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ABSTRACT Most conventional fine-grained image recognitions are based on a two-streammodel of object-
level and part-level CNNs, where the part-level CNN is responsible for learning the object-parts and their
spatial relationships. To train the part-level CNN, we first need to separate parts from an object. However,
there exist sub-level objects with no distinctive and separable parts. In this paper, a multi-scale CNN with a
baseline Object-level and multiple Part-level CNNs is proposed for the fine-grained image recognition with
no separable object-parts. The basic idea to train different CNNs of the multi-scale CNNs is to adopt different
scales in resizing the training images. That is, the training images are resized such that the entire object
appears as much as possible for the Object-level CNN, while only a local part of the object is to be included
for the Part-level CNN. This scale-specific image resizing approach requires a scale-controllable parameter
in the image resizing process. In this paper, a scale-controllable parameter is introduced for the linear-scaling
and random-cropping method. Also, a line-based image resizing method with a scale-controllable parameter
is employed for the part-level CNNs. The proposedmulti-scale CNN is applied to a food image classification,
which belongs to a fine-grained classification problem with no separable object-parts. Experimental results
on the public food image datasets show that the classification accuracy improves substantially when the
predicted scores of the multi-scale CNN are fused together. This reveals that the object-level and part-level
CNNs work harmoniously in differentiating subtle differences of the sub-level objects.

INDEX TERMS Convolutional neural network (CNN), fine-grained image classification, food recognition,
image resizing.

I. INTRODUCTION
Convolutional neural networks (CNN) with deep layers have
contributed significantly to the performance improvement
for the object-wise image classification problems. This suc-
cess has encouraged researchers to solve more challenging
problems with CNNs, the fine-grained image classification
of recognizing the sub-level classes under an upper-level
class. The main difficulty in the fine-grained image classifi-
cation problem comes from the nature of the domain-specific
sub-level images, which have large intra-class and small
inter-class variances [1], [2]. Moreover, the domain-specific
images often demand the involvement of the expertise for
object labeling, which is an expensive task [2]. Although the
crowdsourcing [3] can be an alternative, it often causes a
noisy labelling problem.
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Note that the performance of the fine-grained classification
depends considerably on the separability and the localizabil-
ity of the sub-level object and its parts in the image. For
example, if the upper-level object is a bird class and the
problem is to classify a bird image into one of many sub-
level bird types [3], then the CNNs trained with the prior
knowledge of the bird parts such as the head and the tail can
significantly improve the classification performance [4]. The
upper-level objects such as a dog and a car also belong to
the part-separable fine-grained images. However, there are
domain-specific sub-level images with no separable parts.
As shown in Fig. 1, the bird images in Fig. 1(a) have a couple
of distinctive object-parts such as head and tail, while the food
images in Fig. 1(b) have no explicit object-parts.

For the fine-grained images, researchers have acknowl-
edged that the combined features of a global object and a local
part yield a better classification performance. This leads the
researchers to treat the overall appearance of the objects and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 116663

https://orcid.org/0000-0002-3400-0792
https://orcid.org/0000-0002-9352-0237


C. S. Won: Multi-Scale CNN for Fine-Grained Image Recognition

FIGURE 1. Image samples for the fine-grained classification from the
datasets of: (a) CUB-200-2011 dataset [7] with separable parts,
(b) Food-101 dataset [10] with no separable parts.

their parts separately in training CNNs. Unfortunately, not
all domain-specific datasets have localizable and separable
common parts. In this paper, we focus on such a weakly
supervised fine-grained image classification problem that has
neither object nor part annotations. Also, it is assumed that
there are no object bounding boxes available for CNN train-
ing and testing. That is, we deal with a weakly supervised
classification problem for a domain-specific problem, which
has no explicit object-parts to learn among different sub-level
objects.

In this paper, we deal with a classification problem for food
images, which belongs to the domain-specific datasets with
no distinctive object-parts. Having no explicit food parts to
compare with different sub-level food images, the strategy
adopted in this paper is to train multiple CNNs with different
levels of food details. That is, each CNN is exclusively trained
by a certain level of food details. This can be done by resizing
a training image with different scale factors for different
CNNs. Specifically, this paper adopts a multi-scale CNNwith
multiple levels of the food details, one for object-level and
others for part-levels. The Object-level CNN is trained by
resized images that cover global food appearances in them.
For this, a linear scaling followed by a cropping [5] is used.
This image resizing method can be also used for the Part-
level CNN by controlling the scaling factors. Note that the
image resizing for the Part-level CNN needs more pruning
than scaling to fill the resized image only with a local part of
the object. To this end, a line-based image resizingmethod [6]
is also employed, which optimally selects the image lines
to remove under the constraints of the target aspect ratio,
the image saliency, and the target number of image-lines via
a linear programming method. Here, the goal is that only a
local detail of the food image is included in the resized image
by setting the number of image-lines as a scale-constraint for
the optimization.

The contributions of this paper can be summarized as
follows

1) This work formulates a new problem for a set
of domain-specific image datasets that cannot be

benefited from existing fine-grained image recognition
algorithms. The problem is how to effectively classify
the sub-level objects with non-separable object-parts.
The food classification belongs to this problem.

2) This work shows that a multi-scale CNN trained by
a scale-controllable image resizing method can boost
the recognition performance for food datasets substan-
tially, proving that images resized in different scales
help multi-scale CNNs learn different levels of object
details without explicitly segmenting the object into
parts.

3) A new sequential method of CNN training for a multi-
scale CNN is proposed. First, the Object-level CNN
learns the object appearance as a whole with the train-
ing images resized using an object-level scaling factor.
Then, the trained Object-level CNN is used to fine-tune
the Part-level CNNs with the resized images in vari-
ous part-level scales. This sequential training process
allows us to share the early-layers of the Object-level
CNNwith the Part-level CNNs, saving a lot of memory
space for the trained coefficients.

4) The existing image resizing methods are reformu-
lated to include a scale-controllable parameter. Specif-
ically, the resizing-scale can be readily controllable
by a parameter associated with the size-constraint
in the line-based constraint optimization framework.
Also, a formula with a scale-controllable parameter is
introduced for the linear-scaling and random-cropping
method. By setting the parameter appropriately, one
can resize the images in different scales for the Part-
level CNNs.

5) Only two scales for the proposed multi-scale CNN
are enough to achieve state-of-the-art classifica-
tion performance for three food datasets such as
UECFood-256, Food101, and VireoFood-172 with the
pre-trained ResNet50. Results with the pre-trained
InceptionResNet-v2 also show that adding one more
scale to have a three-scale CNN (i.e., one for the
Object-level and the other two for the Part-level CNNs)
improves the recognition performance substantially.

This paper is organized as follows. Relatedworks, focusing
on the fine-grained image classifications, are reviewed in
Section II. The proposed two-scale CNN is introduced in
Section III followed by experimental results in Section IV.
Finally, Section V addresses the concluding remarks.

II. RELATED WORKS
There are two main groups for the fine-grained sub-level
object classifications. The first group makes use of the dis-
tinctive object-parts as well as the whole object appearance.
So, for this approach, there should exist localizable and
separable parts in the objects. The domain-specific datasets
such as birds-200-2011 [7], Stanford dogs [8], and Stanford
cars [9] belong to this group. The second group of the domain-
specific datasets has no distinctive and localizable parts in
the sub-level objects. So, since no part information can be
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explicitly extracted and utilized for CNN training and test-
ing, the classification problem becomes more challenging.
The food classification problem with the datasets such as
Food-101 dataset [10], UEC Food256 dataset [11], and Vireo
Food-172 dataset [12] belongs to this group.

A. FINE-GRAINED CLASSIFICATIONS WITH
LOCALIZABLE PARTS IN OBJECTS
In order to exploit the part information for the sub-level object
classification, above all, the sub-level objects and their parts
should be separable. Some of the image datasets provide the
location information of the objects with the bounding boxes.
The classification performance certainly improves by making
use of the object bounding boxes, especially in the CNN
testing stage [13]. Of course, the bounding boxes can be also
used for CNN training [14]. Once the object is localized, its
distinctive parts can be separated from the object for the part-
level learning. This leads to the two-level attention model,
which simulates the human vision system that sees the object
first and then its most discriminative parts later [1], [4], [15].

The part localization and annotation can be done manually
for a training dataset. However, especially for a domain-
specific dataset, themanual annotation demands an expensive
involvement from the experts. A more realistic approach
for the fine-grained image classification problems is not to
use neither object nor part annotations in both training and
testing stages. Under this weakly supervised environment,
the localizations of the object and its parts can be done by
a learned CNN model. That is, the part model can be learned
in an unsupervised fashion [16] by a constellation model to
localize parts of the object. Specifically, the local regions in
the image that fire at the similar locations of the activation
maps in a CNN are used to detect the object and its parts in the
image. Then, the image patches proposed from the detected
local regions can be used to establish the constellation model
for the spatial relationship among the object-parts [1]. Also,
the trained constellation model can be used to filter out
the noisy object proposals by using the Selective Search
method [17]. The patch images selected from an original
image can be proposed from multi-scales and multi-views
and, among them, noisy image patches that are not relevant
to the object can be removed by the learned CNNs. Then,
the main CNN model uses the remaining patches for both
training and testing. However, this constellation model based
method works well only when the sub-objects share some
distinctive parts with a spatial relationship. The activeness
(or objectness) of the activation map is also used for the
attention models [4], [15], where the existence of object-part
increases the objectness level. In [4], a two-level attention
model with object-level and part-level attentions is used to
aggregate the object and part features for the final classifica-
tion. In [15], a graph analysis algorithm was used to find the
object bounding box by considering the object co-localization
from the similar images in the training dataset. Recently,
more attention has been paid on the part-level features for the
fine-grained classification by adopting end-to-end trainable

part-localization network and part-classification net-
work [18]. In [19] and [20], the attention model learns the
image patches to be extracted, which are called glimpse,
at varying sizes. The attention model of [20] is applied to
the Stanford Dogs fine-grained categorization problem [8].
Recently, in [21], a neural model which learns attention
from lower-level feature activations without requiring part
annotations was proposed. In [22] a DCL (Destruction and
Construction Learning) stream to learn from discrimina-
tive regions automatically was proposed. The idea of this
approach is to disrupt the spatial layout of the training images
by a block shuffling to guide the CNN to pay more attention
to the discriminative local regions. The performance of this
DCL-based method was tested for the part-separable image
datasets such as birds, cars, and aircrafts. In [23] the part level
features were learned by uniformly dividing input channels
into several semantic groups. Then, a deep bilinear transfor-
mation (DBT) block was employed to learn their pairwise
interactions. The performance of the DBT block was also
evaluated by the part-separable datasets of birds, cars, and
aircrafts.

B. FINE-GRAINED CLASSIFICATIONS WITHOUT
EXPLICITLY SEGMENTING OBJECT-PARTS
Most approaches introduced in Section II-A are based on
the premise that there are distinctive and separable parts in
sub-level objects. However, there is also another school of
the fine-grained image categorization with no exclusively
separable parts among different sub-level objects. In this
case, since the sub-level objects typically share no specific
parts with some spatial arrangements [24], detailed textural
features in an object as well as its overall layout may help
differentiate different sub-level classes. Food categorization
belongs to this group. The shape of the dining plates cannot be
the part information of the sub-level foods because, in reality,
different sub-level foods are laid on the dining plates with a
round shape and some of food contents such as the bread also
have the round-shape [25]. Having no separable parts in food
images, a specific food structure such as the vertical food trait
has been exploited for the sub-food classification [26].

Note that the food images usually exhibit more complex
layout with no clear-cut part-separation than the other fine-
grained image datasets introduced in Section II-A. Also,
the food datasets include the images with large inter but
small intra variances [24]. Therefore, food image features
extracted from a multi-scale and multi-view structure should
help boost the recognition performance. For example, in [24],
Multi-Scale Multi-View Feature Aggregation (MSMVFA)
was proposed to fuse the features in different levels such
as high-level semantic features, mid-level attribute features,
and deep visual features into the food categorization. The
MSMVFA consists of two-level fusion, namely multi-scale
fusion for each type of features and multi-view aggregation
for different types of features. In the MSMVFA, however,
an ingredient network needs to be trained with multiple
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ingredient labels, where the ingredient information should be
available as an annotation.

III. MULTI-SCALE IMAGE RESIZING
Having no explicit object-parts, the resized images in dif-
ferent scales can be alternatively used for the object-level
and the part-level images. Specifically, the original image is
resized by multiple scales and, then, the resized image for
each scale is used to train a scale-specific CNN, yielding
a multi-scale CNN. So, each convolutional pathway in the
multi-scale CNN learns its own scale-specific object features
in training images. The multi-scale CNN architecture was
adopted in [27], where they employed it for a brain image
segmentation. Each CNN pathway is trained with the down-
sampled images with a given down-sampling factor.

The CNN architecture proposed in this paper is similar
to the multi-scale CNN in [27]. In training the multi-scale
CNNs, however, we adopt a sequential training process (see
Fig. 2). That is, at the top-level, a publically available pre-
trained CNN is transfer-learned for the highest object-level
scale of Scale-1. Then, we use the trained weights in the
object-level CNN as initial filter-coefficients and fine-tune
the rest of the multi-scale CNNs (i.e., Scale-2,· · · , Scale-N).
Specifically, as shown in Fig. 2(a), the early layers from a pre-
trained CNN and the new replaced layers are fine-tuned by
the training images that are resized by setting the scale factor
as Scale-1 for the highest objectness. This object-level CNN
of Scale-1 serves as a baseline CNN for all remaining multi-
scale CNNs and the next Scale-2 CNN is formed by assem-
bling the fine-tuned early layers of the base-line CNN and its
new replaceable layers. Then, it is fine-tuned with the training
images resized by the next level of the scale factor, Scale-2.
This fine-tuning process for the assembled CNN for different
scale factors continues until we have the fine-tuned CNN for
the finest local details of Scale-N. Since the weights of the
baseline CNN for the object-level CNN are reused as initial
weights for all multi-scale CNNs, their training convergences
are fast. The multi-scale CNN can be viewed as a two-level
hierarchical structure, where the top-level CNN represents
the macroscopic object-level features and the bottom ones
learn the microscopic part-level features in different scales.
However, unlike the hierarchical set-subset relationship as
the case of word semantics in [29], the relationship between
the top-level object and the bottom-level parts are more like
complementary.

Note that the learned weights of the entire CNN paths
demand a lot of memory space. To save the memories,
as shown in Fig. 2(b)), we keep the full CNN weights
of Scale-1 (i.e., the object-level CNN), but only the fine-
tuned replaced layers for the rest of scales (i.e., Scale-2,· · · ,
Scale-N). Then, at the inference stage, the early layers of the
base-line CNN of Scale-1 are assembled with the fine-tuned
replaced layers for all scales of CNNs (see Fig. 3). Of course,
this reuse of the early layers in the object-level Scale-1 CNN
for all other prat-level CNNs of Scale-2,· · · , Scale-N may
deteriorate the recognition performance. However, since the

early layers encode very primitive image features, the perfor-
mance decline should be limited.

A. TWO-SCALE CNN ARCHITECTURE
For the food recognition problem, by setting N = 2 in Fig. 2
and 3, we have the most simple multi-scale CNN with
only two scales of Object-level and Part-level CNNs (see
Fig. 4 and 5). The Object-level CNN is responsible for learn-
ing the global appearance of the sub-level objects, whereas
the Part-level CNN is to learn their local details. Following the
sequential fine-tuning process in Fig. 2, a pre-trained CNN
is transfer-learned to have the Object-level CNN first and,
then, it is fine-tuned to have the Part-level CNN. Specifically,
as shown in Fig. 4, a pre-trained CNN is transfer-learned
by replacing the replaceable layers with new ones. Then,
the early-layers of the transfer-learned Object-level CNN
are used as the baseline of the two-scale CNN. So, they
are combined with new replaceable last layers and are fine-
tuned to have the Part-level CNN. To train the two CNNs
the original training images are resized with different scales.
For the Object-level CNN, the training images are resized
such that they include the whole appearance of the sub-level
object as much as possible. On the other hand, only a part
of the object is to be included in the resized image for the
Part-level CNN.

Note that the Object-level CNN is transfer-learned from
a pre-trained CNN, which is trained by a general-purpose
dataset, and the Part-level CNN is fine-tuned from the Object-
level CNN. Therefore, the Object-level CNN needs more
iterations for convergence than the Part-level CNN. Also,
the image resizing for the Object-level CNN is relatively
simple, because most of the original images already cover
the whole appearance of the objects. We just need a linear
scaling and a little bit of cropping for the Object-level CNN.
So, in this paper, the linear-scaling and random-cropping with
a light scale jittering [5] is used to resize training images for
the Object-level CNN. On the other hands, to include only
a local detail of the object for the Part-level CNN, a more
sophisticatedmethod of image resizing is needed. To this end,
we may exploit the line-based optimal method [6] and the
linear-scaling and random-cropping with a scale-controllable
parameter [5]. More details about these methods will be
addressed in Section III-B and Section III-C, respectively.

At the inference stage, a testing image is also resized with
the two different methods used in the training. However, since
the jittering effect is unnecessary for the testing, the scaling
factors are fixed for the Object-level CNN and the Part-
level CNN. Feeding the two resized images to the two-scale
CNN as input images, we have two outputs of the score
vectors from the two CNNs, which are fused for the final
classification (see Fig. 5).

B. LINE-BASED OPTIMAL IMAGE RESIZING
FOR PART-LEVEL CNN
The two-scale CNN paths in Fig. 4 are expected to be com-
plementary to each other in recognizing the sub-level objects.
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FIGURE 2. The sequential fine-tuning process for different scales with the common base-line early
layers: (a) The fine-tuned early layers as well as the replaced ones are stored for the inference,
(b) Only the fine-tuned replaced layers are stored for the inference.

That is, the Object-level CNN is to differentiate the macro-
scopic appearance among the sub-level objects, while the
Part-level CNN is to detect themicroscopic differences. Then,
the original training images should be resized to provide
microscopic local details of the objects to the Part-level CNN.

The line-based image resizing method based on the linear
programming framework [6] is adopted for the Part-level
CNN,where the image is resized by a line-by-line deletion for
size-reduction or a line-by-line duplication for size-expansion
depending on the size differences between the original and
target images. The line-based image resizing method can be

viewed as a binary decision problem such that each image
line is to-be-remained (binary 1) or to-be-deleted (binary 0),
which can be done by an optimal linear programmingmethod.
Followings are the brief explanation on the specific image
resizing method of [6] used in this paper.

Suppose that the original image I has a size of M × N .
Then, there are M + N image lines and our goal is to make
an optimal binary decision on each image line as either to-be-
deleted (binary 0) or to-be-remained (binary 1). Let us denote
1× (M + N ) row vectors of f and s as the cost function and
the indicator of the binary decisions, respectively. Then, we
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FIGURE 3. The multi-scale CNN for the inference process: (a) Fine-tuned early layers for all scales of Fig. 2(a) are used, (b) Only fine-tuned replaced
layers are used and the early layers are from the object-level CNN.

FIGURE 4. Two-scale training for Object-level and Part-level CNNs.

FIGURE 5. Two-scale inference with (a) the fine-tuned early layers of the
Part-level CNN, (b) the fine-tuned early layers of the Object-level CNN.

have f = [f (1) · · · f (M ) f (M + 1) · · · f (M + N )], where
each element f (k) represents the cost for deleting the image-
line at k . The element of the binary indicator vector s =
[s(1) · · · s(M ) s(M + 1) · · · s(M + N )] takes s(k) ∈ {0, 1},

representing the binary decision of the line-keeping with
s(k) = 1 or the line-deleting with s(k) = 0 at line k . Now,
the optimal line selection can be made by following the linear
programming framework with the objective function given by
the inner product of f and s, and with some constraints

s∗ = argmin
s
fsT (1)

such that

As ≤ b, (2)

lb ≤ s ≤ ub, (3)

where the associated matrices (or scalar) A and b are deter-
mined by the specific requirements for the optimization
of (1). Note that, to yield binary values 0 and 1 for the element
of s, the lower bound lb and the upper bound ub in (3) are
set to zero vector and one vector with M + N elements,
respectively. For more details on the optimization of (1) via
the linear programming technique and the various possible
constrains (2) on the image resizing, refer to [6].

The training images for the two-scale CNN are resized
from the original size ofM ×N to the target size ofM ′×N ′,
where M ′ × N ′ fits the input of the CNN. Now, the original
image is first resized to an intermediate size ofMt×Nt to have
the similar aspect rstio ofMt/Nt ≈ M ′/N ′ = γ by the linear
programming framework based on (1)∼ (3), then a simple
linear-scaling technique is used to resize the intermediate
image of Mt × Nt to have the final one of M ′ × N ′. The
objective function to be minimized in (1) is given by the inner
product between f as in (4) and s as the binary indicator vec-
tor. Among a set of requirements expressed by A and b in [6],
the following constraints for the food classification problem
are used in this paper to guaranteeMt/Nt ≈ M ′/N ′ = γ with
some tolerable margins as in (6) and (7)

f = [−Er (1)Gr (1) · · · − Er (M )Gr (M )

−Ec(1)Gc(1) · · · − Ec(N )Gc(N )] (4)

116668 VOLUME 8, 2020



C. S. Won: Multi-Scale CNN for Fine-Grained Image Recognition

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (5)

A =

 γ · · · γ −1 · · · −1
−γ · · · −γ 1 · · · 1
1 · · · 1 1 · · · 1

 (6)

b =

β × |M − N |β × |M − N |
α × (M + N )

 (7)

lb = [0 · · · 0]T , ub = [1 · · · 1]T (8)

Er (i) and Ec(j) in (4) are obtained by accumulating the
normalized edge magnitudes along the row i and column j,
respectively. The accumulated edge magnitudes are weighted
by Gaussian functions of Gr (i) = exp(−(i − ic)2/2σ 2) and
Gc(j) = exp(−(j − jc)2/2σ 2) centered at a pixel (ic, jc),
which force the optimization to choose the to-be-deleted
lines faraway from the center of the image. Top two rows in
(6) and (7) are to meet the requirement of the target aspect
ratio γ (i.e., γ = N ′

M ′ ), where the tolerable margin toward
the exact aspect ratio γ is given by β × |M − N | as in (7).
The parameter β, which is less than 1, controls the amount
of tolerable image lines as a margin toward the exact γ . The
third rows in (6) and (7) are to set the lower bounds for the
number of image lines such that the total number of remaining
lines should be less than α × (M + N ). So, α controls the
minimal number of image lines to be deleted. Therefore,
the above linear programming process optimally selects at
least (1 − α) × (M + N ) image lines to be deleted such
that the image size becomes Mt × Nt with the approximate
aspect ratio, γ , by a margin of ±β × |M − N |. In this paper,
the parameter α is used as a scaling factor and can be chosen
randomly within a pre-determined range in training, giving a
jittering effect.

C. IMAGE RESIZING BY LINEAR-SCALING AND
RANDOM-CROPPING FOR PART-LEVEL CNNs
Image resizing for the Object-level CNN takes a sequential
execution of linear scaling followed by random cropping.
This resizing method can be used for the Part-level CNN as
well. Then, we need a scale-controllable parameter S. In [5],
the scaling factor S was chosen uniformly from a fixed range,
say S ∈ [256, 512], regardless of the sizes of the original
images. In this paper, the sizes of the original image and the
target size are considered in the random selection of S as
follows

S = d(Omin − Tmin)× η + (
Omin + Tmin

2
)× ζe (9)

where Omin = min{M ,N } and Tmin = min{M ′,N ′}. η is a
random number generated from a normal distribution, where
the mean is 0 and the standard deviation is σS . Because of the
Gaussian random number η, the scaling factor S determined
by (9) will be different for every resizing attempt, giving
a jittering effect. ζ is a predetermined constant, which is
associated with the expected value of S. For example, since
themean of the Gaussian distribution is set to zero, the scaling
factor S is mostly chosen in between the original image size

M ×N and the target sizeM ′×N ′ (i.e., (Omin+Tmin)/2) for
ζ = 1. In this case the half of the size gap between original
M×N and the targetM ′×N ′ is handled by the linear scaling
and the remaining half to the target size is treated by the
cropping. The level of the jittering effect can be controlled
by the standard deviation σS of η. That is, by setting σS with
a small value, the scaling factors chosen from (9) will be in a
narrow range and crowded around (Omin + Tmin)ζ/2. In this
paper, we set σS = 0.5. Note that, to avoid the degenerate
case, if S chosen from (9) is less than Tmin, we set S = Tmin.
Note that ζ in the offset term (Omin + Tmin)ζ/2 of (9) can

be used to change the expected size ofMt ×Nt . For example,
if ζ > 1, then the expected value of S increases and is closer
to Omin for Omin > Tmin. This implies that the amount of size
reduction by the linear scaling becomes smaller than the case
of ζ = 1, which means that the subsequent image cropping
has more freedom to choose the image patch ofM ′×N ′ from
the wider area of the linearly-scaled image of Mt × Nt . As a
result, for ζ > 1, it is expected that the final cropped images
of M ′ × N ′ are filled with the part-level local details. The
opposite will happen for ζ < 1.

FIGURE 6. The linear-scaling and random-cropping method can be used
for both Object-level and Part-level CNNs by setting ζ in (9) differently.
For example, we can set ζ = 1 for the Object-level CNN and ζ = 4/3 for
the Part-level CNN.

As an alternative to the line-based image resizing of
Section III-B, the linear-scaling and random-cropping can be
also used for the proposed multi-scale CNNs with ζ > 1
in (9). That is, as shown in Fig. 6, the image resizing method
of the linear-scaling and random-cropping can be used for
both the Object-level and Part-level CNNs. Here, the scaling
factors are chosen from (9) with ζ = 1 and with ζ > 1
(say, ζ = 4/3) for the Object-level CNN and the Part-level
CNN, respectively. At the inference stage, the scaling factors
for the Object-level and the Part-level CNNs are fixed as
S = (Omin + Tmin)ζ/2 by setting η = 0. Of course, the
two-scale CNN can be extended to have a three-scale CNN,
where wemay set ζ = 1.25 for the first Part-level (Mid-level)
CNN and ζ = 1.5 for the second Part-level CNN.

IV. EXPERIMENTS
Pre-trained ResNet50 [28] and InceptionResNet-v2 [30] are
used as the baseline CNN for the proposed multi-scale CNN
and they are transfer-learned for the Object-level CNN as
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in Fig. 2. The sizes of the CNN input for the ResNet50 and
the InceptionResNet-v2 are fixed as 224 × 224 (i.e., M ′ =
N ′ = 224 and γ = 1) and 299 × 299 (i.e., M ′ = N ′ = 299
and γ = 1), respectively.
For the Part-level CNN of Fig.4, we first resize the original

M×N image toMt×Nt by the line-based linear programming
optimization method using (4) ∼ (8). Then, a linear scaling
is used to get the final size of M ′ × N ′. To give a jittering
effect, the centers of Gaussian weighting Gr (i) and Gc(j) in
(4) are chosen randomly as ic + 0.5 × (ξ − 0.5) × M and
jc + 0.5 × (ξ − 0.5) × N , respectively, where ic = M/2
and jc = N/2 are the centers of the two sides of the image
and ξ is a random number in [0, 1]. Also, considering the
square input for the ResNet50 and the InceptionResNet-v2,
we set σ = min(M ,N )/5 for both the Gaussian weights of
Gr and Gc, which forces the optimization to remove more
lines at the longer side of the image. There are two parameters
α and β in (7). In this paper, β is fixed as β = 0.1, but
α is chosen randomly from α ∈ [0.45, 0.65]. The range
[0.45, 0.65] for α is determined experimentally, which forces
the optimization to remove as many image lines as possible
for the resulting Mt × Nt image to have only a local part of
the object in the image.

At the inference stage, the scaling factor for the Object-
level CNN is fixed as S = dTmin × 0.1 + Tmine and
the cropping is done at the center of the linearly scaled
image to have the final size of M ′ × N ′. For the Part-level
CNN, the centers of Gaussian weighting factors of Gr (i) and
Gc(j) in (4) are fixed at the center of the original image
(i.e., ic = M/2, jc = N/2). Also, α and β in (7) are fixed as
0.55 and 0.1, respectively.

The datasets used in this paper are Food-101 dataset [10],
UEC Food256 dataset [11], and Vireo Food-172 dataset [12].
Among the three datasets, the Food-101 provides separate
training and testing datasets. For the other two datasets,
the images in the datasets are randomly divided into three sets
of training and testing pairs with 80% of the original datasets
for training and the remaining 20% for testing. The final mean
accuracies (mAP) are obtained by averaging the results of the
three splits.

Due to the randomly chosen parameters associated with
the image resizing methods, the resized image for the same
training image looks different for every epoch. This gives a
jittering effect to overcome the overfitting problem in train-
ing [5]. To give a sense of how different they are, Fig. 7
shows five consecutively resized images for the Object-level
and the Part-level CNNs. The leftmost images in the fig-
ures are the original images chosen from three food classes
in UEC Food256 dataset (Fig. 7(a)) and Food-101 dataset
(Fig. 7(b)). As shown in the figures the resized images tend
to include a whole object with the plate for the Object-level
CNN, while only a local part of food for the Part-level CNN.
However, because of the randomness, the resized images for
the object-level sometimes have part-level flavor, and vice
versa. To some extent, this may be necessary to overcome the

FIGURE 7. Five consecutively resized images for the Object-level and the
Part-level CNN: (a) UEC Food256 dataset, (b) Food-101 dataset.

overfitting problem. It is worth mentioning that the resized
images for every epoch are not stored and are not added to
the original training dataset.

The stochastic gradient descent with momentum optimizer
is used to minimize the cross-entropy loss for the CNN
fine-tuning. The hyper-parameters are fixed as follows: the
momentum is 0.9, the mini-batch size is 16, the maximum
epoch is 10 for the Object-level CNN and 7 for the Part-
level CNN, the initial learning rate is 0.001, the learning
rate drop factor is 0.5, and the learning rate drop period
is 3. Also, the training data is shuffled before each training
epoch. No other image augmentation methods such as the
rotation is used for the experiments except the mean subtrac-
tion for each color channel.

Since the ResNet50 [28] is the most widely used CNN
architecture for food recognition problems, there are many
results available for comparisons. So, the performance of
the proposed two-scale CNN is compared with the pre-
vious methods [31]–[34] that are based on the ResNet50.
ResNet-50 is a convolutional neural network with 50 layers
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TABLE 1. Comparisons of the proposed two-scale CNN with the
ResNet50-based methods in terms of Top-1 and Top-5 accuracies.

and it has a fixed input size of 224 × 224. The network
pretrained on more than a million images from the ImageNet
database [35] is available for the transfer-learning. The pre-
trained network can classify images into 1000 object cate-
gories, such as keyboard, mouse, pencil, and animals. In this
paper, the pre-trained ResNet50 on the ImageNet is used for
fine-tuning the object-level CNN in Fig. 4. The comparative
results for the ResNet50-based methods are shown in Table 1.
First of all, for the proposed two-scale CNN, the fused results
of the Object-level and Part-level CNNs yield substantially
better results than the separated ones. This implies that the
object-level and part-level CNNs learn distinctive features in
their own scales, to some extent, exclusively. Next, the results
of the two types of the inference in Fig. 5 are compared.
When the early layers of the Object-level CNN are reused
for the Part-level CNN (i.e., Fig. 5(b)), the performance
loss is only around 1%, while the memory increase for the
replaced last layers of the Part-level CNN is only fractional

and we can save a lot of memory space. For example, for the
ResNet50 trained by the Food101 dataset, the Part-level CNN
parameters including all layers as Fig. 5(a) take 86.579MB,
but the last layers of them in Fig. 5(b) need only 0.754MB.
Similar memory savings can be observed for other datasets.
Finally, comparing to all the previous results based on the
ResNet50, the proposed two-scale CNN outperforms the
existing methods and achieves the state-of-the-art results
for all datasets. Interestingly, the performance gains for
Food-101 and VireoFood-172 are considerably higher than
UEC Food256. A possible cause for this is that the average
image sizes of Food-101 and VireoFood-172 are bigger than
that of UEC Food256. Specifically, the average numbers
of pixels (i.e., M × N ) for Food-101, VireoFood-172, and
UEC Food256 are 235140, 406050, and 210900, respectively,
and the UEC Food256 is the smallest. Note that, as the size
of the image increases, we need to delete more lines to have
the fixed target image size, say 224 × 224. This in turn
demands a sophisticated image resizing method to choose
the image lines to-be-deleted more wisely. In this regard, it is
expected that the optimal method of the linear programming
framework in (4) ∼ (8) works more effectively.
Although fusion is an important step to combine the

outputs of the multi-scale CNNs, since it is not the main
topic of this paper, no exhaustive trials for all possible
methods have been conducted except two simple score-
level fusions. Specifically, the normalized output-scores
(i.e., class-probabilities) of all multi-scale CNN outputs are
combined via a class-wise multiplication or a class-wise addi-
tion. Then, the class label that gives a maximum among all
fused scores is selected as the classified result. Experiments
show that the class-wise multiplication yields slightly bet-
ter results than the class-wise addition. So, all experimental
results shown in the tables were obtained by the class-wise
multiplication.

Table 2 shows the comparisons among the state-of-
the-art Top-1 and Top-5 accuracies reported in [26],
[36]–[39], which adopts other neural networks besides
ResNet50. This time, as an updated version of the ResNet50,
InceptionResNet-v2 [30] was adopted as the baseline CNN of
the proposedmulti-scale CNN. Inception-ResNet-v2 is a con-
volutional neural network with 164 layers and it has a fixed
input size of 299×299 (i.e.,M ′ = N ′ = 299). The Inception-
ResNet-v2 network pretrained on the ImageNet database [35]
is available for the transfer-learning and is used as the early-
layers of the pre-trained CNN in Fig. 4. Also, to make sure the
performance improvement with additional Part-level CNNs,
one more Part-level CNN dubbed as Mid-level CNN is added
to have a three-scale CNN (see Fig. 8). The Mid-level CNN
in Fig. 8 is trained to learn the intermediate features between
the object appearance and the part details. To do that the
line-based image resizing method of the linear programming
framework of (4) ∼ (8) is employed to provide resized
training images with the randomly chosen scale parameter
α ∈ [0.25, 0.45]. Recall that the scale parameter α for the
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TABLE 2. Comparisons of the proposed two-scale and three-scale CNNs
with the state-of-the-art results of other networks beyond the
ResNet50 for food recognition.

FIGURE 8. Three-scale CNN with Object-level, Mid-level, and Part-level
CNNs.

Part-level CNNwas chosen randomly from α ∈ [0.45, 0.65].
At the inference stage α is fixed as α = 0.35 for the
Mid-level CNN. For the UEC Food256 dataset, the WISeR
(WIde-Slice Residual Network) in [26] held the state-of-
the-art result. However, the result of 83.15% in [26] was
obtained bymaking use of the ground-truth (i.e., the bounding
box) information provided by the dataset. Since the proposed
multi-scale CNN takes no prior information about the dataset
except the class labels, it will be fair to compare the results
without the bounding boxes, which is 72.71% and is inferior
to 73.47% of the two-scale CNN and 74.11% of the three-
scale CNN. It is unclear whether 76.17% accuracy of [36]
was obtained by making use of the bounding box informa-
tion or not. For the Food101 dataset, there is no bounding box
information available. Now, excluding the WISeR 10-crop
testing [26], the result from the three-scale CNN achieved the
state-of-the-art for the Food101 dataset. As shown in Table 2,
for VireoFood 172 dataset, both implementations of the pro-
posed three-scale CNN and the two-scale CNN broke the
state-of-the-art accuracy. It is worth mentioning the com-
parative results of the three implementations, namely, the
two-scale CNN with the line-based resizing (Fig. 5(a)), the
two-scale CNN with the linear-scaling and random-cropping
(Fig. 6), and the three-scale CNN (Fig. 8). The performance
gains of the two-scale CNN in Fig. 5(a) compared to the
two-scale CNN in Fig. 6 are rather small. On the other hand,
there are noticeable performance improvements of the three-
scale CNN (Fig. 8) over the two-scale CNN (Fig. 5(a)).
One thing to note is that the result of the WISeR [26]
was obtained by aggregating the results of 10-crop images
[5], [40]. This is inefficient as it requires the network to
re-compute the predictions for ten times. The results of the
proposed multi-scale CNN were obtained by running each
path of the multi-scale CNN only once. Therefore, we need
only two resized images for a given test image and each
resized image is applied as an input for each path of the
two-scale CNN.
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V. CONCLUSIONS
Multi-scale CNN with an Object-level CNN and multi-
ple Part-level CNNs has been proposed for a fine-grained
image classification with no explicitly separable object-parts.
The basic approach to solve this domain-specific problem is
to resize training images with different scales. Specifically,
for the Object-level CNN the training image is resized such
that the global appearance of the object is to be included as
much as possible. A linear scaling followed by a random
cropping is adopted for the object-level image resizing. For
the Part-level CNNs, we need an image resizing method with
a scale-controllable parameter. So, the existing line-based
image resizing method is updated to control the scaling factor
by a parameter associated with the number of image-lines in
the constraint of the constraint optimization framework. Also,
the linear-scaling and random-cropping method is modified
such that the scaling factor can be determined by a parameter
in a new formula. Experimental results show that the pro-
posed two-scale CNN achieved the state-of-the-art accuracies
for the food recognition based on ResNet50 for all datasets
of Food-101, UEC Food256, and Vireo Food-172. Also,
the two-scale and the three-scale CNN broke the record of the
food recognition for Vireo Food-172 dataset with the Incep-
tionResNet v2. The proposedmulti-scale CNN can be applied
to other fine-grained image datasets to boost the classification
performance. It is especially suitable for the datasets with no
separable object-parts and no object bounding boxes.
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