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ABSTRACT Equipment degradation state recognition and prognosis are considered two significant parts of
a prognostics and health management (PHM) system that help to reduce downtime and decrease economic
losses. In this paper, a sparse representation (SR) feature is proposed as a new degradation feature, and the
hidden semi-Markov model (HSMM) is established. The new method offers three significant advantages
over the traditional HSMM. (1) Since the degradation information is incomplete, a Gaussian mixture
model (GMM) is used here for degradation data clustering and state division. (2) A new degradation feature
based on the wavelet packet transform (WPT) and SR can better extract the structural information of the
collected signal and reflect the degradation characteristics. (3) To conduct remaining useful life (RUL)
predictions, an improved model is proposed, which adds a control variable that can dynamically adjust the
state duration. The effectiveness of the proposed method is demonstrated using 8 groups of bearing data from
the Center for Intelligent Maintenance Systems (IMS). The results show that the HSMMwith the SR feature
achieves the best recognition accuracy, of 85.28%. Moreover, the improved prediction model achieves a
prediction accuracy of 86.11% on average for 8 bearings.

INDEX TERMS Sparse representation, hidden semi-Markov model, degradation recognition, feature
extraction, prognostic, bearing.

NOMENCLATURE
PHM prognostics and health management
RUL remaining useful life
HMM hidden Markov model
HSMM hidden semi-Markov model
HOPF high-order particle filter
EEMD ensemble empirical mode decomposition
AHSMM adaptive hidden semi-Markov model
GMM Gaussian mixture model
WPT wavelet packet transform
SR sparse representation
EM expectation and maximization
K-SVD k-means singular value decomposition
CS compressive sensing
BCS Bayesian compressive sensing
PC the Partition Coefficient
SC the Partition Index
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SI the Separation Index
XB the Xie and Beni’s Index
IMS intelligent maintenance systems
PCA Principal component analysis
WPE wavelet packet energy
MC Monte Carlo
K the number of macro-states
st the segment at time t
qi the end-point of macro-state xi
X = {x1, x2, . . . , xK } the macro-states sequence
π initial state distribution
A the state transition probability

distribution
Y = {y1, y2, . . . , yL} the observation model
O = {o1, o2, . . . , oT } the observation sequence
B the observation probability

distribution
H the HSMM model
y the signal to be decomposed
D the redundant dictionary
m the dimension of signal y
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n the number of atoms in dictionary D
{d1, d2, . . . , dn} the atoms in dictionary D
x the sparse coefficients
Y the training matrix in dictionary

learning
X the set of sparse coefficients
xi the i-th row of matrix X
Ei the residual matrix in the K-SVD

learning algorithm
ωi a nonzero index set of xi
�i the matrix replacing the elements in

set ωi with element 1
EiR the product of Ei and �i
xiR the product of xi and �i
U , 1, V the SVD decomposition results of

matrix EiR
u1, v1 the first column of matrices U and V
wpi the i-th subband of wavelet packet

decomposition
8i the measurement matrix of subband i
λi the measurement vector of subband i
θ i the sparse vector corresponding to

dictionary Di
δi the reconstruction residual of subband i
ε denotes the number of subbands
Di the dictionary trained for subband i
P(xl) the macro-state duration density
µ(xl) the duration mean
σ 2(xl) the duration variance
Pi the probability of equipment state i
RLi the estimated RUL of state i
Ui the unified variable of the three duration

values of state i
a the number of degradation states
Ui−1 the average duration of the historical

data
ki is the variable controlling the duration

of the degradation state i
Fi the degradation feature of state i
F(t) represents the degradation feature of

time t

I. INTRODUCTION
Equipment monitoring, detection, and management have
played important roles in modern militaries. Prognostics and
health management (PHM) systems have been applied in
both military [1] and civilian [2]–[4] areas. In the military,
the efficiency and availability of equipment are increased
in many applications where equipment safety and reliability
are critical. The PHM process involves observing degrada-
tion features, evaluating the current states, and predicting
the remaining useful life (RUL). Generally, a prerequisite
to the deployment of a PHM is effective diagnostics and
prognostics.

Current health diagnostics and prognostics methods can
be divided into three kinds: physical models, data-driven
models, and mathematical models. The drawbacks of phys-
ical models are low accuracy and high cost. The draw-
back of data-driven models stems from the large amount
of data, which consumes much time in practice. Thus, in
this paper, a mathematical model called the hidden Markov
model (HMM) is introduced for equipment diagnostics and
prognostics. Most machinery degradation is a slow process
from normal to failure states. Due to influences of the equip-
ment and noise, the relationships between internal states
and devices become complicated. Assessing equipment states
using external measurements is a double stochastic process,
which is consistent with the HMM. This model has a rich
mathematical structure, which fits actual equipment degra-
dation well. Moreover, the HMM combines both diagnostics
and prognostics in a unified framework, and this can be seen
as another advantage.

The HMM is increasingly popular in many fields,
such as speech recognition [5], [6] and handwritten word
recognition [7]. The hidden semi-Markov model (HSMM),
constructed by adding a temporal component to the HMM
structure, has satisfactorily addressed the limitations of
the HMM for the Markov property and can be directly
used in prognostics. In recent years, the HSMM has been
widely used in degradation assessment and fault prognostics.
Dong et al. [8] applied the HSMM to UH-60A Black-
hawk planetary carriers and a hydraulic pump. The diagnosis
accuracy was increased by 45% and 81% for test cell and
on-aircraft measurements, respectively. They assume that the
degradation states are preset and use the wavelet coefficients
as the degradation features. Xiao et al. [9] proposed a mod-
ified duration-dependent HSMM for online condition moni-
toring. This model was defined as duration dependent, which
is realistic. Then, a high-order particle filter (HOPF) method
was applied to predict the RUL. The hidden states were
determined according to experience-based failure knowledge,
and the ensemble empirical mode decomposition (EEMD)
method was used to extract the fault feature information.
Cannarile et al. [10] proposed a homogeneous continuous-
time finite-state hidden semi-Markov model (HSMM) to
estimate the degradation states. The diagnosis effective-
ness was thoroughly tested with the bearing data. However,
the research on prediction effects is relatively weak, for it
has only judged the degradation level of observed signals.
Liu et al. [11] improved the HSMM by using a sequen-
tial Monte Carlo method to describe the probability rela-
tionships between degradation states and observations. They
also developed a new online health prognostic method for
RUL estimation. Furthermore, they proposed an adaptive
hidden semi-Markov model (AHSMM) [12] for multisen-
sor equipment diagnosis and prognosis. The wavelet packet
energy (WPE) is used as the degradation feature in this article.

From the related work mentioned above, the applica-
tion of the HSMM faces three problems: (1) Determining
the degradation states. Traditional works assume that the
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degradation states are known. However, the number of these
states may not be accurate if there is a lack of corresponding
prior knowledge. For example, if only run-to-failure data can
be obtained, it is impossible to directly obtain the degradation
states, and this limits the application of the HSMM. Zeng [13]
proposed an algorithm based on the minimum description
length (MDL) principle. Teng et al. [14] proposed a method
combining K-means and cross-validation to optimize this
number. Zhang et al. [15] established a group of evaluating
features for choosing appropriate state number. They set a
range of available state number and enumerated them in
order. The evaluating features were calculated for selecting
optimized degradation state number. In practice, it is difficult
to verify the efficiency of the state number according to the
clustering effects, so we adopt the method in [15] for state
number selection. (2) Degradation feature selection. Accord-
ing to the literature review, wavelet packet decomposition is
the most commonly used feature extraction technique. More-
over, the reference [16] used a wavelet correlation feature
scale entropy as the input of HSMM. The feature based on the
information entropy theory is presented to get high signal-to-
noise scales wavelet coefficients. Wang et al. [17] used the
relative entropy fusion for hydraulic pumps fault predicting.
A features fusion algorithm was also presented for making
full use of degradation feature information. In addition, a new
approach based on generalized mathematical morphological
particle is proposed in [18]. Although the above features have
achieved good results, there is still room for improvement
to achieve better recognition and prediction performance.
(3) Prognostics using the HSMM. Combined with the
HSMM, the particle filter (PF) [9] and Monte Carlo (MC)
methods [19] are most commonly used for estimating the
RUL. However, these techniques are computationally intense
and not suitable for online RUL prediction in real industrial
applications. Reference [20] proposed a relatively simple
model for remnant life prediction. The RUL of each state is
obtained by adding the duration of that state and the subse-
quent degradation states. In this way, the calculated RUL is
larger than the actual one unless the duration of each state is
short enough.

This paper improves the traditional HSMM by
addressing the above three problems. First, we propose a
Gaussian mixture model (GMM) [21] based on the timing
factor. The GMM has been demonstrated to be efficient for
speech recognition [22]. In addition, the timing factor ensures
that the GMM’s clustering follows the timing order. More-
over, a new feature based on the wavelet packet transform
(WPT) [23] and sparse representation (SR) [24], [25] is
proposed in this paper to observe degradation. The wavelet
transform is outstanding among equipment condition recog-
nition methods due to its multiresolution ability. SR allows
the salient information in a signal to be conveyed with a linear
combination of elementary components, which are called
atoms. To date, it has been successfully applied to a variety of
problems, including compressive sensing (CS) [26]–[28], sig-
nal denoising [29], and fault classification [30]. In this study,

SR is applied to find concise, high-level representations of
WPT subbands that match the structure of the degradation
signal by using a learned dictionary. Finally, an improved
prediction model based on the HSMM is proposed. To obtain
an accurate duration, a control variable k is introduced in the
model, and it can be calculated using the degree of degra-
dation. Thus, a more accurate RUL value can be obtained
through dynamically adjusting the duration.

This paper is organized as follows: Section 2 provides
a general theoretical background. The GMM-SR-HSMM
framework for degradation recognition and prognostic is pre-
sented in Section 3. Section 4 gives a real application of
bearing from IMS center. Finally, Section 5 summarizes this
paper and draws conclusions.

II. METHODOLOGY
A. THE HIDDEN SEMI-MARKOV MODEL
The hidden Markov [5] is a double stochastic process. One
process is a Markov chain describing the state transitions;
this is the basic process in which states cannot be directly
observed. The states in this basic process are called the
hidden states. Another stochastic process describes the cor-
respondence between observations and hidden states. The
HSMM is different from the HMM due to its explicit state
duration, and the duration is a random value.

The states in a segmental HSMM are called macro-states
and each macro-state consists of several micro-states. Only
the transition between macro-states follows Markov prin-
ciples. Fig. 1 displays a basic framework of the HSMM.
An HSMM can be described with following parameters [8].

(1) The number of macro-states is K , the segment at time t
is st , and the end-point is qi. All macro-states can be repre-
sented as X = {x1, x2, . . . , xK }.

(2) The initial state distribution is π = {πi|πi = P
(xi = i), i = 1, 2 . . . ,K }, and the state transition probability
distribution is

A = {ai,j
∣∣ai,j = P(st = xj |st−1 = xi ) } (1)

(3) Y = {y1, y2, . . . , yL} is the observation model and
O = {o1, o2, . . . , oT } is the observation sequence with
T elements. The observation probability distribution in
state I , B = {bi(v)}, where

B = {bi(v) |bi(v) = P(ov |st = xi ) } (2)

Therefore, a complete HSMM model requires the
specifications: A, B, π , K , L.
In the HMM, the duration time is measured using a dura-

tional probability density function, and this is a geometrically
decaying function. The reference [31] demonstrated that this
is a less accurate duration model than that of the HSMM.
In real applications, the HSMM describes three basic prob-
lems, and the corresponding solutions are given as follows:

(1) Evaluating: Given observation O(o1, o2, . . . , oT ) and
HSMM h, the probability of appearance for observation O
under h is represented as P(O | h). This value can be solved
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FIGURE 1. The general framework of the HSMM.

by forward–backward algorithm. (2) Decoding: Given obser-
vation O(o1, o2, . . . , oT ) and HSMM h, the most possible
hidden states sequence of h is denoted as S(s1, s2, . . . , sT ).
This sequence, which is also explained as states transition
path, can be obtained by Viterbi algorithm. (3) Learning.
Given observation O(o1, o2, . . . , oT ) and HSMM h, the most
possible parameters set to maximize P(O | h) can be denoted
as h = {A, B, π , K , L}. This set is solved by Baum–Welch
algorithm. The process of three algorithms can be found
in [32] for more details.

B. SPARSE LEARNING
The SR theory [24], [25] has achieved great popularity over
the years. The aim of the SR is to find a linear combination
of relatively small atoms to represent the original signal.

The basic idea of SR is simple: Given a signal y ∈ Rm,
a redundant dictionary D = {d1, d2, . . . , dn} is established
that consists of n atoms. The aim of SR is to find a number
of atomic d1, d2, . . . , dn, such that original signal y can be
approximated sparsely by

y = Dx =
n∑
j=1

d jxj (3)

Ifm < n,D is termed as an overcomplete dictionary. Given
the signal y, finding its representation is done by the following
sparse approximation problem:

argmin ‖x‖0 s.t. y = Dx (4)

where the ‖x‖0 is a count of the number of non-zeroes in
the vector x. And the process of solving above optimization
problem can be transformed to

argmin ‖x‖1 s.t. y = Dx (5)

The dictionary D can either be predefined or learned.
The fixed dictionary is usually built through the follow-
ing framework: the Fourier, Wavelet, and discrete cosine
transforms. This kind of dictionary has a strong dependence
on prior knowledge. Conversely, learned dictionaries, which
deduce the dictionary from training data, can directly cap-
ture the specific features in the original signal. For example,
Aharon et al. [33] proposed the K-SVD algorithm. It involves

a sparse coding stage, which is based on a pursuit method,
followed by an update step.

In K-SVD learning, we assumes that the training matrix is
Y = [y1, y2, . . . , yl ] and sparse matrix is X . The process of
learning can be described by (6) as follows:

minD ‖Y − DX‖2F s.t. ‖xi‖0 ≤ T (6)

whereX = [x1, x2, . . . , xl ] represents the sparse coefficients.
The residual matrix Ei is computed by (7), where d j repre-
sents the j-th column and xi represents the i-th row.

‖Y − DX‖2F =

∥∥∥∥∥∥Y −
m∑
j=1

d jxj

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥(Y −
m∑
j6=i

d jxj)− d ixi

∥∥∥∥∥∥
2

F

= ‖Ei − d ixi‖2F

(7)

Since most of the elements in xi are zero, the residual
matrix Ei can be restricted through choosing nonzero ele-
ments. We define set ωi as follow

ωi = {v |xi(v) 6= 0} (8)

Then, we substitute the elements in set ωi with element 1 and
obtain a newmatrix�i. We obtainEiR = Ei�i and xiR = xi�i
for zero shrinking and apply SVD as follows:

EiR = U1VT (9)

After SVD, each atom d i can be updated by d i = u1. Then,
the sparse coefficient xiR is updated by

xiR = 1[1, 1] · v1 (10)

Now, the first column of dictionary has been updated, and the
above process can be repeated to update the whole dictionary.

III. THE GMM-SR-HSMM FRAMEWORK
A. THE GAUSSIAN MIXTURE MODEL
Cluster analysis [34]–[38] is an approach for exploiting clus-
ters by using the greatest similarity within the same cluster,
which is widely used in degradation state recognition. Clus-
tering methods can generally be divided into two categories:
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nonparametric methods and probability-based methods.
Dean et al. [39] compared the two types ofmethods and found
that the probability model-based approaches always have a
better clustering performance under the same circumstances.

In this paper, a GMM method combined with an
expectation and maximization (EM) algorithm for similarity
estimation is introduced. Fig. 2 displays the GMM cluster-
ing processes for different distributions. As Fig. 2 shows,
the GMM is established by mixing all the data points from
different Gaussian distributions together and calculating the
probabilities of each data point. Moreover, the GMM param-
eters are estimated using training data and the iterative
EM algorithm. For more details about the GMM, previous
paper [40] can be consulted.

FIGURE 2. The schematic diagram of the GMM model.

B. THE SR FEATURE
A new degradation feature, termed the SR feature, is used in
this paper. Although it has been demonstrated to be efficient
for fault diagnosis [41], this is the first time that the SR feature
has been used as a degradation feature and combined with the
HSMM. The process of extracting the SR feature is divided
into 3 steps.

(1) The WPT is performed to find the most signifi-
cant subbands that can characterize the signal information.
WPT is a widely used scaled filter that has access to
low-frequency information. The low-frequency information
has great benefits in the recognition of degradation states.
Generally, a good balance of time-frequency resolution is
achieved when the signal is decomposed into 4 layers. Thus,
16 subbands {wp1, wp2, . . . ,wp16} are obtained after the
WPT, and we can find the most significant subbands accord-
ing to the energy proportion of each subband.

(2) For each selected subband, a dictionary Di can
be trained that reflects the fault information well. The
K-SVD algorithm is used for training dictionaries and the
normal state signal is taken as the set of training samples.
In this way, a dictionary set {D1, D2, . . . ,Dε} (ε denotes
the number of subbands selected) can be obtained in the
pretraining phase. If we reconstruct the selected subbands
of the testing samples with the same dictionary set, different
residuals will be obtained.

(3) In this step, we build a signal reconstruction model
with the pretrained dictionary set. First, the testing sample
is decomposed by WPT. For each subband wpi, we assume
the measurement vector is represented as

λ = 8 · wpi (11)

In (11), 8 denotes the measurement matrix. Then,
a k-means singular value decomposition (K-SVD) algorithm
is applied to wpi. If the testing sample corresponds to the
dictionary set, the sparse decomposition will be efficient, and
this method will lead to good reconstruction performance.
The CS model is established as follows:

λi = 8i · wpi = 8i · Di · θ i (i = 1, . . . , ε) (12)

In (12), θ i denotes the sparse coefficients. The Bayesian
compressive sensing (BCS) algorithm has been applied here
for the multitask CS reconstruction of θ i. For an unknown
sample, the residuals δi of the selected subbands using dictio-
nary Di can be obtained by

δi =

∥∥∥wpi − Diθ
′
i

∥∥∥
2

(i = 1, . . . , ε) (13)

Then, the reconstruction residual vector (δ1, δ2, . . . , δε)
including the equipment information can be further utilized.

C. THE GMM-SR-HSMM APPROACH
As shown in Fig. 3, the newly developed GMM-SR-HSMM
approach contains three main steps.

1) GMM CLUSTERING
GMM clustering is applied to determine the degradation
states. Determining the degradation states is the key to gear-
box recognition and fault prediction. If the selected number
of states is too large, it is difficult to distinguish the various
states according to their probability values. If the selected
number of states is too small, the results will not be good for
judging the fault severity. Generally, we can determine the
number of degradation states in two ways. One way is based
on experience. For example, Dong and He [42] divided pump
degradation into four states according to the amount of oil
pollution. The other way is based on indicators. Four typical
indicators can be used: the Partition Coefficient (PC) [43],
the Partition Index (SC) [44], the Separation Index (SI) [44],
and Xie and Beni’s Index (XB) [45]. Since the equipment
is increasingly complex, the method based on experience
lacks versatility and requires a large number of experiments.
Therefore, this paper chooses the indicator-based method.
Then, the GMM is performed according to the number of
degradation states a.

2) SR FEATURE EXTRACTION
After the degradation states are determined, the SR feature
needs to be extracted to prepare the HSMM. The feature
selection is an important step that directly influences the
recognition results. A great many new features have been pro-
posed to improve the degradation assessment. We compare
these features with the SR feature in the following.

3) DEGRADATION STATE RECOGNITION AND REMAINING
LIFE PREDICTION BASED ON THE HSMM
Degradation state recognition has two parts: HSMM training
and HSMM recognition. First, we train the HSMM classifiers
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FIGURE 3. The framework of the proposed GMM-SR-HSMM approach.

to recognize the equipment states. In this part, the task is
to establish an HSMM for each possible degradation state
except for the normal state. In this way, several HSMMs are
modeled to characterize each degradation state. Next, we per-
form HSMM recognition according to the given observation
sequence. Each HSMM is applied to the same observation
sequence. Then, we can determine the degradation states by
choosing the maximum log-likelihood value.

For equipment prognostics, the macrostate duration
density P(xl) can be obtained after HSMM training.
Since the density P(xl) is modeled by a single Gaussian
distribution [42], we assume that µ(xl) and σ 2(xl) represent
the duration mean and variance, respectively, which can be
calculated if the duration pdf is obtained. Then, the lower
bound, mean value, and upper bound of the duration time
can be represented as µ(xl)−σ (xl), µ(xl), and µ(xl)+σ (xl),
respectively. For convenience in description, the symbol U is
selected to represent the above three values.

In [20], the remaining life prediction process has two parts:
determining the probability of each degradation state and
determining the RUL value for each state. The RUL at time t
can be estimated as follows:

RL(t) =
a∑
i=1

Pi · RLi (14)

RLi =
a∑
j=i

Uj (15)

where Pi denotes the probability of equipment state i,
RLi denotes the estimated RUL of state i, andUi is the unified
variable of the three duration values of state i. From (14)
and (15), we can see that the RUL for each state is the sum
of the subsequent state durations. Since the entire duration
of the state is calculated, the RUL obtained is larger than the
actual value. The model is less accurate if we do not divide
the degradation states so that the duration of each state is

small. On the other hand, if we ignore the state duration,
the RUL obtained is smaller than the actual value. Therefore,
we try to improve this model by following the method of [46].
The comparison of the original model and improved model is
clearly presented in Fig. 4.

RLi = kUi +
a∑

j=i+1

Uj (16)

FIGURE 4. The calculation of remaining life for each state.

As shown in (16), we calculate the RUL for each state
while considering only a part of the state duration. In this
way, the RUL value is more accurate due to introducing the
proportion variable k . However, determining the appropriate
k for each degradation state is also a challenge. In this paper,
an adaptive RUL prediction model is given as follows:

RL(t) =
Ui−1
Ui−1

a∑
i=1

Pi · RLi (17)

RLi = kiUi +
a∑

j=i+1

Uj (18)

ki =
Fi − F(t)
Fi − Fi−1

(19)

In (17), Ui−1/Ui−1 is used to adjust the duration of the
degradation states. Ui−1 denotes the average duration of the
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historical data. It is assumed that different components of
the same equipment have a proportional relationship with
respect to the degradation duration. In (18), ki is the variable
controlling the duration of the degradation states when calcu-
lating an accurate RUL. In (19), Fi denotes the degradation
feature of state i, and F(t) represents the degradation feature
of time t . The physical meaning of the above variables can be
represented as in Fig. 5.

FIGURE 5. Schematic diagram for explaining the prediction parameters.

IV. EXPERIMENTAL VALIDATION
The proposed GMM-SR-HSMM approach is validated using
completed-life bearing data [47] from the Center for Intelli-
gent Maintenance Systems (IMS). Fig. 6 shows the bearing
test rig. There are four ZA-2115 bearings installed on the
shaft. The sampling frequency of the test rig is 20 kHz,
and the experiments are conducted at a 2000 RPM rotation
speed using an AC motor that is coupled to the shaft via rub
belts. An approximately 26671 N radial load is applied to
the bearings. The data are collected every 10 minutes and
3 test-to-failure experiments are conducted.We calculated the
SR features for each time point and determined the degrada-
tion trends for the 3 data sets. Since the degradation trend
of the third data set is not obvious, it is not appropriate for
RUL prediction. Thus, we use the first two experiments to
validate the methods, and they contain 8 test-to-failure data.
We denote these 8 data as No. 1 to No. 8.

FIGURE 6. Bearing test rig.

At the end of the first experiment, it was found that an inner
race defect occurred in bearing 3 and a roller element defect
occurred in bearing 4. In all, 2156 files of data were collected
in this experiment. At the end of the second experiment, it was
found that an outer race failure occurred in bearing 1. In all,
984 files of data were collected in this experiment. Next,
the No. 5 bearing is chosen as an example to illustrate our
proposed method.

A. STATE DIVISION AND THE DETERMINATION OF THE
NUMBER OF STATES
Taking bearing No. 5 as example, we randomly select a
number of degradation states c and calculate the values of four
indicators: PC, SC, SI, and XB. The formula is introduced
in [46]. It should be noted that the larger PC is, the bet-
ter the performance; and the smaller SC, SI, and XB are,
the better the performance. Based on previous experience,
the number of degradation states that is set in this paper ranges
from 2 to 7. According to Fig. 7, we can easily obtain 4 as the
best number of degradation states.

Then, we use the SR feature as the indicator and con-
duct clustering through the GMM method. Since the GMM
allows only a few features, we deal with the 8 channels of
the SR features using Principal component analysis (PCA).
Finally, one feature can be obtained after PCA, and the GMM
is performed on this feature.Moreover, a time factor sequence
is also introduced to the clustering to keep the time order. The
time length of the IMS data is 984, and so the time factor
sequence can be represented as {0/984, 1/984, . . . , 983/984}.
The clustering result is shown as Fig. 8.

In Fig. 8, there are 4 states in the transition from nor-
mal to failure, which represents the normal state, the early
degradation state, the moderate degradation state, and the
failure state. We can easily obtain the interval of each degra-
dation state: [1,466], [467,701], [702,951], and [952,984],
respectively. It can be seen that the curve is relatively stable
in the first two states, and the fluctuation in the third state
is randomly low and high. Finally, the observed sequence
suddenly rises at approximately 952. According to Fig. 8,
the early failure point of 701 is found through the SR feature,
which is convenient for the remaining life prediction and
health management. Moreover, we can find the functional
failure point of 952 for the bearing, which is convenient for
the timely warning and prevention of serious accidents.

B. DEGRADATION STATE RECOGNITION
For each degradation state, an HSMM is trained using the
SR feature that was extracted from the IMS data. These
HSMMs can be represented as HSMM1, HSMM2, HSMM3,
and HSMM4. In this paper, half of the data are used as
training samples and the remaining data are used as testing
samples. The initialization and trained parameters (initial
distribution π and state transition probability distribution A)
for each state are listed in Table 1.

Then, the trained HSMMs are used for degradation state
recognition. We calculate the probabilities for each HSMM
using the same data, and chose the largest probability as
the recognized degradation state. The probabilities of certain
observation sequences under each HSMM can be calculated
by the forward–backward algorithm. The probabilities of
the four HSMMs are shown as the four curves in Fig. 9.
According to Fig. 9, all of state 1 is correctly recognized.
The first halves of state 2 and state 3 are also correctly rec-
ognized. However, the boundaries between states 2 and 3 and
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FIGURE 7. Values of the four indicators for different numbers of degradation states.

TABLE 1. Initialization and trained parameters of the HSMM.

FIGURE 8. Identification of degradation states based on the SR.

states 3 and 4 are recognized with some errors. Moreover,
state 4 is nearly correctly recognized. The overall accuracy
of the HSMM using the SR feature is calculated as 87.58%.

To demonstrate the efficiency of the SR feature, we com-
pare it with four others: the WPE [14], Renyi entropy [48],
NA4 [49] and EEMD [8] features. The WPE is the most
commonly used degradation feature in equipment state evalu-
ation and fault detection tasks. The Renyi entropy is a kind of
Shannon entropy, which is a feature that measures the amount
and complexity of signal information. The complexity of the
signal reflects the different states of equipment operation. The
NA4 is based on the features proposed by NASA for equip-
ment testing and evaluation. Dempsey and Zakrajsek [49]
modified the NA4 to overcome the effect of load changes
during the degradation process. Last, EEMD is an effective

method for decomposing a time series signal into a series of
different frequency bands and is also commonly used.

The definitions of the WPE, kurtosis, Renyi entropy and
EEMD features are given in (20), (21), (22) and (23), respec-
tively. In (20), wp denotes the wavelet decomposition sub-
band and len denotes the length of wp. In (21), parameter α
is introduced, and pi(x) represents the occurrence probability
of each value in the discrete sequence. In (22), r denotes
the residual signal and H represents the measured signal.
Thus, (22) can be regarded as the ratio of the fourth-order
statistic of the residual signal to the variance of the current
measured residual signal. In (23), 0j denotes the sample
entropy [50] of selected frequency bands, termed the intrinsic
mode function (IMF). In addition, compositions of features
have been normalized.

WPE =
len∑
i=1

wp(i)2 (20)

Renyi =
1

1− α
In

N∑
i=1

Pαi (x), α ≥ 0, α 6= 1 (21)

NA4 =
G
∑G

i=1 (ri − r)
4

[(1/H )
∑H

j=1
∑G

k=1 (rjk − rj)2]2
(22)

EEMD = (01,02, . . . ,0k )/0, 0 =
∑

0j (23)

Similarly, the HSMMs are established to train the four
feature vectors and are used for testing the residual sam-
ples. We obtain the accuracy of the HSMM for the WPE,
Renyi entropy, NA4 and EEMD features as 54.76%, 75.76%,
41.86% and 71.43% respectively.

Moreover, the confusion matrices of the HSMM for the
five features are given in Fig. 10. Each row of the table
represents the distribution of that degradation state. If they
are recognized correctly, all samples should be distributed
diagonally. Thus, the samples that are not on the diagonal are
those with errors.

From Fig. 10, we can see that the recognition results of
each degradation state are easily confused with the adjacent
states. For example, state 1 is easily confused with state 2, and
state 2 is easily confused with states 1 and 3. The recognition
results of the HSMM also illustrated this issue. Fig. 9 shows
that the error points are concentrated mainly at the state
junctions. Therefore, we draw the conclusion that the
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FIGURE 9. Degradation state recognition using the HSMM and the SR feature of the IMS bearing over the full life cycle.

FIGURE 10. Recognition results using the five features.

TABLE 2. The HSMM recognition accuracy based on the five features of the 8 bearings.

degradation state transition is the most difficult aspect of
recognition.

As a further study, 5 groups of HSMMs are trained using
the different features of the 8 bearing data from the IMS.
As shown in Table 2, in terms of accuracy, the five kinds
of features are ranked as follows: SR > Renyi entropy >
WPE, EEMD > NA4. There are no obvious conclusions
for the order of WPE and EEMD. The accuracy of the SR
feature is greater than that of the other four features, achiev-
ing an average accuracy of 85.28% for all 8 bearings. The
experimental results illustrate that the HSMM based on the
SR feature exhibits great advantages in degradation state
recognition over the Renyi entropy, WPE, NA4 and EEMD.
The classification results confirm that SR features can pre-
cisely capture the major structures of the degradation data.
The experimental results also show that the NA4 is not suit-
able for HSMM degradation training in this case because
its accuracy is less than 60%. From another perspective,
the recognition results of the second group (Nos. 5, 6,
7, and 8) are much better than those of the first group
(Nos. 1, 2, 3, and 4). This may be due to the characteristics

of the test-to-failure data. The above results indicate that the
second set of data is more convenient for degradation state
recognition.

C. HEALTH PROGNOSTICS BASED ON HSMM
The health prognostics procedure fuses and utilizes the infor-
mation from the HSMM with the objective of estimating the
RUL values. Two health prognostics methods are presented
in this section. First, the HSMM is trained offline using
the historical lifetime data. After the HSMM training, the
transition probabilities between adjacent degradation states
can be obtained, as well as the mean and variance of each
duration time. Using bearing No. 5 as an example, these
values are shown in Table 3. Then, the lower and upper
bounds of the predicted state duration can be calculated
according to the mean and variance. That is, if the equip-
ment is currently in state i, then its mean RUL, lower-bound
RUL and upper-bound RUL can be obtained using the mean,
lower bound and upper bound of the predicted state duration,
respectively.
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FIGURE 11. RUL prediction of the 8 bearings before revision.

TABLE 3. Mean and variance of the duration for each degradation state.

The first prediction method can be represented as (14)
and (15). Once the degradation state is determined, the RUL
of that sample can be calculated based on (14). Fig. 11 shows

the RUL prediction usingmethod 1. The blue curve represents
the actual RUL, which is a straight line with a slope of 1.

The reason is that the sum of the running time and the
RUL at that time is a certain value. As shown in Fig. 11,
the RUL line decreases stepwise, and the predicted RUL is
quite different from reality.We can also find that the predicted
RUL is increasingly more accurate, and the lower bound
is closer to the upper bound as the running time increases.
To achieve more realistic prediction results, we add some
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FIGURE 12. RUL prediction using the method 2 based on the SR feature.

smoothness between two adjacent states to avoid a sharp
change in the predicted curve.

Moreover, this paper presents another prediction method
by introducing a control variable k . The value of k can be
calculated according to the feature values at the beginning
and end of the degradation state. More details can be found
in (17)∼(19). To evaluate the performance of the second
method, another experiment is conducted. The RUL predic-
tion results based on the improved prediction model of the

8 bearings are shown in Fig. 12. First, we use the proposed
SR feature to train the HSMM. It can be seen from Fig. 12 that
the curve has a smoother decrease compared to Fig. 11, which
indicates that the predicted RUL fits the actual RUL well.

In implementing the improved prediction method,
the selection of the duration coefficient k has a great impact
on the prediction results. In the 8 groups of bearing data,
the values of k can be calculated according to (19). In prac-
tice, if k is a certain value, the predicted results will be far
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FIGURE 13. RUL prediction using method 2 based on Renyi entropy feature.

from the real values when the actual life of the equipment
deviates from the average life. The improved model can
adaptively adjust k , and it can be seen from Fig. 12 that
the RUL result is more accurate when equipment is in a
new degradation state. Moreover, the distance between the
lower and upper bounds decreases as the useful life increases,
indicating that the prediction error shrinks. This phenomenon

has already been confirmed in the experimental results of
method 1.

Since the recognition results of Renyi entropy are second
only to those of SR, we compare it with SR from a prognostics
perspective. The prediction results are shown in Fig. 13.
By comparing Fig. 12 and Fig. 13, we find that the SR RUL
is closer to the actual RUL value. Therefore, the SR feature
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FIGURE 14. Comparison of the four performance metrics for five kinds of features.

is more effective for life prediction. Meanwhile, if we com-
pare the two groups of bearing predictions, the results of
the second group (that is, bearings 5, 6, 7, and 8) are better.
The RUL results for those two features both demonstrate this
conclusion. Moreover, the prediction curve changes abruptly
when entering degradation states 2 and 3 but not when enter-
ing degradation state 1. This is mainly because the prediction
results are relatively accurate in state 4, and the change in the
formula will not cause a great change in the curve.

Then, a comparison of the four classical RUL metrics for
the Renyi entropy, SR, WPE, NA4 and EEMD is conducted.
These four metrics are listed below, and the computation
details can be found in Appendix.

a. Accuracy index (AI). This describes the relative error
between the actual RUL and predicted RUL values.
A smaller AI indicates better prediction performance.

b. Precision index (PI). This describes the width of the
estimated RUL value. A smaller PI indicates a better
prediction performance.

c. Coverage rate (CR). This describes the probability of
the actual RUL within the estimated RUL interval.
A larger CR indicates a better prediction performance.

d. α-λ accuracy. This describes the probability of the
estimated RUL within a specific confidence interval.
A larger α-λ value indicates a better prediction perfor-
mance. The value of α is set as 10% in this paper.

The results in Fig. 14 show that the RUL accuracy indexes
of the SR feature are the best compared to those of the other
four features. In addition, the average accuracy of SR is
86.11%. The Renyi entropy, WPE, NA4 and EEMD have
average accuracies of 78.25%, 73.63%, 64.98%, and 74.12%,

respectively. We can see that the ranking of the prediction
results follows the ranking of the HSMM recognition. Even
though the accuracies are not high for the Renyi entropy,
NA4, WPE and EEMD features, the proposed method based
on those features was able to predict the remaining life, which
benefits PHM development and resilience engineering. The
width of the prediction interval provided by the proposed
approach is the smallest among the four features, but the
coverage interval and α-λ accuracy interval of SR are the
highest. The proposed SR feature ismore satisfactory in terms
of confidence; i.e., it has a larger CR and α-λ accuracy.
This is mainly because SR can better extract the structural
information of the collected signal and reflect the degradation
processes.

Furthermore, the sensitivity of the SR feature is tested.
As the HSMM input, the sensitivity of the SR feature can
be partly regarded as the sensitivities of the HSMM and the
prediction model. From Fig. 15, it can be seen that the change
in the SR feature is not obvious as the noise increases. The
data intervals from the first stage and the last stage both
demonstrate this conclusion.

The case studies show that the proposed SR feature has
much better performance than classical degradation features,
such as the WPE, Renyi entropy, NA4, and EEMD. The
SR feature works well both for degradation recognition and
prognostics. From our observations, there are two factors that
contribute to the performance improvement in the SR feature.
(1) The WPD approach helps the SR to better decompose
signals and find the essential structure of the signal, and
(2) unlike the classical features, the SR calculates the differ-
ences between the degradation signal and the normal signal
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FIGURE 15. The sensitivity analysis of the SR feature based on different
noise levels for different intervals.

so that the feature values of the degradation states are more
obvious. Thus, the degradation states are much easier to be
distinguished.

V. CONCLUSION
In this paper, we present a GMM-SR-HSMM methodology
for equipment health diagnosis and prognosis. (1) The GMM
is developed for determining the best degradation states.
It should be emphasized that the optimal results obtained
by the four indicators may not be completely consistent.
(2) The most significant improvement over classical methods
is the construction of the degradation feature, which is termed
the SR feature. (3) Once the degradation state is determined,
the RUL can be easily calculated based on a recursive for-
mula. The choice of the current state residual coefficient k
has a great influence on the RUL prediction result. This
paper uses an improved model to adaptively adjust the
coefficient k .
Compared to the other prediction methods (for example,

the neural network method, proportional hazards models,
the particle filter model, and MC simulation), the model
used in this paper and in [20] is less accurate. However,
most prognostic methods still face the problem of providing
accurate long-term predictions for industrial applications.
Consequently, the approach proposed in this paper can be
applied to online machine health prognostics to improve the
process reliability during manufacturing processes.

Although the SR feature shows great performance as the
input of the HSMM and the prediction model, it requires
more time than just calculating the wavelet coefficients.
The K-SVD training can be performed offline. However,
for achieving CS, the orthogonal matching pursuit (OMP)
algorithm is still computationally intense. Optimization
methods can be studied to improve the efficiency of the
OMP algorithm.

APPENDIX
The performance of RUL prediction can be assessed from
different aspects. Four metrics have been adopted in this
paper, Accuracy index (AI), Precision index (PI), Coverage
Rate (CR), and α-λ accuracy index. Those four metrics can
be illustrated in detail as follow:

(1) The Accuracy index (AI) can be calculated as follows:

AI =
1
t

T∑
t=1

e−
|RUL(t)−RUL(t)′|

RUL(t) (A.1)

where t denotes the whole life time, and RUL(t) and RUL(t)′

represent the actual and estimated residual useful lifetimes,
respectively.

(2) The Precision index (PI) describes the width of predic-
tion interval, which can be calculated by equation (A.2)

PI =

T∑
t=1

wt

T
(A.2)

wt = sup(R̂UL(t))− inf (R̂UL(t)) (A.3)

In equation (A.3), R̂UL(t) represents the set of all estimated
residual useful life. Moreover, sup(R̂UL(t)) denotes the upper
bound and inf (R̂UL(t)) denotes the lower bound.
(3) The Coverage rate (CR) considers the probability of

the prediction interval cover the true value of RUL. It can be
represented as

CR =

T∑
t=1

ct

T
(A.4)

ct =

{
1, inf (R̂UL(t)) < RUL(t) < sup(R̂UL(t))
0, otherwise

(A.5)

In equation (A.5), RUL(t) represents the actual and residual
useful lifetime. Moreover, sup(R̂UL(t)) denotes the upper
bound and inf (R̂UL(t)) denotes the lower bound of the RUL
prediction interval.

(4) The α-λ accuracy describes the probability of the pre-
dicted RUL fall within specified α-bounds. It can be repre-
sented as

(α − λ)=

T∑
t=1

(α − λ)t

T
(A.6)

(α−λ)t =

{
1, (1−α)RUL(t) < R̂UL(t) < (1+ α)RUL(t)
0, otherwise

(A.7)
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In equation (A.7), (α-λ) represents the average α-λ value at
the measurement time λ. Larger α-λ value indicates better
prediction performance.
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