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ABSTRACT Prostate cancer is the second-deadliest cancer in men in the United States, seriously affecting
people’s life and health. The Gleason grading system is one of the most reliable methods to quantify the
invasiveness of prostate cancer, which is of great significance for risk assessment and treatment planning
for patients. However, the task of automating Gleason grading is difficult because of the complexity of
pathological images of prostate cancer. This paper presents an automated Gleason grading and Gleason
pattern region segmentation method based on deep learning for pathological images of prostate cancer.
An architecture combining the atrous spatial pyramid pooling and the multiscale standard convolution is
proposed for the segmentation of the Gleason pattern region to get accurate Gleason grading. In addition,
the postprocessing procedure based on conditional randomfields is applied to the prediction. The quantitative
experiments on 1211 prostate cancer tissue microarrays demonstrate that our results have a high correlation
with the manual segmentations. The mean intersection over union and the overall pixel accuracy for the
Gleason pattern region are 77.29% and 89.51%, respectively. Furthermore, the results of the automatic
Gleason grading were comparable to the results of experienced pathologists. The inter-annotator agreements
between the model and the pathologists, quantified via Cohen’s quadratic kappa statistic, was 0.77 on
average. Our study shows that the method of combining different deep neural network architectures is
suitable for more objective and reproducible Gleason grading of prostate cancer.

INDEX TERMS Prostate cancer, gleason grading, image segmentation, deep learning, atrous spatial pyramid
pooling, computer-aided diagnosis.

I. INTRODUCTION
Prostate cancer is the second-deadliest cancer in men in the
U.S., seriously affecting people’s life and health [1]. Prostate
cancer mainly refers to a malignant tumor of an epithelial
tissue that occurs in the prostate. In recent years, prostate
cancer has gradually increased. At present, pathologists take
out a small amount of prostate tissue using ultrasound-guided
prostate biopsy technology [2]. By a series of advanced
methods such as those using microscope, histochemistry, and
immunofluorescence, they observe and analyze the pathology
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in the obtained prostate tissue to judge on the nature, type,
differentiation degree, and classification of prostate tissue.
Normal prostate tissue consists of stroma and regularly
arranged glands. However, cancer tissue has epithelial cells
that will replicate and destroy the regular arrangement of
glandular units. In high-grade cancers, the stroma and lumen
are generally replaced by epithelial cells.

The Gleason grading system is one of the most reliable
methods to quantify the invasiveness of prostate cancer [3].
Specifically, prostate cancer is classified according to the
system established by Donald Gleason in 1966 [4]. The
Gleason grading system was revised by the International
Society for Urological Pathology (ISUP) in 2014 and was

117714 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2723-220X
https://orcid.org/0000-0002-5709-703X
https://orcid.org/0000-0002-0472-0318


Y. Li et al.: Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning

acknowledged by theWorld Health Organization (WHO) [5].
It remains the most powerful prognostic tool, although the
histological Gleason grading system has been modified
according to the clinical diagnosis of prostate cancer [6].
Prostate cancer is divided into five grades according to the
Gleason grading system [7]. The histology of grade 1 is
characterized by a dense arrangement of well-differentiated
glands, forming well-defined nodules (Figure 1(a)); Grade 2
shows that the well-differentiated glands are more loosely
arranged, forming clearer nodules (Figure 1(b)); Grade 3
appears as scattered, independent, well-differentiated glands
(Figure 1(c)); Grade 4 manifests as poorly differentiated,
fused, or sieve-like (including glomerular-like structures)
glands (Figure 1(d)); Grade 5 is characterized by a lack
of glandular differentiation and necrosis (Figure 1(e)). The
higher the grade, the worse the prognosis. Gleason grading is
the sum of the tumor’s major component and minor compo-
nent (> 5%). If there is no minor component, the Gleason
score would be twice the major component pattern.
Otherwise, the sum of the primary and secondary pattern
is the Gleason score, such as 7 (3 + 4) or 3 + 4 = 7.
Special situations exist: if the composition of the tumor
is in two hierarchical forms and the proportion of tumors
of the secondary component is ≤5%, and the secondary
component has a lower pattern, then Gleason score= primary
component pattern+ primary component pattern; otherwise,
if the secondary component’s pattern is higher, then Gleason
score = primary component pattern + secondary component
pattern; if the tumor component has more than 2 hierarchical
forms, then Gleason score = primary component pattern +
highest level pattern [8]. Although the Gleason grading sys-
tem is gradually applied, up to now, most Gleason pattern
have been manually assigned by pathologists. This process
is very time-consuming and affected by inter- and intra-
observer variability [9]. This problem is especially prominent
when distinguishing between Gleason pattern 3 and Gleason
pattern 4, which will directly affect the follow-up treatment
because 3 + 4 is assigned to Gleason grading 2, but 4 + 3 is
Gleason grading 3 [10], [11].

FIGURE 1. Gleason grading example of the pathological image.
(a): Gleason grading 1, (b): Gleason grading 2, (c): Gleason grading 3,
(d): Gleason grading 4, (e): Gleason grading 5.

With the rapid development and application of auto-
matic computer-aided diagnosis technology and the cor-
responding progress in the available computing power of
whole-slide microscopic imaging, it is feasible to develop
an automatic Gleason grading system for prostate cancer.
Huang et al. [12] proposed a clinical decision support frame-
work to transform heterogeneous health data from different
sources. Li et al. [13] used machine learning to detect

and segment medical images and achieved good results.
Therefore, automatic Gleason grading of prostate cancer with
computer-aided design tools will help pathologists save time
and identify more accurate treatment.

In this paper, we propose a novel method for automatic
Gleason grading and Gleason pattern region segmentation
of images with prostate cancer pathologies based on a
convolutional neural network (CNN). An architecture that
combines the atrous spatial pyramid pooling (ASPP) from
Deeplab-V3 [14] and the multiscale standard convolution
inspired by a multiscale parallel branch convolutional neural
network (MPB-CNN) [15] is proposed for the segmentation
of the Gleason pattern region (not gland segmentation) to get
accurate Gleason grading. In addition, we improved the net-
work by combining the standard convolution with atrous con-
volution, and postprocessing based on a conditional random
field (CRF) is applied to the prediction. Our approach yields
higher performance on Gleason grading than previous work.
Furthermore, the Gleason pattern assignment of the model
achieved stratification of pathologists and divided patients
into groups with different prognosis.

II. RELATED WORK
This section introduces the related work on traditional
Gleason grading algorithms and applications of convolutional
neural networks in medical image segmentation.

A. TRADITIONAL GLEASON GRADING ALGORITHMS
There have been many studies on computer-aided Gleason
scoring for prostate cancer diagnosis. A common approach to
machine learning is to extract features and apply classifiers
to the selected features, such as Bayesian classifier [16],
support vector machines (SVM) [17], or random forests [18].
Smith et al. [19] proposed a similarity measurement method
that extracted the texture features and assigned the input
image to Gleason levels 1 to 3 and the combined grades of 4
and 5 by the nearest neighbor classifier. Wetzel et al. [20]
studied whether computational geometry abstractions, such
as spanning trees, which are part of feature sets, can help
accurately retrieve the matching levels. Moreover, they pro-
posed to represent the tissue image of each level by using
spanning trees in the tumor image to connect the nuclei.
Farjam et al. [21] used the texture features and k-means clus-
tering to extract the structural features of the gland region and
used the tree structure algorithm to classify the images into
1 to 5 levels. Nguyen et al. [22] described how prostate cancer
can be classified into three major categories (benign, grade 3,
and grade 4) by detecting the basic components of prostate
tissue using various texture features and the color space of
the tissue image. Gorelick et al. [23] used the AdaBoost
classifier to obtain high-level tissue information about the
locations and grades of tumors. Waliszewski et al. [24]
proposed a method based on fractal analysis when clas-
sifying adjacent Gleason groups (such as 3+3 and 3+4),
with an average sensitivity of 81% and an average speci-
ficity of 75%. Mosquera-Lopez et al. [25] described an
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improved local binary mode of tissue description with new
features and an automated prostate cancer biopsy image
classification system that integrates a new multistage learn-
ing framework with multiple classes and binary classifiers.
Bhattacharjee et al. [26] judged the benign and malignant of
prostate cancer based on SVM in histological pathological
images and predicted the Gleason grading. Although the
above methods have achieved good results, all systems need
to accurately locate small image areas to extract features. The
difference inGleason pattern inmicroarray images of prostate
cancer tissue is not obvious, and it is difficult to directly
classify features in a small area. This problem is very difficult;
thus, the reproducibility is limited and the methods cannot be
quickly applied in medical systems.

B. APPLICATIONS OF CONVOLUTIONAL NEURAL
NETWORKS IN MEDICAL IMAGE SEGMENTATION
In recent years, medical image classification and segmenta-
tion with convolution neural networks [27] have been widely
applied and practiced, as it achieved superior performance.
Fully convolutional networks (FCNs) [28] are semantic seg-
mentation networks successful in biomedical image analy-
sis [29], [30]. Scholars have improved neural networks to
adapt them to biomedical image processing, proposing U-
Net [31] and multiscale U-Net [32]. Ravì et al. [33] criti-
cally analyzed the relative advantages, potential drawbacks,
and prospects of health informatics research based on deep
learning, including translation bioinformatics, medical imag-
ing, and other key applications. Shi et al. [34] proposed a
multimode superposition depth polynomial network (mm-
SDPN) algorithm, which is composed of two-stage SDPN,
to integrate and learn the feature representation of multimode
neuroimaging data for the diagnosis of Alzheimer’s disease.
Jiang et al. [35] proposed an effective lung nodule detection
scheme based on multigroup patches of lung images. The
method achieved 80.06% sensitivity in detecting four levels
of pulmonary nodules by training a four-channel CNN using
the radiologist’s knowledge. Huang et al. [36] proposed a
blood cell classification framework using medical hyperspec-
tral images, which transforms the convolution kernel into
the frequency domain to learn features and combines them
with the characteristics of Gabor wavelet to improve clas-
sification of cells. Yan et al. [37] proposed a three-stage
deep learning model-thick vessel segmentation, thin vessel
segmentation, and vessel fusion-as vascular segmentation
tasks. The three-stage deep learning model is superior to the
latest vascular segmentation methods. Certainly, there are
many applications of deep learning in the Gleason grading
of pathological images of prostate cancer. Ing et al. [38] col-
lected 513 high-resolution images of primary prostate cancer
and tested the performance of four CNNs in the semantic
segmentation of high and low-grade tumors. Among them,
the precision of U-Net [31] was 0.885. Arvaniti et al. [39]
proposed a MobileNet [40] neural network for training the
prostate cancer image annotated by pathologists. The con-
sistency between the model and the two pathologists was

0.75 and 0.71, respectively. The experimental results were
similar to those between pathologists. Ren et al. [41] used
computer-aided analysis to classify Gleason pattern 3 and
Gleason pattern 4. First, deep CNNs automatically divided
the boundaries of each gland region. Next, color, shape, and
texture features were extracted and forwarded to the random
forest classifier. Kwak and Hewitt [42] proposed a deep
learning method to detect prostate cancer. First, tissue was
segmented to identify the lumen in a digitized image of the
prostate tissue sample. Then, CNN was used to automatically
extract higher-order image features of the lumen and predict
cancer in 5 different scales. Gurcan et al. [43] proposed
an automatic visual inspection of the whole slide images
detection method based on deep learning frameworks for
high grade Gleason score. Li et al. [44] presented a new
region-based convolutional neural network (R-CNN) [45]
for multitask prediction using both epithelial and hierar-
chical network headers. After five cross-validations, their
model achieved an average intersection of 79.56% and pixel
accuracy of 89.40% for Gleason grading. Lucas et al. [46]
realized the automatic detection of Gleason pattern 3 and
Gleason pattern ≥4 in digital prostate biopsy by using a
CNN to automatically detect Gleason patterns and through
the retraining of Inception-v3 CNN to determine the grade
group. Karimi et al. [47] demonstrated classification and
data enhancement that combined three independent CNNs
that worked on three different image blocks, respectively.
After training of CNN, a trained logistic regression model
was separately used for prediction. The authors proposed
new data enhancement methods to effectively train the
model and perform accurate Gleason grading of prostate
cancer in histopathological images with limited datasets.
Nagpal et al. [48] presented a deep learning system (DLS)
that combined the data collected in the laboratory for Glea-
son scoring whole-slide images of prostatectomies. The DLS
achieved a significantly higher diagnostic accuracy of 0.70.
Bulten et al. [49] developed a fully automatic deep learning
system to grade prostate biopsies according to the Gleason
grading criteria. The deep learning system outperformed
10 of 15 pathologists in a separate observation experiment.
The system was developed to map individual glands, assign
Gleason growth patterns, and determine biopsy levels [50].
Madabhushi et al. [51] proposed deep learning as an auto-
mated method of training networks using labeled images
without other assumptions (which has proven to be very use-
ful in many similar areas of digital pathology) and discussed
two deep learningmethods for Gleason grading. Although the
application of the above-mentioned deep learning methods
has achieved good results, most studies have only performed
a few grades, such as benign and malignant prostate cancer,
Gleason 3 and Gleason 4, but our method classification is
relatively complete. Some studies used classification net-
works, and the results obtained are judgments on the entire
image, and the subdivision of the Gleason pattern cannot be
clearly obtained. There are still some studies based on gland
segmentation to obtain Gleason grading, but the distribution
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FIGURE 2. Overview of the proposed model architecture. The original prostate cancer tissue microarray image is fed into two different branches. For
Branch-1, the atrous spatial pyramid pooling architecture is used to capture image multiscale information based on atrous convolution. For Branch-2,
the parallel branch convolutional neural network is used to capture image multiscale information based on standard convolution. Finally, the CRF based
post-processing procedure is applied to the prediction.

of glands in the image is relatively dense, and the required
gold standard will consume a lot of labeling time. In contrast,
our method can segment the region of Gleason pattern to
gain more complete Gleason grading results, and also save
a lot of annotating time. Moreover, the convolutional neural
networks currently used for Gleason grading are mostly of
a single structure. The network we proposed is a fusion of
two structures, and uses the atrous convolution and standard
convolution together to exert their respective advantages.

III. PROPOSED APPROACH
In this section, we first introduce the network architecture
proposed in this study. Then, we describe our model: details
of implementation and training, loss function, and postpro-
cessing. Finally, we define the metrics used to evaluate our
method and the proposed data augmentation.

A. NETWORK STRUCTURE
The main framework of our method proposed in this study
(which has two branches) is illustrated in Figure 2.

For Branch-1, the ASPP architecture is used to capture
multiscale image information using the atrous convolution.
This method can obtain multiscale information, and the
amount of calculations is relatively small. It also uses the
method of atrous convolution. For Branch-2, the parallel-
branch CNN is used to capture multiscale image information
using the standard convolution. These three branches use
convolution kernels of different sizes to capture multiscale
information. The features of Branch-1 and the three maps
obtained by Branch-2 are cascaded together as the input of
the main network to obtain the final segmentation results.

The fully connected CRF-based postprocessing is applied
to the prediction. This step is only for postprocessing; CRF is
not used during the training.

B. IMPLEMENTATION AND TRAINING
Figure 3 shows pathological images and the corresponding
annotation using the Gleason grading of prostate cancer.
The texture structure of prostate cancer pathology image
is extremely complicated. In particular, there is a tiny dif-
ference between Gleason pattern 3 and Gleason pattern 4.
Even professional and experienced pathologists need to mag-
nify the image several times to describe the Gleason score
region. Because the image segmentation target has differ-
ent scales, the ASPP and parallel branch structure that can
obtain multiscale information of the image are combined,
and atrous convolution and standard convolution are used,
respectively. Therefore, in this paper, our method is divided
into two branches, and both branches are implemented using
the open-source deep-learning library TensorFlow [52].

Branch 1 sends a large number of prostate cancer tissue
microarray (TMA) images to the network model for training.
For multiscale object segmentation, it uses serial and par-
allel perforated convolution modules, using multiple atrous
rates to obtain multiscale information. Branch-1 first uses
convolution to reduce the number of channels (and reduce
calculations) and then adds a pyramid model based on
atrous convolution to capture multiscale information. The
idea of network architecture comes from the ASPP module,
which excavates convolution features at different scales and
describes the image information in more detail. However, for
the prostate cancer TMA images, which contain many small
targets, atrous convolution is not as large as possible. The
selection of rates in this study is shown in Figure 4: rates are
set to 6, 12, 18, respectively.

We are limited by the lack of precisely annotated
training data (because of the difficulty and cost of generat-
ing high-quality data). Data augmentation is applied to the
prostate cancer TMA images, including training sets and
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FIGURE 3. Pathological image and annotation of prostate cancer Gleason grading. Green indicates ‘‘benign,’’ blue indicates ‘‘Gleason pattern 3,’’ yellow
indicates ‘‘Gleason pattern 4,’’ and red indicates ‘‘Gleason pattern 5.’’ The prognosis is better in the first row and worse in the second row.

FIGURE 4. Branch-1 Infrastructure Network Structure. Rates are set to 6,
12, 18 respectively.

validation sets. Augmentation includes horizontal and ver-
tical reversals and 90◦ random integer multiplier rotations.
Even so, our dataset cannot support the complete training of
the network. We overcome this limitation by using natural
image data (called transfer learning). Transfer learning helps
to reduce overfitting on finite medical datasets and allows
us to leverage networks with more parameters. Therefore,
we used the implementation of Deeplab-V3 [14], which
was trained on the PASCAL VOC2012 dataset [53], as a
pretrained model to initialize the network.

Branch 2 sends the prostate cancer TMA images to the
parallel-branch CNN to training. The parallel-branch CNN

architecture includes three parallel branches. All branches
share the same network architecture, including an encoder
and a decoder. Input training image blocks are fed into three
branches, respectively. In our approach, the base architecture
of each branch is FCN [28]. All convolutions are standard;
however, these three branches use convolution kernels of dif-
ferent sizes to capture multiscale information. Other network
parameters are fine-tuned according to the characteristics
of our images. The detailed network architecture is shown
in Figure 5.

FIGURE 5. Branch-2 Infrastructure Network Structure.

Every input image was sent to two branches respectively
acquiring two features with different scales. For branch 1,
the selection of rates in this study is shown in Figure 4: rates
are set to 6, 12, 18, respectively. For branch 2, the sizes
of the standard convolution were set to 3 × 3, 5 × 5 and
9 × 9, respectively. Then we cascaded the output of the two
branches as the input to predict the segmentation label map
followed by stacking convolutional layers in the backbone.
In the encoder part of each branch, after several convolu-
tional layers, max-pooling with a window of 2 × 2 and a
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stride of 2 was performed. The decoder section includes three
upsampling operations. The first two upsampling operations
are performed by a 4×4 deconvolution operation, and the last
upsampling restores the size of the feature map to the size of
the original image.We optimized it using the gradient descent
algorithm with the batch size of 20. The learning rate was
set to 0.0001. The number of iterations in this study was set
to 50000. The most important constants are selected through
hyperparameter adjustment, including the constant value in
the loss function, learning rate, kernel size, and the number
of iterations. In addition, the remaining parameters were
selected based on experience, including batch size and partial
loss function parameters. Table 1 summarizes the network
parameters.

TABLE 1. Parameter settings for our network.

C. LOSS FUNCTIONS
During the training, the main network is a combination of
different network architectures of Branch-1 and Branch-2.
The pixel-wise cross-entropy loss was applied to predictions.
The output of the network is pixel-wise softmax:

pk (x) = exp (ak (x)) /

(
K∑
k=1

exp (ak (x))

)
(1)

where x is the pixel position on the two-dimensional plane,
ak (x) is the value of the k th channel corresponding to pixel x
in the final output layer of the network; pk (x) is the proba-
bility that pixel x belongs to class k . For the ith branch with
a pixel-wise cross-entropy loss F , the loss was computed as
follows:

F =
∑
x

w(x) log
(
pI (x)(x)

)
(2)

where pI (x)(x) is the output probability of x on the channel
where the real label is located; w(x) is the weight associated
with pixel x. It is defined as follows

w(x) = wc(x)+ w0 · exp

(
−
(d1(x)+ d2(x))2

2σ 2

)
(3)

where wc is a weight graph representing the frequency of the
balance class, d1(x) is the distance from pixel x to the area
closest to it, d2(x) is the second closest distance from the
pixel x to its region, based on experience, set w0 = 10 and
σ ≈ 5.

D. POSTPROCESSING
The CRF-based postprocessing is applied to the prediction
and is not used during the training. Li et al. [44] and
Chen et al. [54] later used this method as a postprocessing
step. The CRF model employs the energy function [54]:

E(x) =
∑
i

θi (xi)+
∑
ij

θij
(
xi, xj

)
(4)

where x is defined in the entire image and xi is the label
assignment for ith pixel. We refer to the first term as unary
potential, which is defined as θixi = − logP (xi), where Pxi
is the label assignment probability at pixel i as computed by
the segmentation. We refer to the second term as the pairwise
potential, which is θij

(
xi, xj

)
= µ

(
xi, xj

)
W , where

µ
(
xi, xj

)
= 1 if xi 6= xj, and zero otherwise; W are the

bilateral position and color terms in the kernels.

w1 exp

(
−

∥∥Pi − Pj∥∥2
2σ 2
α

−

∥∥Ii − Ij∥∥2
2σ 2
β

)

+w2 exp

(
−

∥∥Pi − Pj∥∥2
2σ 2
γ

)
(5)

Two Gaussian kernels are used by W in different feature
spaces. Here, P is the pixel position and I is the pixel RGB
color. The first kernel uses P and I to keep adjacent pixels
with similar colors in the same category, and the second one
only uses P to remove small isolated areas. Hyperparameters
σα, σβ , and σγ control the scale of Gaussian kernels and
were obtained experimentally.

E. EVALUATION METRICS
Some evaluation metrics were used to access the performance
of Gleason grading and region segmentation. To make our
method comparable with other methods, we use the standard
metrics [44]: Jaccard coefficient (J ), mean intersection over
union (mIOU), and overall pixel accuracy (OPA) to evaluate
the performance of the segmentation results. Jaccard coeffi-
cient is defined as the ratio of the size of the intersection of
A and B to the size of the union of A and B. Here, Jaccard
coefficient is defined as

J =
Uii

Ti + Pi − Uii
(6)

where Uii is the number of pixels labeled as i and also
predicted as i, Ti is the number of pixels labeled, Pi is the
number of pixels predicted. The mIOU is defined as

mIOU =
N∑
i=1

Ji (7)

where N is the number of classes. OPA is defined as

OPA =

∑
iUii∑

i
∑

i Cii
(8)

where Cii is the sum of pixels labeled as i and predicted as i.
Cohen’s kappa [55] statistics are widely used to assess

consistency among evaluators. Cohen’s kappa considers the
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possibility of accidental agreement: its value is 0 for acci-
dental agreement and 1 for perfect agreement. For ordered
classes, weighted Cohen’s kappa is more appropriate, as it
penalizes more serious disagreements between annotators.
Here, we use a quadratic weighted kappa statistic defined as
follows:

kappa = 1−

∑
i,j wi,jOi,j∑
i,j wi,jEi,j

,wi,j =
(i− j)2

(M − 1)2
(9)

where M is the total number of considered classes; indices i,
j refer to the ordered classes 1 ≤ i, j ≤ M , Oi,j is the number
of images that were assigned to class i by the first expert and
class j by the second, and Ei,j denotes the expected number
of images labeled as class i by the first expert and class j by
the second expert, assuming no correlation between classes.

F. DATA AUGMENTATION
To train an acceptable deep learning model, enough training
samples are necessary. For data augmentation in our exper-
iment, we chose to flip each prostate cancer TMA image
from left to right, from top to bottom, and rotate the image
by 90 degrees, 180 degrees and 270 degrees respectively;
this flipping preserves the visual structure. While the data
augmentation method expands the amount of data, it can also
select approximately equal numbers of different classes of
data to train to solve the class imbalance problem.

IV. EXPERIMENTS
In this section, we first introduce the dataset and the experi-
mental setup used in this study. Then, we analyze our results
quantitatively and qualitatively. We calculate the number of
pixels in the corresponding region in the output of our model
as the area of the Gleason pattern region for comparison with
other works.

A. DATASETS
Table 2 demonstrates the dataset used in this study, which
includes 7 groups of prostate cancer TMAs, each contain-
ing 200-300 images. These five TMAs have been used and
published in many other studies, such as TMAs 76, 80
[39], [56], [57], TMAs 111 [39], [58], TMAs 204 [39],
[59], and TMAs 199 [39]. The total number of prostate
cancer tissue microarrays is 1211 (325 from a local hospi-
tal and 886 from [39]). The classes of Gleason grading of

TABLE 2. Dataset gleason grading summary.

TMA_A, TMA 111, TMA 199, and TMA 204 were unevenly
distributed in each group; thus, it was more reasonable to
combine them for training. Instead, TMAs 76 is used as a
verification set because it has the most balanced distribu-
tion. TMA_B and TMAs 80 contain the largest number of
cases and were selected as the test set. According to the
latest revision of the Gleason grading by ISUP in 2014,
Table 2 divides the TMAs data except for ‘‘Benign’’ into five
categories (Gleason score=6, 3+4, 4+3, 8, and 9-10, respec-
tively). Figure 3 shows the samples of prostate cancer TMA
images and Gleason annotations provided by the patholo-
gists (green: benign; blue: Gleason pattern 3 regions; yellow:
Gleason pattern 4 regions; red: Gleason pattern 5 regions).
We use TMARKER41 software to describe the cancerous
area and mark it with the corresponding Gleason pattern.
The prostate TMA images [39] were assigned to each region
by 3, 4, or 5 Gleason patterns for annotation by the first
pathologist (K.S.F). TMA images from the test set [39] were
annotated independently by the second pathologist (J.H.R.) to
quantify the variability between pathologists. Similarly, our
data is also labeled by two senior pathologists. In the pro-
cess, the pathologist carefully depicts the cancerous region.
In addition, pathologists labeled TMA images containing
only benign prostate tissue as ‘‘Benign.’’ From Figure 3,
the shape of the individual region of the Gleason pattern in
the TMAs is grotesque, and the inter-class differences are
also minimal. The tissue microarray images of [39] used in
this study has been made publicly available on Github (for
specific link reference [39]). Unfortunately, for reasons of
ethics and patient privacy we are not able to provide the data
of local hospital into a public database.

B. EXPERIMENTAL SETUP
The experiment was performed on a hardware setupwith Intel
Xeon CPU, one 11 GB NVIDIA Tesla V100 PCIe GPU, and
16 GB RAM. The software was Python 3.7 and TensorFlow.
The total number of prostate cancer tissue microarrays is
1211 (325 from a local hospital and 886 from [39]; the
detailed data allocation is described in Section IV-A). The
experiment was designed considering the data of each patient
independently.

C. QUANTITATIVE EVALUATION
Table 3 compares the performance of automated and man-
ual segmentation. From Table 3, our model achieves better
performance (mIOU: 77.29%; OPA: 89.51%) than other
methods for Gleason patterns (Gleason 3, 4, or 5, and benign).
We compared our model with several baseline models using
the same data and the same post-processing operations.
Semantic segmentation uses FCN [28], and most neural
networks are based on it, but FCN has a big problem with
segmenting images of prostate cancer TMAs. U-Net [31] and
multiscale U-Net [32] are based on FCN and are suitable for
medical image segmentation. However, these networks are
not ideal for the prostate cancer TMA images. The results
were not satisfactory for Deeplab-V3 [14], using atrous
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TABLE 3. Model performance on segmenting prostate histological images as ‘‘benign’’ (B), ‘‘gleason pattern 3’’ (3), ‘‘gleason pattern 4’’ (4), and
‘‘GLEASON PATTERN 5’’ (5).

convolution and ASPP, and MPB-CNN [15], using atrous
convolution and multiscale parallel CNN. Compared with
the Path R-cnn network [44] that also uses the segmentation
network to solve the Gleason grading problem, our method
still works better.

For test data, each prostate cancer TMA is annotated
with the detected Gleason patterns (Gleason 3, 4, or 5)
by the model and the pathologists. A final Gleason score
(Gleason 6, 7, 8, 9, or 10) is assigned as the sum of the
two Gleason patterns. If no cancer is detected, the prostate
cancer TMA is classified as benign. The confusion matrix for
Gleason score allocation is demonstrated in Figure 6, where
(a) (Kappa=0.79) and (b) (Kappa=0.74) are confusion
matrices for Gleason score allocation used to compare data
from [39]; (c) (Kappa=0.77) and (d) (Kappa=0.79) are used
to compare data from the local hospital; (e) (Kappa=0.75)
and (f) (Kappa=0.71) are confusion matrices for Gleason
score allocation in [39]. In public data, our method achieves
better results compared to the original article [39].

D. QUALITATIVE EVALUATION
The Gleason grading system is one of the most reliable
methods to quantify the invasiveness of prostate cancer [3].
However, it is very difficult for pathologists to observe
Gleason grading through multiple prostate cancer TMAs.
Most of the previous studies [21], [38], [41], [44], [46]
used an accurate segmentation of glands to achieve the
Gleason grading of images with prostate cancer pathologies.
Although the above methods have achieved good results, it is
a time-consuming and difficult task to annotate glands in
prostate cancer TMAs. In our method, the pathologist only
needs to mark the region of Gleason patterns (Gleason 3,
4, 5) in the prostate cancer TMAs. A final Gleason score is
assigned as the sum of the two Gleason patterns. Figure 7
shows the segmentation results of Gleason patterns in prostate
cancer TMAs with our method. In Figure 7, the first column
is the original histological image of the prostate cancer tissue
microarray. The second column and third column show the
annotated image of the prostate cancer tissue microarray by
the first pathologist and the second pathologist (as the ground
truth), respectively. The fourth column shows the results of
our method. In ‘‘Benign,’’ the benign region in the image is
not continuous, and there are many holes in the middle. The
segmentation performance of ourmethod is still considerable.

FIGURE 6. Model evaluation on test data. Each prostate cancer tissue
microarray is annotated with detected Gleason patterns (Gleason 3,
4 or 5) by the model and pathologists. A final Gleason score is assigned
as the sum of the two Gleason patterns. If no cancer is detected,
the prostate cancer tissue microarray is classifed as benign. (a) and (b):
Confusion matrix for Gleason score allocation used to compare data
from [39]. (c) and (d): Confusion matrix for Gleason score allocation used
to compare data from the local hospital. (e) and (f): Confusion matrix for
Gleason score allocation in [39].

For the segmentation of Gleason score 6, Gleason score 8,
and Gleason score 10, the segmentation results are in high
agreement with the annotations of two pathologists. However,
it is very difficult to segmentmultiple Gleason patterns on one
prostate cancer TMA, such as Gleason socre 7 and Gleason
score 9. Even the descriptions of the two pathologists are
different.

V. DISCUSSION
A. CONTRIBUTIONS
The first novel idea proposed in our study is an accurate
Gleason grading by segmentation of the Gleason pattern
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FIGURE 7. Segmentation results of low-level Gleason pattern region of our method. First column: Original histological image
of prostate cancer tissue microarray. Second column and third column: The annotated image of the prostate cancer tissue
microarray by the first pathologist and the second pathologist (as the ground truth), respectively. The green region represents
‘‘benign,’’ the blue region represents ‘‘Gleason pattern 3,’’ the yellow region represents ‘‘Gleason pattern 4,’’ and the red
region represents ‘‘Gleason pattern 5.’’ Fourth column: The results of our method.

region, including glands and other tissues. Most of the pre-
vious studies [21], [38], [41], [44], [46] used an accurate
segmentation of glands to produce the Gleason grading of
images with prostate cancer pathologies. Although the above

methods have achieved good results, it is a time-consuming
and difficult task to annotate glands in prostate cancer
TMAs. In our method, the pathologist only needs to mark
the region of Gleason pattern in the prostate cancer TMA.
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Furthermore, tissue relationship information outside the
gland region may be lost during feature extraction.

The second novel idea proposed in our work is to combine
two different network models with two different convolution
methods based on deep learning for Gleason grading of
the prostate cancer TMA. One is ASPP, the other is mul-
tiscale standard convolution. ASPP is a powerful network
architecture for intensive prediction tasks, which highlights
convolution with an upsampling filter or atrous convolution.
Atrous convolution effectively enlarges the filter’s receptive
field to mix richer context information without increasing the
number of parameters and computational complexity. Adding
a simple and effective decoding module and fine-grained
segmentation improve the segmentation of the Gleason pat-
tern regions for prostate cancer TMAs with complex textures
and structures. For Branch-1, because of the lack of image
samples, we use transfer learning with Deeplab-V3. Transfer
learning helps to reduce overfitting on smaller medical
datasets and allows us to leverage networks with more param-
eters. The multiscale parallel-branch CNN uses standard
convolution. The feature mapping of three different branches
is cascaded by several convolutions and low-level feature
calculations to achieve the goal of accurately segmenting
images of different scales. For Branch-2, we augmented the
data to provide more detailed information for the network
when extracting features and to increase the training dataset.
Deep learning has been used in recent work [44], [46], [47]
on automatic Gleason grading. Li et al. [44] presented a new
region-based convolutional neural network (R-CNN) [45] for
multitask prediction using both epithelial and hierarchical
network headers. They use the same network architecture to
solve two branch tasks that are different from what we do.
Our study is also different from work by Lucas et al. [46],
who used CNN to automatically detect Gleason patterns and
retrained Inception-v3 CNN to determine the grade group.
Karimi et al. [47] used classification and data augmentation
that combined three independent CNNs that worked in three
different image blocks, respectively. However, our proposed
method is the first study that combines networks with differ-
ent architectures.

Our last contribution is the CRF-based postprocessing
applied to the prediction. Li et al. [44] and Chen et al. [54]
used CRF as a postprocessing step, which helps in removing
unnatural boundaries created by the stitching.

B. LIMITATIONS
Our method has limitations. First, considering the distribu-
tion of prostate cancer TMAs, we fixed the training set,
verification set, and testing set. However, we think it is fair
to compare the models in our study because we use the
same train-test data split as in [39] (apart from the data we
collected). In the future, we hope to do cross-validation by
increasing the amount of data. Second, we only used rigid
deformation for data augmentation. Principal-component-
analysis (PCA)-based intensity jitter method [60], genera-
tive adversarial networks (GANs) method [61], and data

augmentation in the feature space [47] can be considered
in the future. Finally, for the multiple Gleason patterns on
one prostate cancer TMAs (such as Gleason score 7 and
Gleason score 9), the result of segmentation is not precise
enough. We will improve the network to make the segmenta-
tion results more accurate.

VI. CONCLUSION
In this paper, we propose a novel method for automatic
Gleason grading and Gleason pattern region segmentation of
images with prostate cancer pathologies based on a convolu-
tional neural network (CNN). An architecture that combines
the atrous spatial pyramid pooling (ASPP) from Deeplab-V3
and the multiscale standard convolution inspired by a
multiscale parallel branch convolutional neural network
(MPB-CNN) is proposed for the segmentation of the Gleason
pattern region (not gland segmentation) to get accurate
Gleason grading. In addition, we improved the network by
combining the standard convolution with atrous convolu-
tion, and postprocessing based on a conditional random
field (CRF) is applied to the prediction. Our study shows
that the method of combining different deep neural net-
work architecture is suitable for more objective and repro-
ducible prostate cancer Gleason grading. Our approach yields
higher performance on Gleason grading than previous work.
Furthermore, the Gleason pattern assignment of the model
achieved stratification of pathologists and divided patients
into groups with different prognosis.
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