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ABSTRACT A two-phase Monte Carlo Simulation/Non-intrusive Polynomial Chaos (MCS/NIPC) method
for quantification of margins and mixed uncertainties (aleatory and epistemic uncertainties) is proposed
in this paper for the flutter speed boundary analysis. Compared with the traditional MCS/MCS method
which needs lots of numerical simulations, the MCS/NIPC method can reduce the computational cost
without losing accuracy due to the use of point collocation non-intrusive polynomial chaos in the inner loop.
Based on the results of uncertainty quantification, a novel practical quantification of margins and mixed
uncertainties (QMMU) framework is proposed considering both aleatory and epistemic uncertainties such
as the parametric uncertainties in complicated models. A two-dimensional airfoil and a three-dimensional
benchmark wing, the AGARD 445.6 wing, are both employed to illustrate the practical application of the
proposed methods for flutter speed computation in the presence of mixed uncertainties arising from the
material properties and flight conditions. Within the analysis, aleatory and mixed uncertainty quantification
are conducted to prove the effectiveness and efficiency of the MCS/NIPC method. Then the QMMUmetrics
are accomplished for the flutter speed boundary analysis of the two airfoil models. The results demonstrate
the potential of the proposed QMMU framework to analyze the stability of engineering systems.

INDEX TERMS Flutter, non-intrusive polynomial chaos, probability bounds, quantification of margins and
mixed uncertainties, uncertainty quantification.

I. INTRODUCTION
Flutter is the dynamic instability where the structure extracts
kinetic energy from air and this energy cannot be dissipated
by structural damping. It is an important branch in the field
of aeroelasticity, which has received a significant amount
of research since 1960s [1], [2]. An accurate estimation of
flutter characteristics including flutter speed has been con-
sidered as a crucial part in the aeroelastic analysis of aircraft
design. Flutter analyses of three-dimensional panels [3], [4],
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composite laminated panels [5], swept high-aspect-ratio wing
models [6] and a typical five degrees of freedom wing [4]
have been conducted both analytically and experimentally.
In addition, the effects of the boundary conditions, material
properties, temperature fields, and yaw flow angles on the
flutter characteristics were investigated [7].

However, the aforementioned studies of flutter speed were
performed under the assumptions of deterministic situations
where all the structural and aerodynamic parameters were
known. As a matter of fact, in real aeroelastic systems there
are multiple sources of uncertainties including but not lim-
ited to the modeling-induced uncertainties [8], [9], numerical
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uncertainties, and parametric uncertainties [10]. The above
uncertainties have a significant impact on the flutter speed
boundary calculation. With the development tendency of pre-
cise and meticulous design for aeroelastic system, there is
a growing concern in understanding how the uncertainties
that inevitably exist in numerical models affect the predicted
flutter speed boundary.

Pettit [11], Dai and Yang [12], and Beran et al. [13]
reviewed the uncertainty quantification in aeroelasticity,
including both probabilistic and non-probabilistic methods.
Typically, uncertainties in the aeroelastic systems could be
divided into two commonly recognized categories: aleatory
uncertainty and epistemic uncertainty [14]. For aleatory
uncertainty which represented by a probability distribution,
the probabilistic approaches based on the Monte Carlo Simu-
lation (MCS) [15], the polynomial chaos expansion [16], the
stochastic perturbation [17], [18], and the stochastic operator
method [19] are powerful tools in aeroelastic analysis of
the model with uncertainties. Jia et al. [20] developed an
uncertainty propagation analysis method which was based
on an extended sparse grid technique and maximum entropy
principle to fit accuracy of the probability density func-
tion of the system response. The Non-intrusive Polynomial
Chaos (NIPC) derived from the polynomial chaos expansion
which is proposed by Ghanem and Spanos [21], has been
widely used in the uncertainty propagation in the aerospace
area [8]–[10]. For epistemic uncertaintywhich stems from the
insufficient information about the input parameters, the non-
probabilistic methods including the interval theory [22], the
fuzzy theory [23], the evidence theory [24], and the structured
singular value (µ) method [12], [23], have been prevalently
employed to quantify the propagation of uncertainties in the
aeroelastic analysis.

Till now, most of the work regarding uncertainties in
the aeroelastic analysis concentrates on flutter characteris-
tics in the presence of a single uncertainty, either aleatory
uncertainty or epistemic uncertainty. It is desirable to con-
sider the contributions of both aleatory and epistemic uncer-
tainties simultaneously and to quantify their influences on
the flutter speed. To represent the impacts of two types of
uncertainty, the boundary of cumulative distribution function
(CDF) of the system response quantities called Probability
box (P-box) [25] was utilized. To efficiently compute the
probability bounds of system response function, new uncer-
tainty propagation methods for problems with parameterized
P-box were proposed [26], [27]. Meanwhile, the nested sam-
pling [28] was used for the analysis of the mixed uncertainty
quantification in the P-box. Each sample taken from epis-
temic distributions in the outer loop is only a possible value of
the input with epistemic uncertainty, and it is supposed to be a
fixed value in the inner loop. The simulation in the inner loop
about a CDF of the system response quantities is considered
as a conditional probability. When all of the epistemic sam-
ples are used, a series of CDFs have been completed.

In the past, the uncertainty quantification with the
nested sampling were analyzed with the MCS/MCS in the

P-box [25], [29]. However, in the presence of multiple uncer-
tain parameters, especially when both epistemic and aleatory
uncertainties need to be considered simultaneously, the com-
putational cost to produce an accurate result is usually high.
Hence, one of the motivations of this paper is to develop
an alternative method, which should be effective and com-
putationally efficient in quantifying both aleatory and epis-
temic uncertainties. Therefore, the NIPCmethod is employed
for the inner loop and a two-phase MCS/NIPC method is
introduced in the P-box for the flutter analysis with multiple
uncertain variables in this paper.

Based on the characterization of uncertainty in system
performance boundaries, the quantification of margins and
uncertainties (QMU) have been used as one of the tools
to facilitate analysis and communication of confidence for
certification of complex systems [30]. An accurate QMU is
crucial for the analysis of aeroelastic system which is high-
demanding in performance requirement, and the uncertainty
propagation process plays an important role in the proce-
dures of the QMU. The concept of the QMU methodol-
ogy was first proposed in 2003 for the safety assessment
and decision-making process of nuclear weapons stockpile
under the limited number of test data [31]. The main com-
ponents such as performance gates, margins, and uncertain-
ties [32], conceptual and computational basis [33] of the
QMU methodology had been illustrated. Recently, there has
been many discussions of the QMU application in many
engineering problems such as radiative shock system [34],
radioactive waste disposal [35], satellite power system eval-
uation [36], and missile reliability [37]. Thomas et al. [38]
presented a practical QMU for complex spacecraft systems
in which uncertainty exists in both the operating region and
the performance requirement. Shah et al. [30] implemented
Dempster–Shafer Theory of Evidence in the presence of
mixed uncertainties in the reliability and performance assess-
ment of complex engineering systems through the use of the
QMUmethodology. Xie et al. [39] proposed to use the QMU
for simulation-based structural analysis of a pressure vessel
with corrosion damage. But there is still little available work
about using the QMU methodology in the stability analy-
sis of aeroelastic system considering both the aleatory and
epistemic uncertainties. Hence, another motivation for this
paper is to construct a novel implementation framework of
quantification of margins and mixed uncertainties (QMMU)
for flutter speed analysis based on the results obtained by the
MCS/NIPCmethod. After the introduction of theMCS/NIPC
method and the QMMU, two simulation models, a two-
dimensional airfoil and a three-dimensional AGARD 445.6
wing model, are employed to demonstrate the effectiveness
and efficiency of the proposed frameworks.

The remainder of the paper is structured as follows.
Section II presents the concepts and theories includ-
ing basics of flutter speed analysis and the two-phase
MCS/NIPCmethod utilized for mixed uncertainty quantifica-
tion. Section III introduces the QMMU framework. Detailed
applications of the proposed approach to the 2D airfoil
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model and 3D AGARD 445.6 wing model are provided in
Section IV. Finally, Section V concludes the paper by sum-
marizing the current work.

II. UNCERTAINTIES QUANTIFICATION IN FLUTTER SPEED
BOUNDARY ANALYSIS
A. BASICS OF FLUTTER ANALYSIS
Typical flutter equation of the undamped system is given as:

[M ]{q̈} + [K ]{q} =
1
2
ρV 2[A]{q} (1)

where [M ] and [K ] represent the matrices of generalized
mass and stiffness, respectively. [A] is the aerodynamic influ-
ence coefficient matrix. V , q, and ρ are the flight speed,
the generalized coordinates, and the atmospheric density,
respectively. Generally, the unsteady aerodynamic matrix is a
complex function in terms of Mach number and the reduced
frequency k . The reduced frequency, k, is defined as:

k =
ωc
V

(2)

where ω is the cycle frequency (radian/s) and c is the refer-
ence chord length.

There are several methods used to solve the flutter equa-
tion, such as the V-g method, the p-k method, the k method,
and the gmethod [40]–[42]. The first twomethods mentioned
above are adopted in this paper. In addition to analytical
methods, the finite element software also widely used in the
aeroelastic field. ZAERO [43], and MSC.NASTRAN [44]
are recognized as the two most commonly used software for
the flutter analysis, and the latter is chosen to conduct flutter
analysis in this paper.

FIGURE 1. A typical P-box.

B. PROBABILITY BOX UNCERTAINTY QUANTIFICATION
P-box is an effective method for the mixed uncertainties
propagation. A typical P-box is shown in Fig. 1,F(x) is a CDF
from the simulation. Supposing F and F̄ are non-decreasing
functions in [0, 1], with F(x) ≤ F̄(x) for all X ∈ R. Let

[F , F̄] denotes the set of all non-decreasing functions F(x)
in the interval [0, 1] written as F(x) ≤ F(x) ≤ F̄(x). As can
be seen from Fig.1, for a certain probability F(xj)(horizontal
line), the right boundary FX (x) corresponds the upper value x̄j
of system response, and the left bound F̄X (x) corresponds the
lower value xj. For a certain value xi (vertical line),F(xi) is the
lower probability while F̄(xi) is the upper probability. In the
expression of a P-box, the likelihood of occurrence for system
response quantity is not displayed as a precise probability,
but an interval-valued probability. In other words, for a given
value of the system response quantity, the corresponding
probability can be expressed by an interval-valued probabil-
ity. Similarly, for a given probability value, the corresponding
predicted value of system response quantity is an interval
value. For the case of mixed uncertainty quantification, the
95% confidence interval takes the maximum value of the
upper 97.5% probability level and the minimum value of
lower 2.5% probability level as the interval. Themeasurement
is also illustrated in Fig. 1.

A two-phase MCS/MCS method is adopted in this study
to get the P-box result [29]. The method generates exact
values of uncertain variables randomly in the corresponding
simulation to reach a result with proper accuracy by numerous
iterations. The relationship between the number of samples
(Ns ) and the error of MCS (MCSe) was given as [45]:

MCSe ∝
1
√
Ns

(3)

The accuracy of the MCS increases as the number of sam-
ples increases. The number of samples is determined by the
complexity of the relationship between input variables and
output variables. Before using the MCS, different numbers of
samples should be tested to determine the appropriate number
of samples.

C. TWO-PHASE MCS/NIPC METHOD FOR MIXED
UNCERTAINTY QUANTIFICATION
1) POINT COLLOCATION NON-INTRUSIVE POLYNOMIAL
CHAOS
Polynomial chaos expansion is a powerful technique to pro-
vide a functional approximation of a computational model
through its spectral representation on a suitably built basis
of polynomial function [46]–[49]. Consider a random vector
X ∈ Rn with independent components, the polynomial chaos
expansion ofM (X) is defined as:

M (X) =
∞∑
i=0

αiψi (X) (4)

X = {x1, x2, . . . , xi, . . . , xn} (5)

where ψi (X) is multivariate orthonormal polynomial and αi
is the corresponding coefficient. For the ith-input random
variable xi obeying Gaussian distribution:

ξi =
(xi − E (xi))
√
var (xi)

(6)
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where ξi is a function of the variable xi. E (xi) and var (xi)
are the mean and variance of the variable xi, respectively.
ξ = {ξ1, ξ2, . . . , ξi, . . . , ξn} is the N-dimensional standard
random variable vector. Then the computational model is

transferred into Y =
∞∑
i=0
αiψi (ξ).

Theoretically, the number of terms of polynomial chaos
expansion should be infinite [30], [50]. It is straightforward
to define a ‘‘standard truncation scheme’’ given as:

Nt =
(n+ p)!
n!p!

(7)

where p represents the order of the polynomial chaos and
n represents the number of random dimensions. The proper
order can be determined by comparison between the result
of the NIPC method and the MCS method. Generally, the
proper order is usually 2 or 3 for simple computational mod-
els and 4 to 6 for complicated models. Polynomial chaos
expansions of Y is expressed as:

Y =
Nt∑
i=0

αiψi (ξ) (8)

Traditionally, the polynomial basis ψi (ξ) in (4) is built by
using a set of univariate orthonormal polynomials φ(i)k (ξi)

which satisfy:〈
φ
(i)
j (ξi) , φ

(i)
k (ξi)

〉
def

∫
Dξi

φ
(i)
j (ξi) φ

(i)
k (ξi)fξi (ξi) dξi = δjk

(9)

where i identifies the input variable with respect to which they
are orthogonal, j and k represent the corresponding polyno-
mial degree, fξi (ξi) is the i

th input marginal distribution and
δjk is the Kronecker symbol. Note that the definition of the
inner product can be interpreted as the expectation value of
the product of the multiplicands.

Then the multivariate polynomial ψi (ξ) is assembled as
the tensor product of its univariate counterparts:

ψi (ξ) def
M∏
i=1

φiαi (ξi) (10)

Due to the orthogonality relations in (9), it follows that the
multivariate polynomials constructed are orthonormal:〈

ψα (ξ) , ψβ (ξ)
〉
= δαβ (11)

where δαβ is an extension of Kronecker symbol.
The classical families of univariate orthonormal polynomi-

als and their corresponding distributions are given in Table 1.
Detailed description of each classical families of polynomials
are presented in [51].

There are several ways to calculate the coefficients αi of the
polynomial chaos expansion for a given basis in (4). In gen-
eral, an intrusive approach is required to modify the deter-
ministic model and it is time-consuming and difficult when
handling complex system [52]. To avoid the inconveniences

TABLE 1. List of classical univariate polynomial families common in
polynomial chaos expansion applications.

in using the intrusive approach, non-intrusive approaches
have been developed for the uncertainty propagation. There
are two principal strategies that are used to calculate the
polynomial chaos coefficients non-intrusively: the projection
method [53] and the point-collocation NIPC [54]. The point
collocationNIPC is briefly explained and implemented in this
paper.

The point-collocation method first replaces the uncertain
variables with their polynomial expansions given by (4).
Then, Nt vectors are selected randomly for a given poly-
nomial chaos expansion with Nt modes. The deterministic
value is then calculated at the selected points as the left hand
side of (4). Following this, a linear system of Nt equations
is formulated and then solved for the spectral modes of the
random variables. This system is shown as:
ψ0 (ξ0) ψ1 (ξ0) . . . ψNt (ξ0)

ψ0 (ξ1) ψ1 (ξ1) · · · ψNt (ξ1)
...

...
. . .

...

ψ0
(
ξNt
)

ψ1
(
ξNt
)

. . . ψNt
(
ξNt
)


×


α0
α1
...

αNt

 =

Y (ξ0)
Y (ξ1)
...

Y
(
ξNt
)
 (12)

When the number of linear independent available samples
is more than Nt , the system is overdetermined and can be
solved using the least squares approach. In the paper, the
number of collocation points are determined twice as Nt for
point-collocation NIPC [55].

2) THE TWO-PHASE MCS/NIPC METHOD
This paper provides an effective and efficient method to
address the propagation of multiple and mixed uncertain vari-
ables in flutter problem by introducing the point-collocation
NIPC to take place of the inner loop Monte Carlo simula-
tion of the MCS/MCS method. Compared to the MCS/MCS
method, theMCS/NIPC could obtain the desired results with-
out loss of computational accuracy while at the same time
saving the computation time. The accuracy of theMCS/NIPC
framework is proportional to the accuracy of the MCS and
the NIPC. The number of the MCS samples and collocation
points should be large enough to improving the accuracy. The
procedure is explained as shown in Fig. 2.

The following gives a brief outline of the procedure:
1. Set the number of samples for epistemic uncertainties

as M ;
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FIGURE 2. Flowchart for the two-phase MCS/NIPC method.

2. Set the number of samples for aleatory uncertainties
as N ;

3. DetermineM different values from epistemic uncertain-
ties;

4. Choose the corresponding orthonormal polynomials,
determine the proper order, select collocation points ran-
domly, and construct the NIPC model;

5. Choose N random samples from aleatory uncertainties;
6. Evaluate the NIPC model to obtain the system response

quantity by chosen samples;
7. Construct a CDF for the system response quantity using

N samples;
8. Collect the M CDFs, and the result is an ensemble of

CDFs, plotted as a P-box.

After the whole process, a series of cumulative distribution
functions are plotted to give a P-box representation of the

output variable. For the observed values, the largest value
of the upper boundary and the smallest value of the lower
boundary of the confidence interval are stored. The interval
formed by the upper and lower boundaries is the confidence
interval for the system response quantity involving aleatory
and epistemic uncertainties. The confidence intervals with
respect to different probability levels and the other important
characteristics of the output variable can be obtained.

III. QUANTIFICATION OF MARGINS AND MIXED
UNCERTAINTIES FRAMEWORK
Margins on system performance are important issue when
uncertain variables exist. In a basic QMU framework, the
QMU confidence ratio (CR) is defined as [56]:

CR =
M
U

(13)
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FIGURE 3. Different QMU definitions.

FIGURE 4. The QMU for the aleatory uncertainty quantification.

where M and U represent the measure of the margin and
uncertainty, respectively. If the confidence ratio CR is larger
than 1, it means that the QMU metrics will be within the
performance gate and indicates the performance boundary
is safe when uncertainties are considered. Detailed applica-
tions of the QMU to various engineering fields differs from
the definitions of the M and U , as showed in Fig. 3 [57].
In the representation of the QMU shown in (a) and (c), the
operating region is allowed to have uncertainty (in the form
of an interval). Margin is defined as the distance from the
most conservative possible value in the operating region to
‘‘the performance requirement’’. In the representation of the
QMU shown in (b), uncertainties exist on the operating region
and the performance region. These are represented as two
probabilistic distributions and margin is then defined as the
distance between the means.

In this paper, a practical QMMU framework is formulated
and illustrated for the flutter speed boundary analysis with
the aleatory and mixed uncertainties respectively, as shown in
Fig. 4 and Fig. 5. Generally, the actual performance boundary
is calculated by using a safety margin for the deterministic
flutter speed. Within the definition of the QMMU in this

paper, the uncertainty of the theoretical performance is con-
sidered, described by a Gaussian distribution.

For the aleatory uncertainty case, the results can be
described by two curves as shown in Fig. 4, where P repre-
sents probability, VL and Vf denote the actual and theoretical
boundary of performance, respectively. β represents confi-
dence interval, and β is 0.95 in this paper. U includes two
parts, U1 and U2, as shown in (14)-(16), while M is defined
in (17).

U1 =
(
Vf
)
P=0.5 −

(
Vf
)
P= 1−β

2
(14)

U2 = VLP= 1+β
2
− VLP=0.5 (15)

U =
√
(U1)

2
+ (U2)

2 (16)

M =
∣∣∣(Vf )P= 1−β

2
− (VL)P= 1+β

2

∣∣∣ (17)

For the mixed uncertainty case, this paper constructs a
novel framework called QMMU to analyze the system sta-
bility, as shown in Fig. 5. Vleft and Vright represent the left
boundary and right boundary of the P-box result of the mixed
uncertainty quantification. U includes two parts, U1 and U2,
as written in (18)-(20), andM is defined as (21). P represents
probability, β represents the confidence interval, and β is also
set to 0.95 in this paper.

U1 =
(
Vright

)
P=0.5 −

(
Vleft

)
P= 1−β

2
(18)

U2 = VLP= 1+β
2
− VLP=0.5 (19)

U =
√
(U1)

2
+ (U2)

2 (20)

M =
∣∣∣(Vleft)P= 1−β

2
− (VL)P= 1+β

2

∣∣∣ (21)

IV. CASE STUDIES
A. QMMU FOR THE TWO-DIMENSIONAL AIRFOIL
1) MODEL DESCRIPTION
A typical two-dimensional (2D) airfoil [10], as shown in
Fig. 6, which has two degrees of freedom (pitching (α) and
plunging (h)), is selected to demonstrate the superiority of the
present methods for the flutter analysis with mixed uncertain-
ties. G and E are the center of gravity and stiffness center,
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FIGURE 5. The QMMU framework for the mixed uncertainty
quantification.

FIGURE 6. Geometry of the two-dimensional airfoil.

b denotes the airfoil semi-chord, a is non-dimensional
distance from mid-chord to elastic axis, xα is the
non-dimensional distance from elastic axis toG, V represents
the flight speed, kh and kα are heave spring-stiffness and
torsion spring-stiffness, respectively.

Experimental results show that the 2D airfoil has a lowflut-
ter speed [58]. Table 2 gives the parameter of the structure of
the 2D airfoil and the flight condition for the flutter analysis,
where ρ is the density of air,m denotes the mass of 2D airfoil,
Iα is the rotational inertia [59]. Flutter analysis is conducted
by using the p-k method and the flutter speed Vf calculated
from the deterministic system is 39.48 m/s.

2) QUANTIFICATION FOR MULTIPLE ALEATORY UNCERTAIN
VARIABLES
In this section, the aleatory uncertain variables the stiffness
parameters kα and kh are considered while the epistemic
uncertainty is neglected. Here, the two parameters are mod-
eled as independent Gaussian random variables, and the
variations of the random variables are determined by a coef-
ficient of variation (COV) of 5%. They are shown in Table 3.

TABLE 2. Parameters for the 2D Airfoil.

TABLE 3. Aleatory Uncertain variables of the 2d Airfoil.

FIGURE 7. CDF plots for the aleatory uncertainty quantification of the 2D
airfoil in the flutter analysis by the MCS and the NIPC.

The multidimensional Hermite polynomials are used in the
NIPC calculations.

The effects of the aleatory uncertainty on the flutter speed
are quantified by using the MCS (10000 simulations) and
second-order Point-Collocation NIPC (only 12 points needed
according to (7)). Obviously, the CDF and PDF of the NIPC
model with the polynomial degree of 2 agree well with the
ones obtained by MCS as shown in Fig. 7 and Fig. 8.

Table 4 shows the mean, standard deviation, 95%-
confidence interval and the computational time associated
with the two methods. The first three results can also be
observed visually from the CDF plots and PDF plots. More-
over, as can be seen from the table, the computational time
of the MCS is approximately 10 times that of the Point
Collocation NIPC.

3) QUANTIFICATION FOR MIXED UNCERTAIN VARIABLES
In engineering applications, aleatory uncertainty and epis-
temic uncertainty exist in one system. Consequently, a more
comprehensive flutter speed boundary prediction is desired
when taking both uncertainties into account simultaneously.

Both aleatory and epistemic uncertainties are considered
in this section. The parameters kα and kh are still treated
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FIGURE 8. PDF plots for the aleatory uncertainty quantification of the 2D
airfoil in the flutter analysis by the MCS and the NIPC.

TABLE 4. Comparison between the MCS and the point-collocation NIPC.

TABLE 5. Uncertain variables of the 2D Airfoil.

as aleatory uncertain variables while the mass m and the
rotary inertia Iα are treated as epistemic uncertain variables,
because the accurate PDFs of these two parameters cannot
be obtained, nor the accurate mean values and variances.
The parameter m is a value between [11.15, 13.63], and the
parameter Iα is a value between [0.059, 0.072]. All of the
uncertain variables are summarized in Table 5.

There are 100× 10000 iterations that have been carried out
in this section. The final results are shown in Fig. 9, and the
flutter speed is in the form of a P-box, which could represent

FIGURE 9. P-box plot for the mixed uncertainty quantification of the 2D
airfoil in the flutter analysis by the two-phase MCS/NIPC (second-order)
method.

TABLE 6. The probability levels and corresponding probability intervals.

the output caused by both the epistemic and aleatory uncer-
tainties. It is notable that only 57.58 seconds are taken for
the two-phaseMCS/NIPC (second-order) method to generate
the final results. The computational efficiency is significantly
higher than that of using the two-phase MCS/MCS method
(5078 seconds). When the computational model is more com-
plicated, the MCS/MCSmethod needs numerous simulations
which is too time-consuming to use, but the MCS/NIPC is
an alternative method, which is effective and computationally
efficient.

Each iteration in the outer loop generates a CDF based on
the aleatory uncertainty analysis in the inner loop. Conse-
quently, the width between the leftmost CDF and rightmost
CDF reflects the contribution of epistemic uncertainty. The
95% confidence interval, which is more concerned in engi-
neering process, is obtained by taking the maximum value
of the 97.5% probability level and the minimum value of the
2.5% probability level. For this problem, the 95% confidence
interval is given as [36.94, 42.06]. The probability levels
and the corresponding probability intervals for the P-box are
illustrated in Table 6. Moreover, for the exact flutter speed
39.48 m/s which is generated by deterministic computation,
the corresponding probability level is [0.37, 0.58], obtained
by taking the maximum value of the far-left CDF and the
minimum value of the far-right CDF.

4) QMMU FOR FLUTTER EVALUATION OF 2D AIRFOIL
First, the QMU application for aleatory uncertainty quantifi-
cation of 2D airfoil is performed. From previous sections,
the distribution of flutter speed under uncertain conditions,
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FIGURE 10. QMU application for the aleatory uncertainty quantification
of the 2D airfoil.

TABLE 7. QMU metrics for the aleatory uncertainty quantification of the
2D Airfoil.

obtained by means of modeling, simulation and uncer-
tainty quantification, is the theoretical flutter speed boundary,
as shown in Fig. 7. Considering there are uncertainties such as
calculation error, the safety margin is 15% and the variance
is determined by a coefficient of variation of 2.5% for the
deterministic (or actual) flutter speed. The actual flutter speed
is assumed to satisfy the normal distribution as shown in
Fig. 10. The QMU metrics can be obtained by applying the
framework and equations in Section III. From the results,
as shown in the Table 7, the confidence ratio for aleatory
uncertainty caseCR1 is smaller than 1 in terms of these uncer-
tainties, which means that the ‘‘Margin’’ is not sufficient
to cover the ‘‘Uncertainties’’. As a result, the flutter speed
boundary with 15% safety margin is not safe enough.

Then the QMMU analysis for mixed uncertainty quan-
tification of 2D airfoil is conducted. Similarly, the theoret-
ical flutter speed boundaries are the same as the results in
Fig. 9.The actual flutter speed, which is assumed to sat-
isfy normal distribution with the safety margin of 15% and
the coefficient of variation of 2.5%, is shown in Fig. 11.
By applying the framework and equations in Section III, the
confidence ratio for mixed uncertainty case CR2 is 0.43,
which means ‘‘Margin’’ is smaller than the ‘‘Uncertainties’’.
All the results of the QMMU metrics are summarized in
Table 8. Obviously, CR2 is smaller than CR1 due to the
consideration of epistemic uncertainty. Both for the aleatory
uncertainty case and mixed uncertainty case, the values of
CR are smaller than 1, indicating that a redesign of flut-
ter speed limits maybe required to make the system more
reliable.

FIGURE 11. QMMU application for the mixed uncertainty quantification
of the 2D airfoil.

TABLE 8. QMMU metrics for the mixed uncertainty quantification of the
2D Airfoil.

B. QMMU FOR THE AGARD 445.6 WING
1) MODEL DESCRIPTION
To further illustrate the application of theMCS/NIPCmethod
and the QMMU framework to the flutter analysis with mixed
uncertainties, the AGARD 445.6 wing model, a swept-back
wing at transonic speed, is selected in this section. The
quarter-chord sweep angle is 45 degrees, the aspect ratio is
1.65, the taper ratio is 0.66, the wing root chord is 558.8
millimeters, and the wing semi-span is 762 millimeters with
a symmetric NACA 65A004 airfoil section. The geometry of
the wing is shown in Fig. 12 [60].

The deterministic flutter analysis of the AGARD 445.6
wing is computed by using the flutter solution sequence,
SOL 145 in MSC Nastran at Mach number 0.5. Table 9 gives
the material parameters of the model. E11, E22 represent elas-
ticity modulus in material principal direction, x and y-axial
direction, G12 denotes the shear modulus, υ is the Poisson’s
ratio, and ρ stands for the density of the model, respectively.
r , which represents the ratio of the air density in the current
flight altitude to the one in a certain altitude, is 0.3486. The
deterministic flutter speed Vf is 178.65 m/s solved by p-k
method.

2) QUANTIFICATION FOR MULTIPLE ALEATORY UNCERTAIN
VARIABLES
The above material parameters could not be accurate in the
complex flight environment due to the variations of tempera-
ture, pressure, flight altitude and so on. The point collocation
NIPC method is adopted to address the aleatory uncertainty
propagation in the AGARD 445.6 wing model. Here, con-
ventionally the material properties E11, E22, G12 are treated
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FIGURE 12. Geometry of the AGARD 445.6 wing.

TABLE 9. Material parameters of the AGARD 445.6 Wing.

TABLE 10. Aleatory uncertain variables of the AGARD445.6 Wing Model.

TABLE 11. Order of the polynomial Chaos expansion and corresponding
collocation points number.

as aleatory uncertain variables and Gaussian distribution is
chosen to model the uncertain parameters. Therefore, mul-
tidimensional Hermite polynomials are used according to
Table 1 in the NIPC calculation. The three parameters are
modeled as independent Gaussian random variables, and the
variations of those variables are determined by a coefficient
of variation (COV) of 5%, as shown in Table 10.

To develop a functional approximation of the computa-
tional model, the order of the polynomial chaos expansions
is decided with respect to the number of collocation points as
given in Table 11. The sampling method used here is Latin
Hypercube sampling (LHS).

The results obtained by using the NIPC method with dif-
ferent orders in the polynomials are compared with the result
obtained by the MCS method (1000 simulations). Obviously,
as is shown Fig. 13 in the curves of the first-order NIPC

TABLE 12. Comparison between the MCS and the Point-Collocation NIPC.

FIGURE 13. CDF plots for aleatory uncertainty quantification of the
AGARD 445.6 wing in the flutter analysis by NIPC and MCS.

and the second-order NIPC do not agree well with the curve
of the MCS result. However, there is not much difference
between the result of the third-order NIPC and the MCS,
which leads to a conclusion that the NIPCwith the third-order
polynomials can describe the propagation of the aleatory
uncertainty for this model as an alternative approach.
As higher-order polynomials increase the computational
cost, third-order NIPC is chosen in this paper for model
simulations.

Table 12 summarizes the specific characteristics of flutter
speed distributions of four curves in Fig. 13, revealing how
the aleatory uncertainty in the material properties influences
the flutter speed boundary. As seen from the result obtained
using the third-order NIPC method, 95% confidence interval
of the flutter speed is [172.93 185.60] when taking the three
uncertain material parameters into account. It is noted that
the coefficient of variation of the outputs generated by any of
four methods is less than that of the inputs.

3) QUANTIFICATION FOR MIXED UNCERTAIN VARIABLES
Both the material parameters and flight condition parameters
would change in the practical applications. Here, the param-
eter r , which is used to represent the ratio of the air density
in the current flight altitude to the one in a certain altitude,
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TABLE 13. Uncertain variables of the AGARD445.6 Wing model.

FIGURE 14. P-box plot for the mixed uncertainty quantification of the
AGARD 445.6 wing in the flutter analysis by the two-phase MCS/NIPC
(third-order) method.

can be considered as an epistemic uncertain variable due to
the variation in the flight altitude. Generally, the uncertain
variable that cannot be described by an exact distribution due
to the lack of knowledge can be regarded as interval value
as well. Here, the material density ρ is treated as epistemic
uncertain input variable in a form of interval. Therefore, there
are 5 uncertain input variables and they are summarized in the
Table 13.

In this part, 100× 1000 iterations of numerical simulation
have been conducted by using the two-phase MCS/NIPC
(third-order) method. The P-box presentation of flutter speed
is given in Fig. 14, in which the impact of the epistemic
uncertain variables is illustrated by the CDFs, and the impact
of the aleatory uncertain variables is illustrated by the width
of each curve between the far-left side and the far-right
side. It is clearly seen that the flutter speed has a non-
ignorable fluctuation in the case of the mixed uncertainty
quantification which contains 3 aleatory uncertain variables

TABLE 14. Probability level and corresponding probability intervals.

FIGURE 15. QMU application for the aleatory uncertainty quantification
of the AGARD 445.6 wing.

and 2 epistemic uncertain variables. For the whole P-box
presentation, the 95% confidence interval is [165.51, 198.09]
by taking the maximum value of the 97.5% probability level
and the minimum value of the 2.5% probability level. The
interval reveals the joint contribution shared by both aleatory
and epistemic uncertainty. Then, the probability levels and
corresponding probability intervals for the P-box are illus-
trated in Table 14, illustrating how the epistemic uncertainty
influences the flutter speed. For the left-most CDF of the
P-box, the 95% confidence interval is [165.51, 176.84] and
for the right-most CDF is [181.91, 198.09]. The two intervals
depict how aleatory uncertainty in the material parameters
influences the flutter speed when the material density and
flight conditions are given. All of the results demonstrate that
both the aleatory uncertainty and epistemic uncertainty have
a significant effect on the flutter speed boundary.

4) QMMU FOR FLUTTER EVALUATION OF AGARD 445.6
WING MODEL
Similar to the previous two-dimensional airfoil problem, the
next step is to perform the QMU framework for aleatory
uncertainty quantification of AGARD 445.6 wing. As well
as the safety margin of 15% and the variance determined
by a coefficient of variation of 2.5%, the actual flutter
speed is assumed to satisfy the normal distribution with the
CDF of actual boundary shown as dashed line in Fig. 15.
The theoretical boundary is the same as the third-order
NIPC one in Fig. 13. Using the framework and equations in
Section III, the confidence ratio for aleatory uncertainty case
CR1 is 1.35. It means that the ‘‘Margin’’ is greater than the
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FIGURE 16. QMMU application for the mixed uncertainty quantification
of the AGARD 445.6 wing.

TABLE 15. QMU metrics for the aleatory uncertainty quantification of the
AGARD 445.6 Wing.

TABLE 16. QMMU metrics for the mixed uncertainty quantification of the
AGARD 445.6 Wing.

‘‘Uncertainties’’ for the case where only aleatory uncertainty
exists and the flutter speed boundary is safe. All the results of
the QMU metrics are summarized in Table 15.

For the QMMU application for the mixed uncertainty
quantification of AGARD 445.6 wing as shown in Fig. 16,
the theoretical flutter speed boundaries are consistent with the
results in Fig. 13. By applying the framework in Section III,
the confidence ratio for mixed uncertainty case CR2 is 0.22.
This means the ‘‘Margin’’ is smaller than the ‘‘Uncertain-
ties’’, indicating that a redesign of flutter speed limits maybe
required. All results of the QMMUmetrics are summarized in
Table 16. Obviously, CR2 is much smaller than CR1 because
of the additional consideration of the epistemic uncertainty.
As CR1 is larger than 1 and CR2 is smaller than 1, it implies
that considering the epistemic uncertainty of engineering
systems is necessary.

V. CONCLUSION
The present paper proposes an efficient mixed uncertainty
quantification method named the two-phase MCS/NIPC
method and introduces a practical QMMU implementation
framework in the presence of mixed uncertainties for flutter
speed boundary computation. To reduce the computational
cost without a loss of accuracy in the predictive results,
the point collocation NIPC is employed for the uncertainty

quantification. The methods are demonstrated by computing
the flutter speed boundary for a typical two-dimensional air-
foil and a three-dimensional AGARD 445.6 transonic wing
model.

The proposed two-phase MCS/NIPC method is practical
and efficient for the flutter analysis when the systems suffer
from the multiple aleatory and mixed uncertainties due to
the variation of material parameters and flight conditions.
Aleatory uncertainty quantification and mixed uncertainty
quantification are considered, respectively. From the results
of aleatory uncertainty quantification, the computational effi-
ciency of the NIPC method could be demonstrated. The
results of mixed uncertainty quantifications described by a
P-box demonstrate the applicability of two-phaseMCS/NIPC
method in the flutter speed boundary prediction for complex
models.

The comparisons of the QMU and QMMU applications to
the twomodels are presented to illustrate the significant influ-
ence of epistemic uncertainty, indicating that mixed uncer-
tainty quantification for aeroelastic systems are necessary.
The QMMUprocedure could give some help to determine the
safetymargin as it can give an analytical conclusion of system
performance based on QMMUmetrics, showing the potential
for the evaluation of stability of complex engineering sys-
tems. There are many other methods for P-box estimation
which could be used in aeroelastic systems, and they will be
considered in follow-up research.
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