most recent time step to the
current time step. It implies that theDMC is running smoothly
so that most SMNs in DMC have not changed their MIs.

3) CHARACTERIZING THE EVOLUTION OF DMCs
Based on the seven fundamental events, the evolution of
DMCs can be characterized by continuously adopting them to
connect TMCs to DMCs from the initial time step of DSMNet
to the current time step. The key is to match TMCs at current
time step with DMCs and map the seven fundamental events
with the matching result.

To match TMCs with DMCs, a heuristic threshold-based
method is applied [43]. This method judges whether there
is a match between a TMC and the front of a DMC by
calculating the similarity between them. The front of a DMC
refers to the TMC that appears in DMC at the recent time step.
If their similarity exceeds a threshold µ ∈ [0, 1], the TMC is
considered to match the DMC. And the TMC will be added
to the DMC, at the same time, it will be updated as the front
of the DMC. The similarity between a TMC and the front of
a DMC is calculated as:

sim(FMCh,TMC t
k
) =

∣∣FMCh ∩ TMC t
k

∣∣∣∣FMCh ∪ TMC t
k

∣∣ (7)

where FMCh is the front ofDMCh, TMC t
k
is a TMC identified

at the current time step t , sim(FMCh,TMC t
k
) denotes the

similarity between FMCh and TMC t
k
,
∣∣FMCh ∩ TMC t

k

∣∣ is
the number of SMNs belonging to both FMCh and TMC t

k
,∣∣FMCh ∪ TMC t

k

∣∣ is the number of SMNs that are the mem-
bers of FMCh, or TMC t

k
, or both. If sim(FMCh,TMC t

k
)

is greater than the threshold µ, TMC t
k
will be added to

FMCh and updated as the front of FMCh.Table 2 shows
the pseudo-code of adopting the heuristic threshold-based
method to match TMCs with DMCs.

After that, fundamental events can be mapped to the above
matching results to characterize the evolution of DMCs. If a
TMC is matched with no DMC, there is a ‘‘birth’’ of a
new DMC. If a TMC is matched with two or more DMCs,
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TABLE 2. The pseudo-code of adopting heuristic threshold-based method to match TMCs with DMCs.

TABLE 3. Refined concepts and their corresponding MI features in MI domain ontology.

TABLE 4. The fragment of MI entities of SMNs.

there is a ‘‘merging’’ among DMCs. If a DMC is matched
with no TMC at serval consecutive time steps, it indicates the
‘‘death’’ of the DMC. If a TMC is matched with only a DMC,
there is an ‘‘expansion’’, a ‘‘contraction’’ or a ‘‘continuation’’
of the DMC, which can be judged by calculating changes in
the number of SMNs in the DMC. If two or more TMCs are
matched with only a DMC, there is a ‘‘splitting’’ in the DMC.
Note that if DMCs only appear at one time step, the DMCs
will be ignored and removed from the set of DMCs.

IV. CASE STUDY
In this section, a simulation case is run to verify the feasibility
of the approaches proposed in this paper. The implementation
process of the case is divided into five stages, i.e. constructing
MI domain ontology, forming MI entities of SMNs, calcu-
lating MI similarity between SMNs, clustering SMNs into
TMCs, and simulating the evolution of DMCs.

According to MI domain ontology in FIGURE 3,
MI domain ontology of this case is shown in Table 3,

including 3 rough concepts (i.e., product order interest,
machining interest, and other interest), 5 refined concepts,
and 61 MI features. Each refined concept contains multiple
MI features.

Based on theMI domain ontology, SMNs can select theMI
features that they are interested in to form their MI entities.
We randomly produce 100 SMNs with 100 MI entities, and
Table 4 lists the fragment of MI entities of SMNs.

After that, according to equation (2) and equation (3),
the MI dissimilarity between SMN1 and SMN2 is calcu-
lated Dis(SMN1, SMN2) = log2

(
1+ 14+8

14+8+4

)
= 0.885,

so their MI similarity is Sim(SMN1, SMN2) = 1 −
Dis(SMN1, SMN2) = 0.115. Correspondingly, MI similarity
between other SMNs is obtained in the same way. Based on
MI similarity, we set a threshold θ = 0.24 to determine MIRs
between SMNs. After MIRs between SMNs are obtained,
SMNs are clustered into overlapping TMCs through SLPA
algorithm. In this case, the predefined maximum number
of iterations is set as T = 100, and the threshold for
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FIGURE 4. The final result of clustering SMNs into overlapping TMCs by SLPA algorithm.

TABLE 5. The member of TMCs and their common MI features at time step 1.

post-processing is set as r = 0.45. In order to get better
overlapping TMCs, we run SLPA algorithm 5 times and select
the result with the most TMCs to be the output result. At the
same time, we delete TMCs with less than three members
from the output result to obtain the final result. The final

result is shown in FIGURE 4. It can be clearly seen that
100 SMNs is clustered into 11 overlapping TMCs, and SMN
10 are clustered into both TMC1

10 and TMC
1
1 .

In order to uncover MI information in a TMC, firstly,
we calculate the intersection of MI features between any

119244 VOLUME 8, 2020



J. Liu, P. Jiang: Manufacturing Network Modeling and Evolution Characterizing Approach for Self-Organization

TABLE 6. TMCs and their common MI features at time step 2.

TABLE 7. TMCs and their common MI features at time step 3.

two SMNs in the TMC and the frequency of each MI feature
occurred in all intersections. Afterward, we rank MI features
based on their frequency and select MI features with larger
frequencies as the commonMI features of the TMC. To some
extent, commonMI features indicate what MI features SMNs
in TMCs are interested in, which is why they self-organize
themselves together. Table 5 shows the member of TMCs
and their common MI features. Taking TMC1

1 as an example,
from Table 5, we can deduce that TMC1

1 prefers to provide
SLA additive manufacturing service and supply accumulator
product for the customers located at Changsha.

In order to simulate the evolution of DMCs, we use
the above SMNs and their MIRs as the initial snapshot

of DSMNet at time step 1, and obtain five snapshots of
DSMNet corresponding to other five time steps by selecting
20 SMNs in turn to change their MI features. For example,
at time step 2, the MI features of the first 20 SMNs are
changed. Afterward, for the snapshots of DSMNet, we also
adopt SLPA algorithm to cluster SMNs into overlapping
TMCs. The clustering results at six time steps are respec-
tively shown in Table 5, Table 6, Table 7, Table 8, Table 9
and Table 10.

Then, according to equation (7), we calculate the similarity
between TMCs and the fronts of DMCs. Afterward, accord-
ing to the research of Greene et al. [43], we set matching
thresholdµ = 0.3 to decide whether a TMCmatches a DMC.
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TABLE 8. TMCs and their common MI features at time step 4.

TABLE 9. TMCs and their common MI features at time step 5.

TABLE 10. TMCs and their common MI features at time step 6.

The matching result between TMCs and DMCs at six time
steps is shown in FIGURE 5a. According to the matching
result, fundamental events can be mapped to the evolution
of DMCs. FIGURE 5b shows the evolution of 18 DMCs
over six time steps, and some fundamental events are mapped
to DMCs. This figure clearly presents the evolution of DMCs,
for example, from the figure, we can see that TMC1

1 splits into
TMC2

1 and TMC2
9 at time step 2.

V. DICUSSION
A. PARAMETER VALUES COMPARING AND CHOOSING
In the case, the values of threshold θ and parameter r have
an important influence in clustering SMNs into overlapping
TMCs by SLPA algorithm. In order to get the best clustering
results, we conduct a comparative experiment to determine
the values of threshold θ and parameter r . Firstly, we set
the θ = 0.24 and compare the effects of different values of

119246 VOLUME 8, 2020



J. Liu, P. Jiang: Manufacturing Network Modeling and Evolution Characterizing Approach for Self-Organization

FIGURE 5. The result of matching TMCs and DMCs at six time steps and the evolution of DMCs at six time steps.

FIGURE 6. The evolution of DMC6 at six time steps.

parameter r on the clustering results, as shown in Table 11.
As seen from Table 11, with the value of parameter r increas-
ing, the number of clustered TMCs increases and the member
of the largest TMC decreases. The size of clustered TMCs is
related to their fineness. The number of clustered TMCs is
larger, their fineness is higher. On the other hand, in Table 11,

the member number of the largest TMC is smaller, the size of
clustered TMCs is smaller. However, when r = 0.5, there are
no overlapping TMCs. Therefore, we consider r = 0.45 as
the final parameter value in the SLPA algorithm. Afterward,
we set 6 different values of threshold θ to obtain MIRs
between SMNs, and the result is shown in Table 12. As seen
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TABLE 11. The clustering results by setting different values of the parameter r when the threshold θ = 0.24.

from Table 12, if the value of threshold θ is too large, there
are amount of single SMNs. On the contrary, if the value of
threshold θ is too small, the number of clustered TMCs is
small and their sizes are too large, which leads to too much
overlap between TMCs. So we select θ = 0.24 as the judging
condition of whether there is a MIR between two SMNs.

B. EXPERIMENT RESULT ANALYSIS
1) EVOLUTION GRAPH
In order to further uncover the evolution of a DMC,
we present its evolution as an evolution graph from its mem-
bers, fundamental events and common MI features. Taking
DMC6 as an example, its evolution graph from time step 1
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FIGURE 7. The number and average number of fundamental events on DSMNet.

to time step 6 is presented in FIGURE 6, from which we can
see that DMC6 experiences five fundamental events during
its evolution, i.e., continuation, expansion, expansion, con-
traction, and contraction. The continuation of DMC6 from
time step 1 to time step 2 indicates that there are stable
market demands for the manufacturing services that DMC6
is interested in. From time step 2 to time step 4, increasing
market demands for the manufacturing services has caused
more and more SMNs to change their MIs to the common
MIs ofDMC6, which leads to the expansion ofDMC6. At the
same time, this also leads to increased competition in DMC6
and the surplus of manufacturing resources in the manufac-
turing service domain. Afterwards, the contraction of DMC6
happens from time step 4 to time step 6.

From the evolution graph of DMC6, we can also see that
it is operating well because it is identified in DSMNet from

time step 1 to time step 6. This shows that DMC6 has good
development potential. Therefore, the manager of the net-
work platform should devote more efforts (such as funds,
technology, etc.) to protect such DMCs. At the same time,
the manager of the network platform can analyze the reasons
behind this to guide the operation of other DMCs. Similarly,
other DMCs can also be analyzed.

2) FUNDAMENTAL EVENTS IN DSMNet
The number of fundamental events occurring in DSMNet can
reflect the stability of DSMNet to a certain extent. Therefore,
the average number of fundamental events on DSMNet is
defined as (8), as shown at the bottom of the page, where
n is the number of time steps DSMNet has experienced.
AFE i denotes the average number of fundamental events

AFE =

n∑
i=1

AFE i

n

AFE i =
N i
birth
+ N i

death
+ N i

merging
+ N i

splitting
+ N i

expansion
+ N i

contraction
+ N i

continuation

7
(8)
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TABLE 12. The clustering results by setting different values of threshold θ when parameter r = 0.45.

occuring in DSMNet at time step i, N i
birth

, N i
death

, N i
merging

,
N i
splitting

, N i
expansion

, N i
contraction

, N i
continuation

denote the number

of times that ‘‘birth’’, ‘‘death’’, ‘‘merging’’, ‘‘splitting’’,
‘‘expansion’’, ‘‘contraction’’, ‘‘continuation’’ occur in
DSMNet at time step i, respectively. By comparing the values
of AFE i and AFE , the stability of DSMNet at the time step i
can be judged. The larger the difference of AFE i and AFE ,
the worse the stability of DSMNet at the time step i. At this
time, the manager of platform manager should be alert to
exceptions that may occur on DSMNet.

In the case, the number and average number of fundamen-
tal events on DSMNet is presented in FIGURE 7. As can be
seen from FIGURE 7, the difference of AFE i and AFE on
DSMNet is relatively small, not exceeding 0.5, which shows
that the operation of DMCs on network platform is still quite
stable so far.

VI. CONCLUSION
In this paper, a manufacturing network modeling and evo-
lution characterizing approach is proposed. The purpose
of this approach is to improve the efficiency of SMNs
self-organization to form MCs, at the same time, to provide
guidance for the operation of the network platform through
characterizing the evolution of MCs. In this approach, firstly,
a MI domain ontology is built to describe diverse MI of
SMNs, and then the feature-based approach proposed is used
to quantize MI similarity between SMNs. Furthermore, the
speaker-listener label propagation algorithm is applied to
cluster distributed SMNs into overlapping manufacturing
communities based on their MIs. Finally, the evolution of
MCs is characterized by defining seven fundamental events.
The contributions of this study include following aspects:
(1) the proposed approach can rapidly cluster distributed
SMNs into overlapping MCs based on their MIRs,
by which network platform can recommend potential part-
ners for SMNs, thereby improving the efficiency of SMNs
self-organizing into MCs. (2) the evolution of MCs can be
characterized clearly by the proposed approach, by which the
manager of the network platform in social manufacturing can
get useful information on the operation of MCs to judge the
stability of DSMNet.

Nevertheless, there also were limitations on our research.
Firstly, in case study, only 100 SMNs produced by random are
used to verify the feasibility of the proposed approach. More
SMNs and real case also should be considered. In addition,

the evolution patterns of MCs is also an attractive research,
which is helpful to predict the future structure of DMCs.
These limitations should be taken into consideration in future
research.
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