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ABSTRACT State of health (SOH) estimation is always an important factor in ensuring the reliability and
safety of lithium-ion batteries. In view of the shortcomings of the existing SOH estimation methods, such
as non-universal, the estimation of different batteries is limited, and the accuracy is insufficient. A fusion
estimation method that depends on an empirical degradation model and a data-driven method is proposed.
First, we construct an empirical degradation model of lithium-ion battery SOHwith charge-discharge cycles.
Four working condition characteristics are extracted from the actual charging and discharging process of
batteries. Then, with these features as inputs, the prediction error of the empirical degradation model is taken
as the output, and training the error compensation model becomes dependent on the data-driven method. The
actual working condition characteristics of the tested lithium ion battery are substituted into the training error
compensation model, and the model output is fed back to the prediction results of the empirical degradation
model. A high-precision estimation of lithium-ion battery SOH is thereby achieved. Finally, the proposed
method is verified based on the NASA lithium-ion battery data set. The results show that the fusion method is
applicable to different lithium-ion batteries of the same type, and the mean absolute percentage error of SOH
estimation is approximately 2%, indicating that the proposed method exhibits good estimation performance
and applicability.

INDEX TERMS Lithium-ion battery, state of health, empirical degradation model, error compensation
model, data-driven method.

I. INTRODUCTION
Lithium-ion batteries are widely used in electric vehicles,
communication equipment, aerospace and other fields due
to their high energy density, long cycle life and high safety
performance [1]–[3]. As lithium-ion batteries are the core
component of these systems, battery failure will affect the
normal operation of the whole system and even lead to serious
accidents and economic losses. The state of health (SOH)
estimation of lithium-ion batteries can effectively evaluate the
degree of performance degradation and provide an important
assurance for the stable operation of the power system.

Currently, the SOH estimatingmethods for lithium-ion bat-
teries are mainly divided into three categories: model-based,
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data-driven and fusion-based methods. The model-based
methods mainly include electrochemical models [4]–[7],
equivalent circuit models (such as the Theveninmodel [8], [9],
RC model [10]–[14], etc.) and empirical degradation mod-
els [15], [16]. Electrochemical and equivalent circuit mod-
els are based on the internal physicochemical properties
of lithium-ion batteries. The models are used to simu-
late the dynamic characteristics and degradation process
of lithium-ion batteries, and combined with model param-
eter identification algorithms (such as extended Kalman
filter [5], [12], adaptive sliding mode observer [11], etc.)
to achieve estimation. The electrochemical model provides
high estimation accuracy and clear physical meaning, but
because of the excessive parameters and the overly compli-
cated equations, it is difficult to calculate, so the practical
application is difficult. The equivalent circuit model exhibits
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good applicability to the various working states of power
batteries, and the state equation of the model can be derived.
The characteristics of simple structure and clear physical
meaning make equivalent circuit models the most widely
used in engineering. However, electrical components can
only simulate the terminal voltage output characteristics of
the battery, and are generally used for SOC estimation, and
cannot truly reflect the corresponding physical and chemical
processes inside the battery. The SOH estimation method
based on an empirical degradationmodel requires that amath-
ematical model is established from the perspective of data
characteristics (such as a polynomial model based on capacity
degradation data [17], an exponential model [17]–[19], etc.)
to describe the degradation process of lithium-ion batteries.
Empirical degradation models have specific mathematical
expressions that are intuitive and simple. However, an accu-
rate mathematical model is difficult to establish because
lithium-ion batteries are complex dynamic nonlinear system.
The impacts of the uncertain working conditions, such as
external operating environments and charging and discharg-
ing mechanism, etc., are not considered in these models,
and their dynamic accuracy is limited to a certain extent.
In summary, the complex degradation mechanism and prior
experience of lithium-ion batteries are the foundations of the
model-basedmethod.With the rapid development of machine
learning and intelligent algorithms, data-driven methods are
widely used in lithium-ion battery prognostic and health
management (PHM). Data-driven methods do not need to pay
attention to the failure mechanism of the lithium-ion battery,
which derives solely from the perspective of historical degra-
dation data andmonitoring data, using statistical andmachine
learning algorithms(such as neural networks [20], [21],
Gaussian process regression [22], [23], extreme learning
machine [24], etc.) to train a "black box" model, and then
estimate the battery SOH through the trained model. The
data-driven methods need to rely on a large amount of mod-
eling data samples, and the prognostic process is consistently
opaque [25]. In addition, the trained ‘‘black box’’ model is
only valid for the test battery and is not applicable to other
battery data. The robustness and universality are poor. Com-
pared with data-driven model-based methods, these methods
are generallymore stable. To complement the advantages and
disadvantages of different methods, the fusion method pro-
vides a new concept for achieving high-precision SOH esti-
mation and prognosis. Guha and Patra [26] proposed a fusion
estimation model that combines a model of capacity degra-
dation and internal resistance growth. The fusion model has
higher growth model estimation accuracy than a single model
or capacity degradation resistance. Yu [27] provided amethod
for estimating SOH regression model based on multi-scale
logistic regression and Gaussian processes. Empirical mode
decomposition is first used for feature extraction of the
battery raw capacity sequence. The logistic regression model
is used to fit the global degradation trend of the battery.
The local regeneration and uncertainty fluctuation in the
degradation process is estimated recursively by the Gaussian

process regression model. The proposed fusion scheme com-
prehensively considers the time-varying degradation behav-
ior of the lithium-ion battery. In Ref. [28], a battery SOH
estimation system based on state-space model was given,
which combines with logistic regression (LR) and particle
filter (PF) algorithm to achieve prediction. Xing et al. [29]
established a comprehensive model combined with the expe-
rience exponential model and polynomial regression model,
and applied PF algorithm to predict the remaining useful
life (RUL) of lithium-ion batteries. Liu et al. [30] proposed a
prognostic framework that combines a data-driven method
with a model-based PF method. Based on the prediction
results of the data-driven method, the PF algorithm is used
to update the model parameters online; thus, the long-term
prediction performance is improved. Li and Xu [31] proposed
a novel integrated approach based on a mixture of Gaussian
process (MGP) model and PF for lithium-ion battery SOH
estimation under uncertain conditions. The fusion approaches
compensate for the limitations of a single method to some
extent and have become the research trend of SOH estimation
for lithium-ion batteries.

Because of the differences in inherent degradation char-
acteristics and actual working environments, the degradation
process can be quite different even for the same type of
battery. The uncertainty of changes in the internal failure
mechanism and working conditions (including charge and
discharge current, voltage, ambient temperature, etc. [32])
of lithium-ion batteries during their actual operation have a
nonnegligible effect on the degradation process. This makes
accurate SOH estimation more difficult. Because of the
deficiencies of previous methods for estimating the SOH,
as different battery estimates are limited and lack preci-
sion, a method is proposed for a fusion degradation model
based on the empirical degradation model and a data-driven
method. First, an SOH empirical degradation model and
its charge-discharge cycle for lithium-ion batteries is con-
structed. The empirical degradation model is used to describe
the overall degradation trend of a certain type of battery,
and then the degradation difference is explained by the error
compensation model. Four working condition features are
extracted from the actual battery charging and discharging
processes. The Pearson’s Correlation Coefficient (PCC) is
used to verify the strong correlation between the selected fea-
tures and the battery health status, which indicates that these
features are included the influence of the internal and exter-
nal factors on battery degradation, which can be well used
to describe the difference of degradation for batteries. The
error-compensation model based on the data-driven method
(e.g., Neural Network) is trained by using the extracted
working condition features as the input and the empiri-
cal degradation model prediction error as the output. The
error estimated value from the error compensation model
is fed back to the prediction result of the empirical degra-
dation model, thereby achieving a high-precision estimation
of lithium-ion battery SOH. The proposed method compre-
hensively considers the impact of the degradation difference
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TABLE 1. Comparison of SOH methods.

and has good applicability for the same type of battery. The
advantages and disadvantages of the method proposed in
this paper and the model-based, data-driven and fusion-based
methods are shown in Table 1.

The rest of this paper is organized as follows. In Section 2,
the empirical degradation model of lithium-ion battery and
the error compensation model based on the data-driven
method are described in detail. Then, the overall experimental
framework based on the fusion estimation model is given.
Based on the National Aeronautics and Space Administra-
tion (NASA) lithium-ion battery data set, the experimental
results are presented in Section 3 along with a discussion.
Finally, Section 4 draws conclusions and states the directions
for further development.

II. EXPERIMENT
SOH is a measurement that reflects the battery performance
and health status that describes current battery performance
versus performance under ideal conditions and the perfor-
mance of new batteries [33]. It may be described by sev-
eral performance parameters such as capacity, cycle number,
internal resistance [23] and so on. In this study, SOH is
defined by using battery capacity as follows:

h (c) =
QC
Qnew

(1)

where h represents SOH, C is the charge and discharge cycle,
QC is the maximum usable capacity under cycle C and Qnew
is the initial capacity of the battery.

A battery system can be divided into unknown and descrip-
tive part, of which only the descriptive part can be described
by the different models, e.g., electrochemical models, equiv-
alent circuit models and empirical degradation models. The
establishment of the first two models depends on the com-
plex physical and chemical mechanisms of the lithium-ion
battery. While the empirical degradation model established
from the perspective of data characteristics do not need much
knowledge of lithium-ion battery. However, due to exces-
sive influencing factors, the empirical degradation model has
difficulty accurately describing the real degradation process

of batteries. In addition, during the process of empirical
degradation model establishment, the actual battery system
is partly simplified. These simplifications lead to model-
ing errors between the empirical degradation model and the
actual system, which belongs to the unknown part of the
battery system and is the result of the uncertainties of intrinsic
and external influencing factors. Therefore, the influences
of uncertainties can be eliminated by estimating the errors
between the empirical degradation model and the actual sys-
tem. As long as the errors are accurately acquired, error
compensation for the prediction results of empirical degra-
dation models can be performed to greatly improve the SOH
estimation accuracy. A neural network (NN) can be used
as a modeling error estimators due to its many character-
istics, which can supplement the uncertain information that
the empirical degradation model fails to describe. In this
paper, the uncertain information considered mainly refers to
working conditions during the battery charging-discharging
stage. Therefore, the principle of the proposed fusion esti-
mation method based on empirical degradation model and
data-driven method is shown in Fig. 1.

FIGURE 1. Principle block diagram of the fusion estimation method.

A. EMPIRICAL DEGRADATION MODEL
The actual capacity (AC) of the battery refers to the electrical
energy that can be stored when the battery is fully charged
under corresponding cycles. Because AC attenuation is the
main characteristic of lithium-ion battery degradation, the
SOH can be predicted by achieving the AC trend. Existing
battery SOH empirical degradation models are often built
from the perspective of curve fitting, such as exponential
models based on capacity degradation and polynomial mod-
els [17]. The establishment of the model lacks a certain
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theoretical derivation process. Since differential equations
have the ability to describe dynamic changes, this paper starts
from the perspective of degradation rate, describing the decay
process by establishing an empirical degradation model of
battery capacity with its charge and discharge cycle. The
degradation rate of AC as the function of AC and its cycle
can be described as:

dQ
dC
= f (Q,C) (2)

where Q is the AC of the battery, f (·) is a nonlinear function
with two independent variables. A functional expansion of
f (·) is performed by the Taylor series of multivariate func-
tions, and then the high-order terms are omitted. Therefore,
the degradation rate of AC is given by:

dQ
dC
= a1Q+ a2C (3)

where a1 is degradation factor and a2 is the fatigue damage
accumulation factor. Solving differential Eq. (3) gives the
following two solutions:

Q = −
a2
a1
C −

a2
a1
+

1

a21
ea1C + δ (4)

Q = −
a2
a1
C −

a2
a1
−

1

a21
ea1C + δ (5)

where δ is a constant.
Eq. (4) and (5) can be unified to the following form:

Q = b1C + b2eαC + b3 (6)

Eq. (6) is the empirical degradation model that describe
the relationship between Q and C , where α, b1, b2 and b3
are unknown parameters. By dividing both sides of Eq. (6)
simultaneously by the initial battery capacityQnew, according
to Eq. (1), the SOH can be given as:

h = k1C + k2eαC + k3 (7)

where α, k1, k2 and k3 are unknown parameters. For C =
0, i.e., the initial charge and discharge cycle, h = 100%.
Thus, the proposed empirical degradation model satisfies the
following constraint:

k3 = 1− k2 (8)

SOH can thus be formulated as:

h = k1C + k2eαC + 1− k2 (9)

Eq. (9) is the empirical degradation model that describe the
relationship between h andC . Unknown parameters α, k1 and
k2 contain a variety of factors that affect the battery degrada-
tion, which can be obtained by parameter identification algo-
rithm. Commonly used parameter identification algorithms
include maximum likelihood method, least squares method,
multivariable system method,etc. Based on the outstanding
performance of the least squares method in curve fitting, the
least squares algorithm is taken in this paper as the algorithm
basis for parameter identification of empirical degradation

model. However, the empirical degradation model is based
on the simplification of the actual battery system, and the
description of the real battery degradation process is not so
accurate. The empirical degradation model can only describe
the global degradation trend of batteries, which presents the
descriptive part of battery system, while the unknown part
is reflected in the error between the empirical degradation
model and the actual system. Thus, the error compensation
model is adopted to revise the results of empirical degradation
model.

B. ERROR COMPENSATION MODEL BASED ON
DATA-DRIVEN METHOD
1) WORKING CONDITION FEATURES EXTRACTION WITH
MONITORING PARAMETERS
The constant current constant voltage charging mode [34]
is the most commonly used charging mode for lithium-ion
batteries. This means that the batteries are charged by the
constant current mode so that their voltages gradually rise to
the cutoff voltage level, and then the constant current charging
mode is switched to the constant voltage charging mode.
Fig. 2 shows the complete charging and discharging pro-
cess of a lithium-ion battery, including the constant-current
charging stage, the constant-voltage charging stage and the
constant-current discharging stage. The battery is charged
with a constant current of 1.5A until the voltage reaches
4.2V. Then, the batteries are maintained in a constant voltage
chargingmode until the charge current falls to 20mA. Finally,
the discharge phase is run at a constant current level of
2A until the battery voltage drops to 2.7V. At the end of
the constant-current discharge stage, there will be a certain
voltage recovery behavior.

FIGURE 2. Charging-discharging process of lithium-ion battery.

The aging of lithium-ion batteries is usually reflected
by changes in charge and discharge. An example is shown
in Fig. 3. Three different charging-discharging cycles were
extracted from the 50th, 100th and 150th cycle of the same
lithium-ion battery. It can be seen that during the charg-
ing stage, the constant-current charging time of the battery
decreases with the increase in cycles, and the time for the
charging voltage to reach the cutoff voltage level is shortened
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FIGURE 3. Charging-discharging current and voltage curves during
different cycles: (a) charging current; (b) charging voltage; (c) discharge
voltage; (d) discharge current.

correspondingly. During the discharge stage, with the degra-
dation of the battery, the constant-current discharge time
decreases, and the time to reach the discharge cutoff voltage
decreases accordingly. These results indicate that the differ-
ence in current-voltage curves in different periods contain
much information related to the health status of batteries.

In more intuitively characterize the difference of
charging-discharging current and voltage in different cycles,
the average values of charging-discharging current and volt-
age curves are extracted as the working condition features
of the current cycle of batteries, which are average charging
current, average charging voltage, average discharge current
and average discharge voltage.

To verify the effectiveness of battery degradation quantiza-
tion using the extracted operating condition characteristics,
we perform the Pearson’s Correlation Coefficient (PCC) to
compare and determine the similarity between these features
and the battery SOH. Thus, four quantitative features can
be extracted from the battery on-line monitoring time series
stored in the data file. The evaluation process with the PCC
algorithm can be described as follows:
Step 1: Prepare a validated series and recommended series.

The validated series is defined for the selected working con-
dition feature series, defined as Xi = {xi(k)|k = 1, 2, · · · , n},

(i = 1, 2, · · · ,m), and the referred series is the SOH series
defined as Y = {y(k)|k = 1, 2, · · · , n}, (n is the length of
series and m is the number of verified series);
Step 2: Calculate the correlation coefficient. The correla-

tion coefficient of Xi and Y is:

ρXi,Y =
COV (Xi,Y )
σXiσY

(10)

Among them, COV (Xi,Y ) represents the covariance of
Xi and Y . σXi , σY are the standard deviation of Xi and Y ,
respectively. Generally, the correlation intensity of variables
is judged by the range of the absolute value of ρXi,Y :
0.0-0.2 denotes extremely weak correlation or no correlation;
0.2-0.4 denotes weak correlation; 0.4-0.6 denotes moder-
ate correlation; 0.6-0.8 denotes strong correlation; 0.8-1.0
denotes extremely strong correlation.

2) ERROR COMPENSATION MODEL BASED ON BP NEURAL
NETWORK ALGORITHM
The complexity of the lithium-ion battery operating envi-
ronment results in battery SOH not showing a simple linear
attenuation trend, and the influence of uncertain factors is
not negligible. Although the empirical degradation model can
describe the overall degradation trend of battery performance,
it fails to accurately describe the actual degradation state
of batteries. Therefore, it is necessary to supplement the
prediction results of the empirical degradation model with
the error compensation model. Due to the strong nonlinear
mapping ability of BP neural network (NN) and its excellent
performance in self-learning, self-adaptation and generaliza-
tion ability, the BP neural network is selected as the algorithm
basis of the error compensation model. The model is trained
by using the working condition features extracted from the
actual battery charging-discharging process as inputs and
the errors between the empirical degradation model and the
actual battery as outputs. The steps of the proposed error com-
pensation model based on BP NN are described as follows.

SupposeM lithium-ion batteries; the samples, i.e., working
condition features during the charge-discharge phase and
the corresponding errors between the empirical degradation
model and the actual battery system are obtained. The errors
are given by:

1hC = hC − h′C (11)

where1hC is the difference between the real battery SOH hC
and empirical degradation model SOH prediction values h′C
in the C cycle.
Step 1: Take n Ptrain and Ttrain to train the BP NN. Here,

Ptrain and Ttrain sets are given by:{
Ptrain = [Iin.c,Vin.c, Iout.c,Vout.c]n×4
Ttrain = [1hC ]n×1

(12)

where Iin.c, Vin.c, Iout.c, and Vout.c are the average charging
current, average charging voltage, average discharge current
and average discharge voltage in the C charge-discharge
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cycle, respectively; n is the sum of the charge-discharge
cycles forM lithium-ion batteries.
Step 2: Initialize the corresponding parameters of the bp

neural network. The number of nodes of the network input
layer is determined according to the dimension of the input
variable, the dimension of the output variable determines the
number of nodes of the output layer, and the number of nodes
of the hidden layer is generally obtained by experience; At
the same time, the network connection weight, the implicit
layer threshold and the output layer threshold are initialized,
and the appropriate learning rate and training function are
selected.
Step 3: Use the trained BPNNmodel to calculate the errors

between the empirical degradation model and the actual bat-
tery by using the actual working condition features Iin.c, Vin.c,
Iout.c, and Vout.c of the tested battery as model inputs. Based
on the calculated errors by the model outputs, correct the
prediction results of empirical degradation model to improve
the SOH estimation performance.

C. ERROR COMPENSATION MODEL BASED ON
DATA-DRIVEN METHOD
1) CONVEX OPTIMIZATION ALGORITHM
Since the battery is a typical dynamic, nonlinear system, its
degradation process is affected by many factors. The mea-
sured life data have different degrees of noise pollution. If the
original data is not denoised, the noise will have a great
impact on the estimation of unknown parameters in the empir-
ical degradation model, thus further affecting the accuracy
of the prediction results. Convex optimization theory has the
characteristics of quickly solving the optimal solution of the
problem and provides excellent noise reduction performance
in terms of data smoothness. In this paper, a convex opti-
mization algorithm is used to preprocess the measured data
of batteries, and then the data after noise reduction are used
as the data basis for parameter identification of empirical
degradation model.

‘‘Convex optimization’’ refers to the optimization problem
in which the objective function is a convex function, and the
constraint variable takes values in a convex set. The convex
optimization principle is expressed as follows:

minimize ‖Ax-b‖ (13)

In Eq. (13), A ∈ Rm×n and b ∈ Rm are the data of the
problem, x ∈ Rn is the variable, and ‖·‖ is a norm on Rm.
Select the quadratic smooth convex function:

φquad (x) =
n−1∑
i=1

(xi+1 − xi)2 = ‖Dx‖22 (14)

where D ∈ R(n−1)×n is a double diagonal matrix.
Add a regularization term related to the degree of smooth-

ness:

minimize ‖Ax − b‖22 + σ ‖Dx‖
2
2 (15)

where σ is the regularization parameter (σ ≥ 0) and the
appropriate regularization parameter is selected based on
experience. σ controls the smoothness of the approxima-
tion solution, thus obtaining the optimal trade-off between
‖Ax − b‖2 and ‖Dx‖2, and then the optimal solution is
achieved.

2) METHODS
The fusion estimation model consists of an empirical degra-
dation model and an error compensation model. The empiri-
cal degradation model is mainly used to describe the overall
degradation trend of batteries. Combining with the actual
working environment of batteries, the error compensation
model supplements the uncertainty and difference in the
battery degradation process, which improves the applicabil-
ity and accuracy of the single model. The flow chart of
lithium-ion battery SOH estimation method based on the
proposed fusion framework is shown in Fig. 4.

FIGURE 4. Lithium-ion battery SOH estimation method based on the
fusion framework.

The whole framework can be divided into three parts:
off-line parameter identification, offline and online SOH esti-
mation model training.

Firstly, in the off-line parameter identification stage, a set
of battery off-line capacity data is selected as the data basis
for parameter identification of empirical degradation model.
The convex optimization algorithm is used to denoise the
historical capacity data of the battery. Based on the smoothed
data, the unknown parameters in the empirical degradation
model are identified by the least squares algorithm. Based on
the results of parameter identification, the specific expression
of the empirical degradation model is obtained. The SOH
degradation trend of the same type of lithium-ion battery can
be predicted based on the model expression. Then, based on
the prediction results of the empirical degradation model and
the real SOH values of the training set batteries, the SOH
prediction value and corresponding SOH prediction error
value were obtained.

Secondly, in the off-line model training phase, four dif-
ferent operating states of the first feature are extracted from
battery off-line training data. The extracted features of the
training input data as a model error compensation and output
a corresponding degradation SOH empiricalmodel prediction
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errors. The corresponding parameters of the bp neural net-
work are initialized. The error compensation model is trained
based on bp neural network algorithm.

Finally, in the online SOH estimation process, the four
working condition features are extracted firstly from the test-
ing battery during its charging and discharging stage. As the
model input, the selected features are directly applied to
estimate the error based on the trained BP NN model. The
estimated error values are fed back to the predicted results
of the empirical degradation model to realize online error
compensation.

III. EXPERIMENTS AND ANALYSIS
A. BATTERY DATA SET AND WORKING CONDITION
FEATURE EXTRACTION
The lithium-ion battery degradation experiment data involved
in this paper come from NASA Ames Prognostics Center
of Excellence (PCoE) [35]. The 18650 sized batteries (B5,
B6 and B18) were run under 3 different operational profiles
(charge, discharge and impedance) at temperature of 24�.
The charging current was constant with a level of 1.5A
until the battery voltage reached 4.2V. Then, the batteries
were continued in a constant voltage charging mode until
the charge current fell to 20mA. For batteries B5, B6 and
B18, discharge was run at a constant current level of 2A
until the battery voltage dropped to 2.7V, 2.5V and 2.5V
respectively. Details of the selected lithium-ion batteries are
shown in Table 2. The actual data of the charging-discharging
current and voltage in different cycles are monitored and
provided by NASA battery data set. During each cycle, the
average values of charging-discharging current and voltage
are calculated as the working condition features of the current
cycle of batteries, which are the average charging current,
average charging voltage, average discharge current and aver-
age discharge voltage. The four working condition features
under different cycles are calculated respectively. The final
result is shown in Fig. 5.

TABLE 2. Test lithium-ion batteries information.

As shown in Fig. 5, the charge-discharge process voltage
and the average current are not kept constant in the actual
system. Due to the influence of inherent battery degrada-
tion factors, experimental conditions, working environment
etc., the change is accompanied by strong nonlinearity and
uncertainty. To verify the association between extracted fea-
tures and battery health degradation, the Pearson Correlation
Coefficient between the four working condition features and
capacity of lithium-ion batteries was calculated respectively
according to Eq. (10). The results are shown in Table 3.

FIGURE 5. Working condition features extraction: (a) average charging
current; (b)average charging voltage; (c) average discharge current;
(d) average discharge voltage.

TABLE 3. The Pearson Correlation Coefficient between SOH and working
condition features.

In Table 3, it can be seen that the absolute value of
Pearson’s Correlation Coefficient are all greater than 0.8,
and the relationship between each feature and battery SOH
shows a good correlation, indicating that the selected features
containmuch information related to battery SOH; In addition,
it can be seen in Fig.5 that due to the differences in the
inherent degradation characteristics of the battery itself and
the actual operating environment, the extracted four working
condition features from different batteries are quite varied,
which directly leads to different degradation trends for dif-
ferent batteries. In addition, the battery SOH degradation
does not presented a simple monotonous degradation trend
accompanied by capacity surges and uncertain fluctuations,
as shown in Fig. 6.

B. EVALUATION CRITERIA
Three evaluation criteria, mean absolute percentage error
(εMAPE ), root mean square error (εRMSE ) and max error
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FIGURE 6. Actual SOH distribution.

(εMAX ), are adopted to assess the estimation performance of
the proposed methods, defined as Eq. (16), (17) and (18).

εMAPE =
1
N

N∑
i=1

∣∣∣∣htri − hprihtri

∣∣∣∣× 100% (16)

εRMSE =

√√√√1
n

N∑
i=1

(htri − hpri )2 (17)

εMAX =
∣∣htri − hpri ∣∣ (18)

where htri and hpri are the real value and estimation value of
battery SOH in the i cycle, i = 1, 2, · · · ,N .

C. EXPERIMENTAL RESULTS AND DISCUSSION
Combined with the degradation data of NASA battery data
set, the experimental verification and analysis of the proposed
method are carried out.

1) EXPERIMENTAL PROCEDURE
According to the SOH estimation process of lithium-ion bat-
teries based on the fusion model, the specific experimental
procedure is as follows:

First, the empirical degradationmodelMod1 of lithium-ion
battery SOH with its charge-discharge cycle is constructed.
The battery B5 is selected as the data basis of model param-
eter identification. The initial capacity is 1.8565Ah. There
are 168 sets of lithium-ion battery data in B5, including
charge-discharge cycles and AC. The AC data are processed
by the convex optimization algorithm to reduce the noise
of the original data; unknown parameters of the model are
identified based on the preprocessed data, and the value of
each parameter and its 95% confidence interval (the test data
and the prediction data are normalized) are shown in Table 4.

According to the parameter identification results, the spe-
cific expression of the empirical degradation model Mod1 is:

h = −0.002259C − 0.04945e−0.0465C + 1.04945 (19)

TABLE 4. Parameter identification results and corresponding confidence
intervals.

Based on the expression, Fig. 7 shows the empirical degra-
dation model fitting results for battery B5.

FIGURE 7. Empirical degradation model fitting results for battery B5.

FIGURE 8. Empirical degradation model prediction results for battery B6:
(a) SOH prediction results; (b) Relative error percentage distribution.

The empirical degradation model identified by the battery
B5 is directly applied to batteries B6 and B18. Fig. 8 and 9
shows the prediction results and the relative error percentage
distribution of these two batteries. Based on the prediction
results, we can achieve the empirical degradation model pre-
diction error 1hc according to the Eq. (11).
Fig. 8 and 9 show that the degradation trends of the three

batteries are not the same. Because of the difference in inher-
ent degradation characteristics and working environments,
even for the same type of batteries, the degradation process
also shows great differences. Therefore, the prediction results
of the empirical model need to be supplemented by the error
compensation model. The BP neural network is taken as the
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FIGURE 9. Empirical degradation model prediction results for battery
B18: (a) SOH prediction results; (b) Relative error percentage distribution.

TABLE 5. Mod2 training set and test set distribution.

algorithm basis of the error compensation model Mod2 in
this paper. A cross-validation approach was performed based
on battery B5, B6 and B18. According to Table 5, the three
sets of batteries are divided into training set and test set
respectively.

Based on the battery historical degradation data and the
empirical degradation model prediction error acquired by
Mod1, training input set Ptrain and training output set Ttrain of
Mod2 are respectively constructed according to the Eq. (12).
The BP NN is trained based on the training set. According to
experience, the main parameters setting of BP NN are shown
in Table 6.

TABLE 6. Parameters Setting of BP Neural Network.

The working condition features Iin.c, Vin.c, Iout.c, and Vout.c
of test set battery are respectively brought into the trained
Mod2, and the model output is the empirical degradation
model error prediction value; the error prediction value is
fed back to the prediction results of the empirical degrada-
tion model Mod1.The final estimation results are shown in
Fig. 10, 11 and 12 for battery B5, B6 and B18, respectively.

2) DISCUSSION AND COMPARISON
The εMAPE , εRMSE and εMAX are calculated separately
according to Eq. (16), (17) and (18), and the performance

FIGURE 10. Fusion model estimation results for battery B5: (a) SOH
estimation results; (b) Relative error percentage distribution.

FIGURE 11. Fusion model estimation results for battery B6: (a) SOH
estimation results; (b) Relative error percentage distribution.

FIGURE 12. Fusion model estimation results for battery B18: (a) SOH
estimation results; (b) Relative error percentage distribution.

comparison between the empirical degradation model and the
fusion estimation model is shown in Table 7.

Based on the above results, the following conclusions can
be drawn:
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TABLE 7. Performance and comparison.

First, as seen from Figs. 10-12, the relative error of the
fusion model is mostly less than 5%, which indicates that
the proposed fusion estimation framework can effectively
estimate the SOH of batteries. In addition, for the same
battery, the comparison results of the three methods given in
Table 7 show that the performance of the fusion model is bet-
ter than the empirical degradation model, LSTM and CNN.
Compared with these three methods, the performance of SOH
estimation is greatly improved, indicating that error compen-
sation is effectively realized. The estimation accuracy is fun-
damentally improved, and the applicability of the empirical
model on different batteries is greatly improved. Estimation
accuracy is fundamentally increased, and the applicability of
empirical models on different batteries is improved greatly.
The fusion framework can extract the working condition
features of batteries from the actual environments, effectively
considering the impact of the actual internal and external
environments on their degradation, and improve the adapt-
ability of the model. Compared with the existing methods,
this method can not only evaluate the full-life cycle SOH of
lithium-ion batteries, but also evaluate the health status of
different batteries of the same type.

IV. CONCLUSION
This paper proposes a prediction framework based on the
fusion of empirical degradationmodels and data-drivenmeth-
ods to solve the problems of lithium-ion battery health esti-
mation and remaining life prediction, and experimentally
validates and evaluates the proposed method based on NASA
PCoE battery test data. The work of this paper has two main
aspects: first, an empirical degradation model of lithium-ion
battery capacity is established; secondly, the actual infor-
mation of four operating conditions is extracted from the
charging and discharging conditions of the lithium-ion bat-
tery, and an error compensation model based on a data-driven
method is established to describe the difference in operating
conditions The impact of battery performance on battery
degradation improves the accuracy of SOH estimation during
battery degradation. Themain research contents of this article
are as follows:

1) The life degradation process of lithium-ion batteries is
analyzed, the battery capacity empirical degradation model
is proposed from the perspective of the degradation rate, and
the remaining life prediction methods of lithium-ion batteries
are studied based on the empirical degradation model. Under

standard operating conditions, the model is universal. As long
as the initial capacity is known, the battery life curve can be
directly simulated, which has good practicability and indi-
cates the limitations of the model.

2) Because the prediction method based on the empirical
degradation model is too dependent on the model and has
poor individual adaptability, the framework of the SOH esti-
mation method based on the fusion of the empirical degra-
dation model and the data-driven method is proposed. The
verification results using NASA PCoE battery test data show
that for different batteries, the mean absolute percentage error
of the three batteries is approximately 2%, root mean square
error is approximately 0.02, and the max error is nomore than
0.1, while the prediction performance of the empirical model
on different batteries is not very well, which is mainly due
to the difference in the inherent degradation characteristics
of batteries and actual operating environments. The proposed
fusion method can describe the impact of actual operating
conditions on battery degradation well and can effectively
improve the accuracy of battery SOH estimation.
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