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ABSTRACT Nonlinear Model-based Predictive Control (NMPC) is a relevant research area having
applications in the industrial sector. Traditionally, in this technique, gradient descent algorithms have been
used to solve the related optimization problem. More recently, bio-inspired meta-heuristics have also been
applied to this problem. However, only a few works have been devoted to testing solvers that use parameter
control with self-adaptive traits, which allows mitigating the problem of offline parameter tuning in bio-
inspired approaches. In this paper, we propose the novel Adaptive Modified Grey Wolf Optimization
(AMGWO) and the Adaptive Moth-Flame Optimization (AMFO), for solving Nonlinear Model-based
Predictive Control (NMPC) problems. To achieve this, a mechanism for individual leaders weighting and a
crossover operator are introduced in AMGWO, and a simple self-adaptive parameter technique is applied in
both meta-heuristics. The improved solvers are tested to perform the swing-up of a single inverted pendulum
and attitude control of a satellite, which are nonlinear problems relevant for assessing control performance.
Nonparametric statistical tests are applied to compare the improved meta-heuristics optimization outcomes
with other five meta-heuristics, which shows that the self-adaptive parameter technique can significantly
improve the performance when applied as an NMPC solver, as the AMFO and AMGWO statistically
outperform or performs as well as all algorithms compared in both the pendulum and satellite control,
respectively. This is important as improving the optimizer efficiency will lead to more accurate control and
enable rapid hardware implementation.

INDEX TERMS Adaptive algorithms, computation intelligence, nonlinear dynamical systems, predictive
control.

I. INTRODUCTION
The Model-based Predictive Control (MPC) is a well-known
control technique widely used in industrial systems. The
MPC performs the control by calculating the optimal actions
based on the predicted future behavior of a given plant
through an online optimization process [1]. Gradient descent
algorithms have been used for the purpose of solving these
optimization problems [2]–[4] but it has been shown to
be limited in computational capacity for nonlinear and
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non-convex problems [5]. Regarding this, Bio-inspiredMeta-
heuristics (BMs) proved to be an alternative for dealing with
these complex problems [6], for example in advanced control
[7], [8]. BMs’ ability to explore and exploit in linear, non-
linear, and multi-objective problems makes it useful in vari-
ous classes of MPC, including linear MPC, nonlinear MPCs
(NMPCs), tracking-based MPCs, hybrid MPCs, among oth-
ers. This fact presents another advantage of BMs over Tra-
ditional Algorithms (TAs) since the latter has the primary
ability to solve convex optimization problems [5]. One of
the challenges in designing and implementing NMPC in a
real-world context is to seek algorithms capable of obtaining
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the optimal control actions for a given system since different
models require different solutions.

BMs are a subset of soft-computing methods that use bio-
logical phenomena present in natural systems as metaphors to
their heuristic strategies to search for solutions of optimiza-
tion problems [9]. What makes meta-heuristics advantageous
concerning the exact optimization methods are their charac-
teristics of simplicity and flexibility. In terms of simplicity,
they are based on simple mathematical models, generally
inspired in natural phenomena, looking for balancing two
basic processes such as exploring a broad range of possi-
ble solutions by different search agents, and exploiting the
information gathered by them to avoid potential local optima.
This balance is essential to prevent phenomena such as pre-
mature convergence and stagnation of the process in local
minima/maximums. In terms of flexibility, meta-heuristics
can be easily adapted to different types of problems, without
having to take prior knowledge of the forms of the cost
function, avoiding calculating derivatives, such as with the
exact optimization methods. These characteristics make them
suitable also in dynamic situations where the goal or con-
straints are changing over time, either for exogenous or self-
induced causes, and the parameter adjustments and fitness
measurements are disturbed. The same is truewhen the search
space is multidimensional, multimodal, or fractal and cannot
be handled by traditional methods, especially those that use a
global prediction from local surface analysis [10].

In general, BMs are categorized into two groups based on
their metaphors: (a) evolutionary and (b) swarm intelligence
algorithms. Evolutionary techniques are inspired by Dar-
winian evolution theory that describes the method in which a
species population changes their individuals genetic material
through generations as an adaptation to the environment, the
best known being the Genetic Algorithm (GA) [11], Differ-
ential Evolution (DE) [12], and their variations. Otherwise,
swarm intelligence ones use as inspiration for their metaphors
the social behavior displayed by some species of animals.
Techniques, in this category, generally encode a possible
solution as the position of an individual in the group (swarm)
and use the evaluation of the objective function to force the
movement of individuals towards improved solutions. Exam-
ples of this proposal are Particle Swarm Optimization (PSO)
[13], Salp Swarm Algorithm (SSA) [14], Grey Wolf Opti-
mization (GWO) [15], Elephant Herd Optimization (EHO)
[16], Dragonfly Algorithm (DA) [17], and Moth-Flame Opti-
mization (MFO) [18].

The interest of the scientific community in meta-heuristic
methods, including the intense generation of new methods
in the past decade, uses as theoretical base the No Free
Lunch (NFL) Theorem. The NFL theorem [19] shows that
all meta-heuristic algorithms have the same performance
on average when applied to all possible problems. In other
words, if a meta-heuristic BM1 achieves better results than
another BM2 when applied to a set of problems, BM1 per-
forms worse when applied on another set of problems, where
BM2 performs better. For this reason, to decide what is the

best bio-inspired meta-heuristic to optimize a complicated
family of optimization problems, it is essential to use and
compare a significant number of meta-heuristics on a range
of combinations of problems.

BM algorithms’ performance is still heavily dependant on
the setting of its design parameters. Tuning them is far from
straightforward and can be manually impractical. There are
two possible modes for parameters value defining strategies
in meta-heuristics: (a) parameter tuning, and (b) parameter
control [20]. Parameter tuning is a strategy to search for
near-optimal values for the design parameters of a heuristic
algorithm. This search is generally an empirical trial-and-
error method (usually performed offline), where the whole
optimization process is repeatedmultiple times to find param-
eters that bear good results when compared with others.
Otherwise, parameter control is a self-adaptation alterna-
tive that adds techniques that are capable of dynamically
changing parameter values during a meta-heuristic execution.
This alternative mitigates the dependence on a proper time-
consuming initial parameter tuning while improving the algo-
rithm performance.

Motivated by this consideration, different adaptive and
self-adaptive mechanisms [21]–[26] have arisen in order to
dynamically adapt the parameters without the user having
prior knowledge of the relationship between parameter set-
ting and the characteristics of optimization problems. There-
fore, the parameter adaptation, if well designed, is capable
of improving an algorithm’s convergence performance. The
self-adaptation mechanisms are mainly applied in classic
optimization problems or benchmark functions, whereas opti-
mal control policies such as NMPC applications still lack in
the literature.

This paper focus on two aforementioned BM’s types: the
GWO [15], which is based on social rank and hunting behav-
ior of wolves and the MFO [18], based on lighting attrac-
tion of moths. Since GWO and MFO are widely applied in
optimization tasks, several improvement methods were pro-
posed in these meta-heuristics to obtain better performance.
For instance, to GWO were applied a cauchy operator [27],
[28], chaotic mapping [29]–[31], fuzzy logic [32] and refrac-
tion learning [33]. Improved MFO versions were utilized
in parameter tuning problems [34]–[36], feature selection
[37], photo-voltaic models [38], standard benchmark func-
tions [39], [40], power flow problem [41], among others.
Self-adaptation was applied in GWO to solve a transmit
antenna selection problem [42] and a 2-dimensional logistic
chaotic mapping [43]. A modified MFO by introducing a
self-adaptive inertia weight was used to solve a multilevel
thresholding segmentation for a color image problem [44].
In addition, an adaptive mutation and multi-parent crossover
in binary GWO is found in [45].

The use of BMs as MPC solvers has been extensively
explored and has been shown well-suitable to obtain control
variables online, with accurate control precision and in great
robustness. Many MPC approaches have been reported in the
literature using BMs. DE meta-heuristic has been used as
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MPC solver in a pressure control system [46] and position
control of a robotic arm model [47]. Power systems [48],
engine idle speed [49] problems and a formation control
of multiple unmanned aerial vehicles [50] was solved by
a PSO-based MPC scheme. A hybrid GWO-based MPC
was implemented to control of aircraft engines [51], and an
improved GWO with an individual memory fitness based
on PSO was applied in an MPC strategy for trajectory opti-
mization of real-time multi-UAV target [52]. Other types of
soft computing methods have been reported to solve NMPC.
To cite a few, a radial basis function neural network was
used as an MPC solver to reduce structural fatigue loads in
large wind turbines [53], a simplified dual neural network-
based MPC was implemented on a digital signal processor
device and applied to an air-separation unit system [54] and
a general projection neural networks works as NMPC solver
applied in a multi-robot formation control [55]. However, the
applicability of self-adaptation BMs in NMPC approaches
is little addressed in the literature [56]–[58], and the pro-
posal/evaluation of simple self-adaptation methods are not
encountered in this context.

Therefore, the main contributions of this work are the
following:

(i) the proposal of a self-adaptive parameter technique to
both GWO and MFO meta-heuristics. To achieve this,
we have analyzed and adapted the application of the
parameter self-adaptation proposed in [22], to improve
the performance of two original meta-heuristics;

(ii) the inclusion of a new mechanism for weighting indi-
vidual leaders at each interaction in the GWO in order
to improve the guidance method of best individuals and
to obtain a more efficient exploitation phase;

(iii) the introduction of a new crossover operator in the GWO
to improve the meta-heuristic convergence speed-up;

(iv) the implementation of the proposed meta-heuristics as
NMPC solvers in two nonlinear control systems where
their performances are compared with other five meta-
heuristics, using non-parametric statistical tests, such as
in [59]–[62].

The new meta-heuristics have been called Adaptive Mod-
ified Grey Wolf Optimizer (AMGWO) and Adaptive Moth
Flame Optimization (AMFO). The experiment results show
evidence that, for the set of problems used, our proposed
self-adaptive bio-inspiredmeta-heuristics statistically outper-
forms or performs aswell as all algorithms compared, without
the necessity of an off-line parameter tuning, when compared
with the ones that do no contain adaptivemechanisms, or even
with previous seminal auto-adaptive proposals (e.g., JADE
[22] and LSHADE [26]). These results are promising to the
application of meta-heuristics to NMPC.

The paper is organized as follows. Section II presents
the meta-heuristic optimization methods as they were first
proposed. Then, self-adaptation versions are detailed in
Section III. The NMPC algorithm and the problem defini-
tions are stated in Section IV. Next, the simulation results and

their corresponding analysis are given in Sections V and VI,
respectively, to show the effectiveness of the newly pro-
posed meta-heuristics. Finally, conclusions are summarized
in Section VII.

II. META-HEURISTIC OPTIMIZATION TECHNIQUES TO BE
IMPROVED
In the present study, we have analyzed two recent meta-
heuristics presented in the literature, which are: (1) Grey
Wolf Optimizer - GWO [15] inspired by the behavior of
the pack of grey wolves (Canis Lupus) and (2) Moth-Flame
Optimization - MFO [18] based on the moonlight-guided
locomotion method.

In order to accredit our study, three other meta-heuristics
were analysed: (1) PSO with the inertia factor [63],
(2) JADE [22] and (3) LSHADE [26], the last ones repre-
senting two self-adaptation versions of the classical meta-
heuristic DE [12].

A. GREY WOLF OPTIMIZER (GWO)
GWO is based on the social and behavioral characteristics of
grey wolves. The search agents are divided into three classes:
Alpha (α), Beta (β), and Delta (δ), which are the agents with
the three best solutions, being α the best one. All other agents
are termed Omega (ω).

Two equations model the gray wolves hunting behavior:

Dtq,i = |C · X
t
q − X

t
i | (1a)

X tDq = X tq − A · (D
t
q,i), q = α, β and δ, (1b)

where X tα , X
t
β e X

t
δ are the positions of the three best solutions

and Dtα,i, D
t
β,i and D

t
δ,i represent the distance between them

and the agent X ti , respectively, in the t iteration. The coeffi-
cients are C = 2 · r1 and A = 2a · r2−a, where a is a variable
that decreases linearly over the iterations from 2 to 0, so A has
random values in the interval [-a,a] which alternates between
exploration (|A| > 1) and exploitation (|A| < 1) phase. The
r1 and r2 are random numbers in the range [0,1].

In a search space the optimal point is unknown; therefore,
the three best solutions (α, β, and δ) are used to update
the positions of all search agents. Through the equations
presented above, the displacement in the iteration t + 1 of
the search agent Xi is defined by (2), as follows:

X t+1i =

X tDα,i + X
t
Dβ,i + X

t
Dδ,i

3
. (2)

B. MOTH FLAME OPTIMIZATION (MFO)
The MFO meta-heuristic mimics the behavior of moths
attracting to a source of artificial light. This attraction is based
on a spiral movement, presented by (3):

X t+1i,l = Di · ebm · cos(2πm)+ Fj, (3)

where X(i, l) is lth dimension of the ith search agent, Fj the
position of the jth best moth (flame), b is a constant value of 2,
m is a random value in the interval [−1,1], andDi = |Fj−Xi|
is the difference between the jth flame and the ith agent. For
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m = −1 the search agent is close to the flame, if m = 1 the
agent remains in its place.

To avoid premature convergence of the meta-heuristic into
local minimum, the ratio between the flame and the attracted
moth starts at 1:1. That is, there is no chance that all moths
are attracted to a single flame. If the number of flames is
constant, there would be no exploitation of the solution if
many regions are being explored. Thus, the number of flames
will be updated as follows:

nF = round
(
n− t ∗

n− 1
I

)
, (4)

where n is the quantity of search agents and I is the maxi-
mum number of iterations. The round (·) function returns the
integer closest to value in parentheses. The flame updated
is based on the sort operation of the moth fitness in two
consecutive iterations, in which of nF best values are chosen
like the new flames.

III. SELF-ADAPTATION APPLIED TO GWO AND MFO
In order to improve the performance of the meta-heuristics
GWO and MFO, the adaptive modified GWO (AMGWO)
and adaptive MFO (AMFO) are proposed and presented in
subsections III-A and III-B.

A. THE ADAPTIVE MODIFIED GWO (AMGWO)
The AMGWO incorporates two different strategies to
improve the meta-heuristic performance: (a) the self-adaptive
weighted classes, and (b) a crossing-over approach of the
worst search agent.

• Self-adaptive weighted classes:

The original GWO updates the position of the search agents
by averaging three components, XDα , XDβ , and XDδ , which
are calculated according to the three best agents named α, β
and δ. It is known that in nature, alpha wolfs are the leaders of
the group, and their command is above the others. Therefore,
applying the same weight of importance to the three classes
would not represent the actual behavior of the pack. On the
other hand, according to the occasion, β and δ can assume the
command in case of enemy warning or finding prey before α.

To overcome these restrictions a new proposal for (2) was
elaborated:

X t+1i =
pt+1α · XDα + p

t+1
β · XDβ + p

t+1
δ · XDδ

3
, (5)

where the values of pα , pβ and pδ represent the weights
of α, β and δ, respectively, whose values are unique for
all search agents at each iteration. However, constant values
can not be assigned to these weights since some classes
may have more importance than others in some occasions.
Thus, based on self-adaptations of JADE [22] parameters,
the weights of (5) are adaptive and updated by the following
expression:

pt+1q = Mpt+1q + 0.1 · randn(0, 1), q = α, β, δ. (6)

in which randn(0, 1) is a function that returns a value of the
standard normal distribution andMpq is the average value of
updating the weights, and its value is obtained by:

Mpt+1q = (1− c) ·Mp
t
q + c ·mean(GoodPq), q = α, β, δ,

(7)

where c is a constant of 0.1 and GoodPq is the file that stores
the value of the weights when α, β or δ are updated, i.e., the
leaders that have had better fitness than previous iteration.
This file starts with five values equal to 1, and over iterations
the file is updated by removing the first element inserted to
remain with the same size of 5 components.
• Crossing-over approach of worst search agent:

Analyzing the search agents during the execution of meta-
heuristics it was observed that the agents with the best solu-
tion (α, β e δ) were different from each other in some
dimensions near the end of iterations. For a problemwith high
dimensionality, these variations are relevant in the solution.

To aid tuning of each dimension values, inspired by DE’s
crossover operation [12], another modification was applied.
Therefore, it was proposed to change the particle with
the worst solution (Xlast ) during each iteration, performing
the process of crossing-over the information of leaders, as
follows:

X t+1last,j =


X tα,j if r ≤ 1

X tβ,j if 1 < r ≤ 2

X tδ,j if 2 < r ≤ 3,

(8)

where r is a random value generated in the interval [0,3]
for each dimension j. Different from the method applied in
[45] our operator is simpler, and we only apply to the worst
individual of the swarm. The proposed AMGWO is detailed
in Algorithm 1. The computational complexity of AMGWO
depends on the number of grey wolves (n), the dimensional-
ity of the vector (number of decision variables, d), and the
maximum number of iterations (I ). Except for the calculate
function in line 12 which has a complexity as O(d), we
assume a complexity constant (O(1)) for all calculate, update,
and evaluate steps depicted in lines 9 to 11 and 13, lines 15
to 17, and line 19 of Algorithm 1. Hence, the computational
complexity is defined as (9a) and approximated by (9b):

O(AMGWO) = O(I × (O(n×d)+3× O(1)+O(d))) (9a)

O(AMGWO) = O(I · n · d + I · d), (9b)

where I is the maximum number iterations, n the number of
grey wolves, and d is the number of decision variables.

B. THE ADAPTIVE MFO (AMFO)
The MFO has an operation to simulate the flight of a moth
in a spiral movement. This operation is performed by (3) in
which one of the exponential parameters is b of value 2.
The adaptive MFO was proposed with a self-adaptation of

parameter b. That is, each search agent has a particular value
of b. In this case, the calculation of bi and its average Mbi
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Algorithm 1 Adaptive Modified Grey Wolf Optimization
(AMGWO)

INPUT: Objective Function (f (·))
Iterations (I )
Number of individuals (n)
Dimension vector (d)

OUTPUT: Best solution (xbest )
1: procedure AMGWO
2: Initialize x1i (i = 1, . . . , n)
3: Initialize p1q = Mp1q = 1 (q = α, β, δ)
4: Evaluate f (x1i )
5: Update x1q (q = α, β, δ)
6: for t = 1 to I do
7: Update a
8: for i = 1 to n do
9: Update A and C F Eq. 1(a) and 1(b)
10: Calculate Dtq,i (q = α, β, δ) F Eq. 1(a)
11: Calculate XDtq,i (q = α, β, δ) F Eq. 1(b)

12: Calculate xt+1i F Eq. 5
13: Evaluate f (xt+1i )
14: end for
15: Update xt+1q and GoodPq (q = α, β, δ)
16: Update Mpt+1q (q = α, β, δ) F Eq. 7
17: Update pt+1q (q = α, β, δ) F Eq. 6
18: for j = 1 to d do
19: Update xlast,j F Eq. 8
20: end for
21: end for
22: return xbest
23: end procedure

for each agent i is identical to that shown in (6) and (7) of
AMGWO:

Mbt+1i = (1− c) ·Mbti + c ·mean(GoodBi) (10a)

bt+1i = M t+1
b + 0.1 · randn(0, 1), (10b)

where c has the value of 0.1, the file GoodBi starts empty
and is filled up during the iterations when the solution of
the i-th agent is better than that of the previous iteration, up
to a maximum size of 5. Upon reaching this value, the first
element inserted is removed for the insertion of the new one.
The value of b1i is 1 and in other iterations follows the system
of (10).

The summarized steps of AMFO is shown in Algorithm 2.
The sort operation uses the quicksort algorithm and is
depicted in lines 4 and 14. In line 4 the operation is related to
the sort of the total (n) number of the individuals. In line 14
the sort includes individuals of previous (xtn) and current
(xtC1n ) iterations, but in this case the flames are limited by
the first nF of the sort operation result. In line 8, m is related
to (3) and updated by a random function in range of [−1, 1].
The computational complexity of AMFO depends on

the number of moths (n), the dimensionality of the vector

Algorithm 2 Adaptive Moth Flame Optimization (AMFO)

INPUT: Objective Function (f (·))
Iterations (I )
Number of individuals (n)
Dimension vector (d)

OUTPUT: Best solution (xbest )
1: procedure AMFO
2: Initialize x1i and b

1
i = 1 (i = 1, . . . , n)

3: Evaluate f (x1i )
4: F = sort(x1n; n)
5: for t = 1 to I do
6: for i = 1 to n do
7: for l = 1 to d do
8: Update m
9: Calculate xt+1i,l F Eq. 3
10: end for
11: Evaluate f (xt+1i )
12: end for
13: Update nF F Eq. 4
14: F = sort(xt+1n , xtn; nF )
15: Update GoodBi (i = 1, . . . , n)
16: Update Mbt+1i (i = 1, . . . , n) F Eq. 10(a)
17: Update bt+1i (i = 1, . . . , n) F Eq. 10(b)
18: end for
19: return xbest
20: end procedure

(number of decision variables, d), the maximum number of
iterations (I ), and the sorting mechanism of flames in each
iteration. In our case, the internal sort has a computational
complexity of O(nlogn) and O(n2) for the best and worst
cases (of quicksort). We assume a complexity of O(1) for
all calculate and update steps depicted in lines 15 to 17, and
that the sort is achieved over the nF elements of the array of
flames. Therefore, the computational complexity is defined
as (11a) and approximated by (11b):

O(AMFO) = O(I×(O(n× d)+O(nF 2)+3×O(1))) (11a)

O(AMFO) = O(I · n · d + I · nF 2), (11b)

where I is the number iterations, n the number of moths, d is
the number of decision variables, and nF the current number
of flames at each interaction.

IV. NONLINEAR MODEL PREDICTIVE CONTROL
PROBLEM DEFINITION
In this paper the meta-heuristics plays the role of an NMPC
solver applied in two nonlinear control systems, which are
presented in the following.

A. MODEL-BASED PREDICTIVE CONTROL ALGORITHM
An MPC control strategy is centered on the system model
to predict its future behavior over a finite horizon (N ) based
on the current measured and/or estimated states as shown in
Fig. 1. It uses a cost function to evaluate the best control
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FIGURE 1. Block diagram of MPC methodology, adapted from [64].

actions based on the input references and state constraints.
The strategy consists of four steps which are repeated at each
sampling period as listed in Algorithm 3. The NMPC version
of the algorithm uses the same steps using the nonlinear
system model.

Algorithm 3MPC Strategy
1: for decision instant k do
2: Obtain controlled variable measurements;
3: Calculate the sequence of future actions that mini-
mize the system cost function;

4: Apply the first control action of the optimal sequence
in time interval [k, k + 1];

5: Proceed to the next instant k = k + 1;
6: end for

The NMPC was applied on two nonlinear dynamic sys-
tems. Such systems are presented below.

B. SINGLE INVERTED PENDULUM CONTROL
The first control problem aims to perform a constrained
inverted pendulum swing-up while also bringing it to a ref-
erence cart position (x = 0). In summary, the acceleration
of the cart and the angular acceleration of the pendulum are
respectively:

ẍ =
1

M + m
[u− bẋ − mlθ̈c(θ)+ mlθ̇2s(θ)] (12)

θ̈ =
3

4ml2
[mgl · s(θ)− mlẍc(θ )− hθ̇ ], (13)

whereM is the mass of the cart,m is the uniformly distributed
mass of the pendulum, and 2l is its length. In this case, b is the
friction coefficient of the cart with the surface, h is the friction
coefficient of rotation, u is the force applied to the cart, θ is
the angle between the normal force and the pendulum, s(θ ) is
a sin of θ , and c(θ) is cosine of θ . Finally, x is the horizontal
displacement of the cart.

The system is discretized by a 4th order Runge-Kutta
method. The complete mathematical modeling can be con-
sulted in [65]. Denoting the states of the system as a vector
X = [x ẋ θ θ̇]T , the cost function that the NMPC-solver seeks

to minimize is shown in (14) [66]:

uopt = argmin

N−1∑
i=1

 4∑
j=1

Qe(X (j, i)) · (X (j, i)− Xref (j, i))2

· Q(j)+ R · (u(i)− uref (i))2


+

4∑
j=1

Qe(X (j,N )) · (X (j,N )−Xss(j))2Qf (j)

, (14)

where Xss = Xref = (x = 0, ẋ = 0, θ = 0◦, θ̇ = 0◦) is
the desired steady-state which is equal to the reference, Qe =
(104) is a penalty applied to obey the x state constraint and is
applied whenever x > 0.5m or x < −0.5m. Q(j) and Qf (j)
are the state trajectory error penalties j in horizons 1 to N − 1
and final N , respectively.

C. SATELLITE ATTITUDE CONTROL
The second control problem has the objective of controlling
the attitude of a satellite in the three rotation axes of a
simulated test platform [67]. The element responsible for the
orientation of each axis is a reaction wheelwhich is connected
to a motor that induces a speed and, by the principle of
conservation of angular momentum, a torque of the same
intensity and opposite direction applied to the body [68].

The attitude of the simulator is defined as the relative
orientation between the inertial reference systemFi (i1, i2, i3)
and the body reference system Fb, relative to the moving part
of the platform, but having the same center as Fi.

The problem is to take the attitude of the body, initially
(0◦, 0◦, 0◦), to a reference (θ1, θ2, θ3). The control action is
numbered by nu and represents the acceleration of the motor
acting on each reaction wheel.

The mathematical model of the platform is described by
(15) [67]: θ̇1θ̇2

θ̇3

 =
 0 s3/c2 c3/c2
0 c3 −s3
1 s3s2/c2 c3s2/c2

 ·
ω1
ω2
ω3

 , (15)

where the values of θi are the Euler angles describing the
attitude of the simulator as the relative orientation between
the inertial frame Fi and the reference fixed to the body Fb,
si and ci are abbreviations for the sine and cosine of θi and ωi
are the angular velocities of the reference Fb in relation to Fi.
Therefore, the system can be represented in a state space:

Ẋ = f (X , u,A,B), (16)

where the state vector is X = (θ1 θ2 θ3 ω1 ω2 ω3)T and the
control action is u = (�̇1 �̇2 �̇3)T ; in which �̇1, �̇2 and �̇3
are the acceleration of the reaction wheels. Therefore,�1,�2
and�3 are the velocities of the reaction wheels. The matrices
A and B are described in [68], and the former depends on the
variable values of �1,2,3 which makes the system nonlinear.
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It is important to mention that the formulation herein
depicted also encompasses models with time delay [69]–[71],
and this can be achieved by the proper definition of u(t).

To achieve the overall control system two strategies have
been used:

1) FILTERED REFERENCE
The first strategy uses a filtered reference as proposed in [68],
and represented by (17):

yi(t) = θi(1− e
−3τs
tref ), (17)

where θi is the amplitude of the reference signal, τs is the
sampling period, and tref the response time for the system to
reach 95% of the amplitude θi. The application of this input
signal is intended to reduce the overshoot of the output signal.

2) EXPONENTIAL PARAMETERIZATION
The second strategy is an exponential parameterization that
is based on exponential terms to obtain a candidate command
sequence of the control signal. The system input (u) must
‘see’ the prediction horizon (N ), that is, the higher N the
greater the complexity to define uopt . To decrease the size
of the decision variable and decouple it from the N value,
the parameterization of u is performed. It is represented by
the sum of exponentials to model the signal through two
coefficients:

un(t + iτs) =
nne∑
l=1

[
e
−λn

(l−1)α+1

]
· p(n)l , (18)

where t ∈ [(k − 1)τs, kτs[, n is the n-th actuator of system,
i ∈ {0, · · · ,N −1}, λn > 0 and α > 1 are tuning parameters.
The nne is the number of exponential terms chosen for n-th
actuator. Thus, the new set of parameters p that may be found
is:

p =

 p(1)
...

p(nu)

 . (19)

More details about the exponential parameterization are
found in [72]. The parameters pn are obtained by a cost
function to be optimized by the NMPC solver:

popt = argmin

N−1∑
i=1

 6∑
j=1

(θ (j, i)− θref (j, i))2


+

6∑
j=1

Qf (j) · (θ (j,N )− θss(j))2

 , (20)

where θss = (θ1 = 50◦, θ2 = −30◦, θ3 = 60◦, ω1 =

0, ω2 = 0, ω3 = 0) are the reference values of the states,Q(j)
and Qf (j) are the same penalties for pendulum control. After
the solution of (20) only the first control signal un(popt , 1) is
applied to the system in [t, t + τs] and in the next instants the
whole methodology is applied again.

FIGURE 2. Internal solver process performed by the bioinspired
meta-heuristic.

D. NMPC SOLVER
The NMPC solver process is performed at each sample time,
and it is divided by three main blocks shown in Fig. 2. Those
lighter color refer to meta-heuristics tasks. The initialization
of the heuristic population is composed of two methods: the
previous best agent and the steady-state agent.
• Previous best agent: the optimized result obtained for
the instant k (uopt (k)) is used as one of the search agents
of the initial population of the meta-heuristic in instant
k+1. This method was proposed by [73], being suitable
since the pendulum and the satellite are slow dynamic
systems, and their states do not suffer abrupt variations
from one sampling instant to another.

• Steady-state agent: the initialization of one search agent
is done with the value of the steady-state control action
(in both of these control problems uss = 0 for all
actuators) since the search agents tend to converge to uss
at the end of the control process [66].

The iterative minimization process is based on each meta-
heuristic optimization features that over a number of itera-
tions find the optimal control action (uopt ) that minimizes
the cost function J (u) provided by the system’s model. After
that, the first control element (uopt (k+1)(1)) is applied to the
system, and a new optimization process is computed in the
next sampling interval.

V. RESULTS
This section shows the experimental aspects used in this
research and our results obtained on the two benchmarks
(single inverted pendulum and satellite attitude), by using the
metaheuristics proposed here. In this sense, the experimental
setup is shown in subsection V-A, the nonparametric analysis
and test results are shown in subsection V-B, the cost function
convergence is shown in subsection V-C and the dynamic of
adapted parameters are shown in subsection V-D.

A. EXPERIMENTAL SETUP
The definition of problems in the case of the pendulum are
the sampling intervals where the control action needs to be
computed, and for the satellite, the median of these instants.
In this case, we have the following sample strategies:
• Single inverted pendulum: Each sampling interval is
defined as an individual problem. The simulation
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duration is 20 seconds long, with a sampling interval
of τs = 0.1s resulting in 200 optimization problems.
The first fourteen seconds were discarded since all
meta-heuristics have similar performance in this period.
Furthermore, the system is far from reaching the refer-
ence states and, consequently, the convergence, which
represents a high-cost function value. Thus, 50 problems
were defined, being each decision instant between 14
and 18.9 seconds of simulation.

• Satellite: The satellite system was simulated
for 100 seconds, thus setting 1000 decision instants for
τs = 0.1s. The 50 problems were defined by extracting
the average of every 16 consecutive sampling times until
t = 80 seconds.

The results are defined by the median of 51 runs of each
meta-heuristic. The medians are used since the averages are
likely to allow good performance in a data-set to compensate
for the overall poor performance of the meta-heuristic [59].
This guidance is followed by [60], which recommends the use
of medians in the comparison of multiple meta-heuristics.

For each control problem, specific simulation parameters
were defined. For control of inverted pendulum, the param-
eters defined by [66] were used: (i) 10 particles and 30
iterations in meta-heuristics; (ii) the pendulum parameters
being m = 7.3 kg, M = 14.6 kg, l = 1.2 m, b = 14.6 kg/s
and h = 0.0136 kg · m2/s; and (iii) the NMPC parameters
being N = 20, Nu = 20, τs = 0.1 s, Q = [104 1 104 1],
Qf = [103 103 103 103] and R = 1.
In the satellite control, the parameters are based on [74]:

(i) 4 particles and 15 iterations in meta-heuristics; (ii) the
satellite parameters being Iω = 1.8 ·10−3 kg ·m2, I11 = I22 =
I33 = 1.17 · 10−3 kg · m2; and (iii) the NMPC parameters
being N = 75, Nu = 75, τs = 0.1 s, Q = [102 102102 1 1 1],
Qf = [1], λ = 0.1, q = 8.0, δu = 1 rad/s, tref = 30 s.

B. STATISTICAL ANALYSIS AND TEST
In multiple comparisons of meta-heuristics, there are no sig-
nificance results when an inadequate amount of problems are
chosen. Thus, the relation of appropriate number of problems
(np) between the quantity of compared meta-heuristic (nm) is
defined by 2 · nm ≤ np < 8 · nm [62]. Therefore, in our
study (with 7 meta-heuristics) the number of problems are
limited from 14 ≤ np < 56. In this context, the Shapiro-Wilk
normality test was applied. Once the non-normal distribution
was verified in data of both case studies, the performed
comparison was obtained by nonparametric methods. Such
methods are based on the Friedman test [75] and the Shaffer
post-hoc procedure [76], highly recommended for multiple
meta-heuristic comparison in multiple problems [60]. The
nonparametric tests were performed by KEEL (Knowledge
Extraction based on Evolutionary Learning) [77], [78].

The ranking of the Friedman test (Table. 1) shows that there
are differences in performance for at least two metaheuristics
in both control systems, since the p-values < 0.05. These
differences have been found by the Shaffer post-hoc test as
presented in Table. 2

TABLE 1. Ranking of metaheuristics.

TABLE 2. Shaffer post-hoc test.

The post-hoc test shows which metaheuristics have had
different performance when pShaf < 0.05. Thus, the
hypotheses 1 to 19 from the pendulum control problem and
the hypotheses 1 to 12 indicates that the metaheuristics, in
each pair test, had different performance from each other.
The results shows, therefore, the proposed metaheuristics
AMGWO and AMFO have improved the performance of
GWO (hypothesis 12) and MFO (hypothesis 15), respec-
tively, for the pendulum control. Conversely, for the satel-
lite attitude control, only AMGWO has improved GWO
(hypothesis 3), since the hypothesis 20 (AMFO vs. MFO)
resulted in pShaf > 0.05.

C. COST FUNCTION AND CONTROL ACTION
The cost function shows how themeta-heuristic performed on
the minimization task as an NMPC solver over the expended
time. The cost function convergence for the single pendulum
control is presented in Fig. 3.

The controller used the first twelve seconds to swing-up the
pendulum, which results in a non-descendent cost function in
this period, as shown in detail in Fig. 3. Because of that, the
problems were defined after the 14th second.

The proposed meta-heuristics showed a more pronounced
cost function convergence than its originals in the descendent
period. The AMFO showed the fastest convergence for single
pendulum control. Besides, this meta-heuristics presented
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FIGURE 3. Cost function convergence for single pendulum control.

FIGURE 4. Control action variation for single pendulum control.

FIGURE 5. Cost function convergence for attitude satellite control.

lower control action variation (δu) than MFO, as shown in
Fig. 4.

The same analysis was made for the satellite attitude con-
trol system, where the cost function convergence is shown in
Fig. 5. The JADE and AMGWO demonstrated to have lower
values than other meta-heuristics in the first 55 seconds of
simulation. The AMGWO presented the best performance in
the final simulation period.

For all three control actions in the satellite system, the
AMGWO presented lower control variations (δu1, δu2 and
δu3) than the GWO, as shown in Fig. 6.

D. SELF-ADAPTATION CHARACTERISTICS
To validate the use of self-adaptive parameters applied to
meta-heuristics-based NMPC solvers, the following results

FIGURE 6. Control action variation for attitude satellite control.

FIGURE 7. Best Mb values over the iteration for AMFO in single
pendulum control.

FIGURE 8. Mp values over the iteration for AMGWO in attitude satellite
control.

can be observed. Fig. 7 shows theMb value for the best search
agent in each iteration of the AMFO applied to the pendulum
control. Fig. 8 shows the Mp values (Mpα , Mpβ and Mpδ)
in each iteration of the satellite attitude control when the
AMGWO was applied. In these figures, each line represents
a sample instant of the simulation.

These results reinforce the importance of applying param-
eter adaptation strategies since control systems like the pen-
dulum and satellite require different tuning at each sampling
interval.

VI. RESULT ANALYSIS
In the present study, we proposed two self-adaptation meta-
heuristics, named Adaptive Modified GWO and Adaptive
MFO, applied in two NMPC control systems. We hypoth-
esized that simple self-adaptation methods can improve
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the meta-heuristic performance in the minimization task of
the NMPC solver. Then, we compared the performance of
the proposed meta-heuristics with their respective original
GWO and MFO algorithms, a classical PSO, and two self-
adaptation versions of the Differential Evolution, JADE and
LSHADE.

The Friedman test (Table. 1) suggested that the modifi-
cations and self-adaptation applied to GWO and MFO have
improved their original performance in both nonlinear control
systems since the AMGWO and AMFO have had the best
ranking than GWO and MFO. The Shaffer post-hoc test
(Table. 2) confirmed that AMFO and AMGWO had better
performance than MFO and GWO in the single pendulum
control, but in the satellite attitude control, only the AMGWO
has shown improvement over the GWO, since the AMFO
resulted in statistically similar performance with the MFO.

These performance improvements were confirmed by the
lowest and fastest cost function convergence of the pro-
posed meta-heuristics, observed mainly in the single pen-
dulum control (Fig. 3). The novel mechanisms proposed
in AMGWO, i.e., self-adaptive weighted classes and the
crossing-over approach in the worst search agent, have
confirmed the hypotheses. The results have shown better
exploitation behavior and a speed-up in convergence time in
both nonlinear control systems. In addition, the AMFO and
AMGWO have established less variation in the control action
than their original algorithms, in the pendulum (Fig. 4) and
satellite (Fig. 6) controls, respectively. In practice, the smaller
the control variation signals, the lower the energy expendi-
ture, which guarantees longer durability of the actuators and
improve their performance over time.

The NMPC process presented different values of variables
used to calculate the adaptive parameters, Mb (Fig. 7) and
Mp (Fig. 8), in each sampling time. This demonstrates that
such parameters must be adjusted according to the system
dynamics, since each control instant presents different system
states and, consequently, a different minimization task. Thus,
the advantage of applying adaptation techniques in meta-
heuristics is that their values are automatically addressed
according to the current state of the problem, given that each
case study has its characteristics and singularities. Further-
more, meta-heuristics capable of adjusting to the problem
may achieve better results than those that do not use parame-
ter control strategies.

Despite the good results obtained by the AMGWO and
AMFO approaches, there are limitations to be considered,
given that although they can be applied to any optimiza-
tion problem, in general, meta-heuristics do not necessarily
guarantee the optimal solution (global minimum/maximum).
Otherwise, taking into account the no-free-lunch theorem
their behavior need to be evaluated in other applications.

VII. CONCLUSIONS AND FUTURE WORKS
The results of this study are relevant in suggesting that a sim-
ple self-adaptive parameter technique can improve the meta-
heuristic performance when applied as an NMPC solver.

The statistical and the cost function analysis showed that
AMFO and AMGWO obtained better performance than their
original meta-heuristics in the single pendulum and satel-
lite attitude control problems, respectively. In addition, the
proposed methods can reduce the variation of control signal
implying in more energy efficiency and durability of the
motor drive.

Future works encourage us to test optimizers developed for
real-time controller environments and to verify the ability to
handle noisy measures such as proposed in [68].
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