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ABSTRACT The design of a vessel path-following control system based on a full, realistic, nonlinear
model is considered. The control objective is to force a surface, course-unstable vessel to track a predefined
geometric path. We study an underactuated ship characterized only by a surge control force and yaw control
moment, typical of many supply vessels. The assumption is made that the ship’s model parameters are
unknown, while significant external disturbances and unmodeled dynamics exist. Therefore, the design
procedures make use of robust and adaptive control techniques. The controller synthesis uses adaptive
output feedback linearization and H∞ optimal control techniques. In this way, the proposed control scheme
assures position tracking despite various uncertainties. Because the considered design method leads to a
nonminimum phase system, the problem of how to stabilize unstable zero dynamics arises. The presented
simulations are based on a realistic ship model in terms of the structure and experimentally identified
parameters. The simulations illustrate the effectiveness of the proposed algorithms.

INDEX TERMS Adaptive systems, control design, H infinity control, mathematical model, nonlinear control
systems, vehicle routing.

I. INTRODUCTION
Path following requires an automatic control device to be
designed so that it will able to steer the vessel by proper
rudder actions in order to maintain a preset reference path
that a route guidance system can generate [1].

Numerous advanced and precise guidance systems have
been designed [2], [3], but due to harsh and hardly predictable
sea conditions, the problem remains at present.

In reality, one has to deal with various uncertainties, such
as inaccuracies of the system model and random events such
as wind, current, waves and other external factors. In addition,
the ship examined in this study (according to the specific
model parameters) is unstable in terms of course keeping.

The design of a ship steering system therefore requires
techniques that account for nonlinear effects and uncer-
tainties. We address a ship model’s parametric uncertainty,
as well as unstructured internal and external disturbances.
These include the environmental impact, model approxima-
tion errors and path-segment changes.

Most of the numerous approaches to tackling the prob-
lem of ship path following, or trajectory-tracking, make use
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of oversimplified models or suggest complex algorithms,
so they should be considered theoretical studies, not practi-
cally functional designs.

The LQG approach to the track control of ships, based on
the simple Nomoto model and Kalman filter, is addressed
in [4]. In [5], surface ship path control is considered via the
geometric control theory, leading to a nonminimum phase
system. A sliding mode controller is designed to ensure
system robustness and performance. Hui and Jihong [6]
presented a controller based on virtual target guidance in
the Serret-Frenet frame. The study [7] proposed the path-
following problem for systems characterized by unstable zero
dynamics.

Recently, many publications have addressed these issues
based on the Lyapunov theory. In particular, the backstep-
ping method has been popular, e.g., in [8], [9]. However,
the resultant solutions seem quite sophisticated – not only
complicated in structure but also expensive in terms of
computation.

This article presents robust and adaptive control concepts
solving the previously formulated problem of ship path fol-
lowing. The main aim of the work is to design a controller
that will keep the ship on the path based on a realistic
ship model with three degrees of freedom [1]. Its linearized
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version serves as the basis for the design of the controller. The
controller developed herein, a robust and adaptive version of
the standard feedback linearizing controller [10], guarantees
position tracking in the presence of various uncertainties.

To approximate the system unknown dynamics, an
approximator-like structure of model basis functions is used.
The structure stores the knowledge contained in the general
model [11]. Then, we use adaptive control to adjust the
assumed structure of the model by tuning the parameters.
Eventually, the H∞ control term is introduced, compensat-
ing for unstructured inaccuracies of modeling and external
disturbances.

The ship model under consideration, which is experimen-
tally validated, was identified due to its structure and param-
eters [12], [13]. The new results presented here in relation
to [13] are based on the fact that the proposed controller (as
a robust-adaptive controller) does not require knowledge of
model parameters. Moreover, since it has an internal built-in
mechanism to eliminate steady-state error due to unmatched
disturbances, it does not require additional integral action.
Otherwise, to cope with this problem, the integral dynamics
of the path error should be introduced, making the controller
designmore complicated, and the system performance cannot
be guaranteed.

The use of I/O linearization when some uncertainties, such
as disturbing forces and modeling errors, exist causes the
cancellations through nonlinear feedback to be inaccurate and
the control results to be unsatisfactory. In fact, we employ
I/O linearization for the linear system, which cancels only
linear parts of the nonlinearities occurring here. This raises
the order of unmodeled dynamics or, following a different
interpretation, imposes additional disturbances. The use of
adaptive and robust techniques is a good approach to solving
such a problem. The assumed simplifications facilitating the
design process [14] seem to be rational.

The essential issue that impacts the I/O linearization proce-
dure is that the dynamics of the system under consideration is
split into external and internal parts. The possible instability
of internal dynamics is a crucial problem [15] that needs to be
examined thoroughly, particularly because the system turns
out to have unstable internal dynamics. One solution is to
apply the technique of redefining the output [5], [7], [10].

The paper consists of six sections followed by the con-
clusions and an appendix. Section II provides preliminar-
ies regarding robust and adaptive control, while Section III
defines the ship path-following control problem. The model
of ship dynamics in a mathematical form is demonstrated in
Section IV. The techniques of I/O linearization and controller
design are presented in Section V. Section VI includes a
simulation study and briefly analyzes the results.

II. PRELIMINARIES ON ROBUST AND
ADAPTIVE CONTROL
This section presents some basic concepts and the main the-
orem that are used in solving the above-defined ship control
problem.

A. GENERAL FORMULATIONS
Let us take a nonlinear nth-order SISO system

x(n) = f (x, ẋ, · · · , x(n−1))+ g(x, ẋ, · · · , x(n−1))u+ d

y = x, (1)

where f and g are unknown but bounded continuous func-
tions, u ∈ R is the control input, and y ∈ R is the system out-
put. d denotes external unknown disturbances, also assumed
to be bounded. Let x = [x, ẋ, · · · , x(n−1)]T ∈ Rn be the
state vector of the system. The control aim is to force the sys-
tem’s output y to follow a given bounded reference signal yd .
For an accurate system model not affected by any dis-

turbances d , i.e., for known functions f and g, and for no
disturbances d , the insertion of a simple output-feedback-
linearizing controller

u = g−1(x)[−f (x)− kT e+ y(n)d ] (2)

into the system (1) cancels exactly the two nonlinearities (f
and g) and brings the closed-loop dynamics to the form

e(n) + kne(n−1) + · · · + k1e = 0 (3)

where e := y − yd is the output tracking error and
k = [k1, k2, · · · , kn]T ∈ Rn is the vector of coefficients.
By properly choosing the coefficients ki we can make

this system asymptotically stable. For (1) to be controllable,
we assume also that g(x) 6= 0, ∀x ∈ Uc ⊂ Rn, where Uc is a
controllability region.

Let us now consider a real situation with active distur-
bances d and in which the functions f and g are replaced
respectively by a linearly parameterized approximation struc-
tures f̂ (x, θ f ) = θ fTwf , ĝ(x, θg) = θgTwg where
wf = [f1, f2, · · · , fn1 ]

T , wg = [g1, g2, · · · , gn2 ]
T (4)

are model basis functions [11] and

θ f =
[
θ
f
1 , θ

f
2 , · · · , θ

f
n1

]T
,

θg =
[
θ
g
1 , θ

g
2 , · · · , θ

g
n2

]T (5)

are unknown vectors of the system parameters.
Because only the estimates θ̂

f
, θ̂

g
are accessible,

the approximate nonlinear functions of the system (1) can
be written in this form:,

f̂ (x, θ̂
f
) = θ̂

fT
wf , ĝ(x, θ̂

g
) = θ̂

gT
wg. (6)

Consequently, the certainty equivalent controller [16], [17]
obtains this form:

u = ĝ−1(x, θ̂
g
)[−f̂ (x, θ̂

f
)− kT e+ y(n)d + ua]. (7)

The sub-control ua attenuates external disturbances d and the
error due to function approximation while adaptive control is
used.

The insertion of Equation (7) into to Equation (1) and
transformation yields the tracking error dynamic equation

e(n) = −kT e+ [(f (x)− f̂ (x, θ̂
f
))

+ (g(x)− ĝ(x, θ̂
g
))u]+ ua + d (8)
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or, correspondingly,

ė = Ae+ Bua + B[(f (x)− f̂ (x, θ̂
f
))

+ (g(x)− ĝ(x, θ̂
g
))u]+ Bd, (9)

where

A=


0 1 · · · 0

0 0
... 0

...
...

. . .
...

−k1 −k2 · · · −kn

 ;

B =


0
0
...

1

 , e =
[
e, ė, · · · , en−1

]T
= [e1, e2, · · · , en]T .

(10)

Let us define the optimal parameter estimates as

θ f ∗ = argminθ f ∈�f
[supx∈�x

∥∥∥f (x)− f̂ (x, θ f )∥∥∥]
θg∗ = argminθg∈�g [supx∈�x

∥∥g(x)− ĝ(x, θg)∥∥] (11)

where�f , �g and�x are the sets of suitable bounds on θ f , θg

and x respectively. We assume that θ f , θg and x never reach
the boundary of �f , �g and �x .

The minimum (residual) approximation error is defined as

de = (f (x)− f̂ (x, θ f ∗))+ (g(x)− ĝ(x, θg∗))u. (12)

In addition, assuming that the adopted approximator structure
and the approximation domain render the de bounded, we can
rewrite the tracking error dynamic equation (9):

ė = Ae+ Bua + B[(f̂ (x, θ f ∗)− f̂ (x, θ̂
f
))

+ (ĝ(x, θg∗)− ĝ(x, θ̂
g
))u]+ B[de + d] (13)

or

ė = Ae+ Bua + B[θ̃
fT
wf + θ̃

gT
wgu]+ Bd̃ (14)

where d̃ = de+ d are total disturbances and θ̃
f
= θ f ∗ − θ̂

f
,

θ̃
g
= θg∗ − θ̂

g
.

Let us define the performance output

z = Ce+ Dua. (15)

In the above equation, to avoid cross terms on the left-hand
side of the integrand of (17), we set DTC = 0.
For further considerations, let us define that

Q = CTC, r = R = DTD. (16)

The design goal is to find a sub-controller ua and parameter
adaptation laws for θ̂

f
, θ̂

g
(compare (7)) that will allow

to achieve H∞ tracking performance under the worst-case
disturbances d̃ :∫ T

0
(eTQe+ru2a)dt≤e

T (0)Pe(0)+
1
γ1

θ̃
fT
(0) θ̃

f
(0)

+
1
γ2

θ̃
gT
(0)θ̃

g
(0)+ρ2

∫ T

0
d̃2dt (17)

∀T ∈ [0,∞) and P = PT > 0, d̃ ∈ L2[0,T ]
The adaptation gains are γi > 0, while ρ is a predefined

attenuation level (for more details, see [16], [17]).
If the system starts under initial conditions e(0) = 0

θ̃
f
(0) = 0, θ̃

g
(0) = 0, the inequality (17) means that the

L2 gain [18] from d̃ to the tracking performance output z(t)
(‖z(t)‖22 =

∫ T
0

(
eTQe+ ru2a

)
dt) is less or equal to ρ, i.e.,

‖z(t)‖2 ≤ ρ
∥∥∥d̃(t)∥∥∥

2
. (18)

To obtain the optimal tracking performanceH∞, we aim to
reach the minimal attenuation level ρ∗.

B. THE MAIN THEOREM
The solution of the above problem can be explained by the
following theorem.
Theorem: If we choose in the nonlinear system (1) the

robust-adaptive control law

u =
1

θ̂
gT
wg

[
−θ̂

fT
wf − kT e+ y(n)d + ua

]
(19)

with the robustifying term

ua = −
1
r
BTPe (20)

and adaptive parameter tunings of the form

˙̂
θ
f
= γ1wf BTPe

˙̂
θ
g
= γ2wgBTPeu (21)

where r is a positive scalar value and P = PT > 0 is the
solution of the following Riccati-like equation

PA+ ATP + Q−
1
r
PBBTP +

1
ρ2
PBBTP = 0, (22)

then the H∞ tracking performance (17) is achieved for the
preset attenuation level ρ. �
Remark 1: Assuming that there exists a positive constant

M such that
∫
∞

0 d̃2dt ≤ M , we obtain the bounded inte-
gral

∫
∞

0 (eTQe+ ru2a)dt from (17). According to Barbalat’s
Lemma [10], we can then infer that lim

t→∞
e(t) = 0. The proof

of this theorem as well as its variant that addresses the param-
eter drift problem, via the σ -modification method, is given
in the Appendix. In this version the formulas (21) should
be replaced by (8A) and the condition (18A), guaranteeing
system stabilizability i.e. that ĝ(x, θ̂

g
) of (7) is bounded away

from zero, should be also considered.

III. SHIP PATH-FOLLOWING CONTROL PROBLEM
This part defines the main problem of ship control along a
preset reference track. The planned track is normally defined
by waypoints. The ship proceeds at a constant speedU , while
the sway position y is controlled (Figure 1). The purpose of
following a waypoint route is to control the angle of heading
and the displacement of the sway, changing only the rudder
deflection. In general, in the case of a typical underactu-
ated vessel (more degrees of freedom have to be controlled
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than the number of independent control devices), the only
feasible thing to do is to impact the sway position along
the reference path and accept the course error. Therefore,
as various uncertainties exist, we can only ensure position
tracking.

FIGURE 1. Earth-fixed and relative coordinate systems.

A. DEFINITION OF PATH-FOLLOWING ERRORS
Let us make an assumption that the path to be tracked consists
of sections of a broken line defined by a sequence of ver-
tices (turn points) P1(x1, y1),P2(x2, y2), . . . ,Pi(xi, yi), . . . ,
Pn(xn, yn). We will also specify the coordinate systems as
follows (Fig. 1):

- earth-fixed coordinate system (Xg,Yg) (where the coordi-
nates are determined by the GPS),

- a relative coordinate system (Xr ,Yr ) with the origin
placed at point Pi(xi,yi) and the axis OXr runs along
PiPi+1(i = 1, 2, . . . , n).

Let the transformations xryr
ψr

=
 cosφro sinφro 0
− sinφro cosφro 0

0 0 1

 xg − xi
yg − yi
ψ − φro

 (23)

tanφro=
yi+1 − yi
xi+1 − xi

. (24)

define the relative ship position (xr , yr ) and its relative head-
ing ψr (φro is an angle of the system (Xg,Yg) rotation).

Now, we can define tracking errors for a given path
segment:

- yr cross track error
- ψr heading error

These variables will be further treated as path-following
errors that correspond to a given segment.

For a curvilinear reference path, the local (relative) coordi-
nate system should be tangent to the path at the point that is
closest to the present ship position. This system has to then
be shifted and rotated from time step to time step in such a
way that it remains tangent to the reference path and that the
x-coordinate represents the arc length along the path.

IV. MATHEMATICAL MODEL OF SHIP DYNAMICS
A. GENERAL MODEL STRUCTURE
We present below a general nonlinear model of the ship,
further employed as a model simulating its real dynamics.
This model is also used to derive a simplified, linear model
that will facilitate controller design.

The state variables that represent the ship’s movement are
defined by two vectors η= [x, y,ψ]T and ν = [u, v, r]T , where
(x, y) are the coordinates of ship’s position; ψ is the vessel
heading; (u, v) are linear, body-fixed speeds (surge, sway);
and r is the rate of turn.

The general mathematical representation of the ship
dynamics is expressed by this equation [1], [19]:

Mv̇+ C(v)v+ D(v)v = τ (25)

whereM is the positive definite inertia massmatrix, including
the added mass,

M =

m− Xu̇ 0 0
0 m− Yv̇ mxG − Yṙ
0 mxG − Nv̇ Iz − Nṙ

 , (26)

and C(ν) stands for the Coriolis centripetal matrix,

C =

 0 0 −c31
0 0 (m− Xu̇)u
c31 (m− Xu̇)u 0

 , (27)

where c31 = (mxG − Yṙ )r + (m− Yv̇)v.
D(ν) is the dampingmatrix, τ = [τX , τY , τN ]T is the vector

of forces and moment that affect the ship movement,

D(v) =

−d11(v) 0 0
0 −d22(v) −d23(v)
0 −d32(v) −d33(v)

 , (28)

where

d11(v) = X|u|u |u|

d22(v) = Y|u|v |u| + Y|v|v |v| + Y|r|v |r|

d23(v) = Y|u|r |u| + Y|v|r |v| + Y|r|r |r|

d32(v) = N|u|v |u| + N|v|v |v| + N|r|v |r|

d33(v) = N|u|r |u| + N|v|r |v| + N|r|r |r| . (29)

Under the assumption that the surge u = u0 ≈ constant,
sway and yaw (i.e., v and r) are sufficiently small, we can
linearize the nonlinear matrix D(v) to obtain its linear coun-
terpart DL [19], [12]:

D ≈ DL =

−Xu 0 0
0 −Yv −Yr
0 −Nv Nr

 (30)

For specific propeller revolutions and a fixed deflection
angle of the rudder, the generated thrust force is roughly
proportional to the square of the propeller rotational speed n,
so the nominal, linearized thrust τX = Xnn. The forces acting
on the ship hull normally depend on the rudder deflection
angle δ, which is defined by the equations τY = −Yδδ and
τN = −Nδδ.
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The components of the matrices (26), (27) and (30), known
as hydrodynamic derivatives, are given in the appendix
(Table 2). Determined through strict identification proce-
dures, these figures refer to the training ship ‘Blue Lady’
(more details can be found in [12], [13]).

B. DAVIDSON AND SCHIFF’S SIMPLIFIED LINEARIZED
MODEL
Models (25)-(29) are significantly simplified when we take
the linearized DL version instead of the D matrix.

The longitudinal ship dynamics of the resultant model has
the form

(m− Xu̇)u̇ = (m− Yv̇)vr + (mxG − Yṙ )r2

+Xuu+ X|u|u |u| · u+

τX︷︸︸︷
Xnn

while its transverse rotational dynamics is actually the David-
son and Schiff model [1]

M1v̇1 + N(u0)v1 = Gδ (31)

where v1 =
[
v r

]T and

M1 =

[
m− Yv̇ mxG − Yṙ
mxG − Nv̇ Iz − Nṙ

]
;

N(u0) =
[

−Yv −Yr + (m− Xu̇)u0
−Nv + (Xu̇ − Yv̇)u0 Nr + (mxG − Yṙ )u0

]
;

G =
[
Yδ
Nδ

]
or

v̇1 = A1v1 + B1δ, (32)

where

A1=M−11 N(u0)=
[
a11 a12
a21 a22

]
; B1=M−11 G=

[
b1
b2

]
.

The model (31) outlined above makes up a basis for the
final model (35) suitable for the control system design.

C. THE MODEL FOR CONTROLLER DESIGN
The kinematic equations of vessel movement may be as
below [1], [12]:

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

ψ̇ = r . (33)

As linear approximation of (33), we take the equations

ẏr = Uψr + v+ dy; ψ̇r = r (34)

written in relation to the transformed (23) coordinates and
assuming that u ≈ U . The first kinematic equation in the
model (33) is neglected because xr represents motion along
the path, which is not relevant in our considerations.

The combination of equations (32) and (34) results in the
linear model presented below, used for the controller design:

v̇
ṙ
ψ̇r
ẏr

 =

a11 a12 0 0
a21 a22 0 0
0 1 0 0
1 0 U 0




v
r
ψr
yr



+


b1
b2
0
0

 δ +

0 0
1 0
0 0
0 1

[ drdy
]

(35)

with output

y = yr (36)

where
yr− relative abscissa of the ship position (cross-track error)
ψr− relative heading (course-error)
dy− uncertain parameter because of modeling errors and

sea currents
dr - environmental disturbances (constant or slow-varying,

wave/wind-induced torque).

V. I/O LINEARIZATION AND CONTROLLER DESIGN
Because the system (35), (36), representing the controlled
process, is nonminimum phase [10], after I/O lineariza-
tion, part of the dynamics will be unstable. To solve this
problem, we have to change the system structure or refor-
mulate the task, e.g., through a new definition of the
output [10], [14], [15].

A. OUTPUT REDEFINITION
One of the methods allowing a change of the nonminimum
phase system (35) into a minimum-phase system (a system
characterized by asymptotically stable internal dynamics) is
to redefine the new output [5] herein in this form:

y = yr + kψr , (37)

where the constant k ought to be chosen in such a way that the
zeros of the transfer function (35), (37) are positioned in the
left-half of the s-plane, thus providing for the stability of
the system zero dynamics.

The reason for choosing the output (37) is that the helms-
man maintaining the vessel on a planned path takes account
of the cross-track error and the course.

B. ZERO DYNAMIC
To analyze the system zero dynamics, it is enough to examine
the original system (35), assuming that the output (37) is
identically equal to zero y(t) ≡ 0. This leads to the system’s
restricted motion [20] confined to the set

Z∗ =
{
x : h(x) = Lf h(x) = 0

}
= {x : yr + kψr = 0 ∧ Uψr + v+ kr = 0} (38)

The motion of the original system (35) on Z∗, with the
input δ = α(x) = −f (x)/g(x) (compare (41)), represents
the zero dynamic.
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To be more specific, by using (38) and the last two
equations of (35), we can get, after simple calculations,
the equation

yr + kψr = C̃, (39)

which, after setting constant C̃ to zero, is identical to the left
equation given in (38). This procedure proves that the last two
equations of (35) are satisfied on the set Z∗.
The first two equations of (35) with δ = α(x) constitute a

linear system parametrized by k . This system represents the
searched-for zero dynamic, which can be made asymptoti-
cally stable via appropriate selection of k .
The same reasoning can be followed in the case of sys-

tem (35) with the output (36). However, the result obtained
this time proves that the zero dynamics may be unstable.

C. CONTROLLER DESIGN
To make the control synthesis based on the I/O linearization
method and to avoid the formalism of Lie derivatives, we dif-
ferentiate the new output (37) against time twice, obtaining
the equations

ẏ1 = y2
ẏ2 = f (x)+ g(x)δ, (40)

where y = y1 = yr + kψr , ẏ = y2

f (x) = (a11 + ka21)v+ (U + a12 + ka22)r + d̃

g(x) = (b1 + kb2)δ. (41)

In this context, d̃ is a total disturbance (i.e., distur-
bance and uncertainty combined), while the state vector
x = [v, r, ψr , yr ]T is regarded as measurable.
The partial transformation of the coordinates from x to y is

defined by the equations

y1=y=yr+kψr , y2= ẏr+kψ̇r=Uψr+v+kr+dy (42)

After this transformation, we obtain a new system (40) of
the second order, representing the external dynamics. As the
original system (35) is of the 4th order, the missing part of the
dynamics should be completed with the internal dynamics (of
the 2nd order as well) analyzed above.
Remark 2: The question arises whether the ship (or

its original nonlinear model) will also be a nonminimum-
phase system – similarly to its linear counterpart. The affir-
mative answer, at least locally, results from a theoretical
analysis [5] and actual physical restrictions (input-output
stability imposes a stabilizing effect also on the inner state
variables [12]).

The nonlinearities f , g of (40) may be parametrized [11] as
follows:

f̂ (x, θ̂ ) =
3∑
i=1

θ̂
f
i fi = θ̂

f
1 v+ θ̂

f
2 r + θ̂

f
3

ĝ(x, θ̂ ) =
1∑
i=1

θ̂
g
i gi =θ̂

g
1 . (43)

From these equations, we obtain a set of model basis func-
tions fi, gi and the corresponding parameters:

wf = [v, r, 1], θ̂
f
=
[
θ̂
f
1 , θ̂

f
2 , θ̂

f
3

]
wg = 1, θ̂

g
= θ̂

g
1 , (44)

The controller (19) can now be written in the form:

δ = (−θ̂ f1 v− θ̂
f
2 r − θ̂

f
3 − k1y1 − k2y2 + δa)/θ̂

g
1 . (45)

A simple analysis indicates that this controller uses all
information contained in the state vector x, although some
of it is used implicitly - through y and ẏ (42). The con-
troller also executes integral action through parameter θ̂ f3
(conf. Remark 4).
To obtain the final solution, we have to solve the Riccati-

like equation (RE) (22). To this end, we insert the control (45)
into (40) to yield the following formula[
ẏ1
ẏ2

]
=

[
0 1
−k1 −k2

]
︸ ︷︷ ︸

A

[
y1
y2

]
︸ ︷︷ ︸

y

+

[
0
1

]
︸︷︷︸
B

δa

+

[
0
1

]
(θ̃
fT
wf + θ̃

gT
wgδ)+

[
0
1

]
d̃ (46)

that defines matrices A and B required here.
The matrix Q and scalar r can be received by writing the

output (15) in the component form

z =
[
z1
z2

]
=

[
λ 0
0 0

]
︸ ︷︷ ︸

C

[
y1
y2

]
+

[
0
√
r

]
︸ ︷︷ ︸

D

δa =

[
λy1√
rδa

]
(47)

from which we can get matrices C and D; consequently,
Q = CTC, r = R = DTD.
Finally, using the Matlab function care [21], we can find

the proper numerical solutionsP of equation (22) for different
values of the chosen attenuation level ρ > 0.

Since we wish ρ to be minimal (on the condition that
there is a solution to the RE), we have to use this procedure
iteratively.

Knowing the matrix P, we can obtain, according to (20),
(21), both the robustifying term δa and the parameter tuning
rules [14]:

δa = −
1
r
BTPy = −

ε

r
(48)

˙̂
θ
f
1 = γ1vB

TPe = γ1vε
˙̂
θ
f
2 = γ2rB

TPe = γ2rε
˙̂
θ
f
3 = γ3B

TPe = γ3ε
˙̂
θ
g
1 = γ4B

TPe = γ4εδ

(49)

where BTPy = p21y1 + p22y2 = ε and P = PT > 0.
Remark 3: Note that, in the case of nonadaptive control

δ=
−(a11+ka21)v−(U+a12+ka22)r−k1y1−k2y2

b1+kb2
, (50)

(compare (41) and (45)), we can, by virtue of proper selection
of parameter k , modify the closed loop system parameters to
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obtain stable zero dynamics. In a similar manner, the steady-
state parameters θ of controller (45) can be modified in the
case of an adaptive system. It follows from the fact that the
error ε in (49) is a function of k .

It seems also that the existence of the feedback law for
the considered geometric path following problem may be
sanctioned by theorem 1 in [15].
Remark 4: Note that the tuning of parameter θ̂ f3 (by the

built-in integrating action) compensates for the constant com-
ponent of the disturbances d̃ , while the non-Gaussian part of
disturbances, with bounded energy (decaying disturbances),
is reduced by the robustifying term δa. Since the integration
employed here is put on the linear combination of the state
vector components, this type of integral action (cf. equa-
tion (49)) can be called a generalized integral action. In this
way, we can bring the old output (cross-track error) down
to zero, regardless of active unmatched disturbances (e.g.,
sea current, waves, drift forces), provided that we use the
error ε = p21yr + p22ẏr based on the old (35), (36) system
transformed state components. This practice can be viewed
as independent of the rest of the design procedure.

The baseline controller kT y = k1y1 + k2y2 should be
designed to guarantee the stability of system (46), in which
the parametrical and external uncertainties are ignored. The
controller gains k1 and k2 can be reached by, for instance,
the lqr technique.

Observe that all the state components of the original sys-
tem (35) are involved here (compare (42)). Notice also that
ẏr can be obtained via rotation of the ship-fixed coordinate
system (u,v), located at the ship’s center of gravity. Conse-
quently, all measurements needed to implement the controller
are the position via GPS and course via gyrocompass, while
the velocities can be calculated from them.

VI. SIMULATION RESULTS
The simulations presented below, aimed at verifying the per-
formance of the designed control system, are based on the
general ship dynamical, nonlinear model (25). The model
parameters were determined based on the identification pro-
cess of the ‘Blue Lady’ training ship [13].

FIGURE 2. Ship trajectory in the xy plane.

Figure 2 shows the path as a broken line defined by the so-
called waypoints (0,0), (0,700), (300,900) and (300,1400).

The vessel’s initial position, heading and rate of turn
(angular velocity) are (20.0), 30◦ and 0 rad/min, respectively.

The assumed distance scale is 1 m, and the ship has a nominal
speed of 0.7 m/s at constant propulsion.

As additional disturbances, transverse current (dy =
−0.3 m/s) and a torque dr induced by the wind (correspond-
ing to a rudder deflection of 10◦; Fig. 4) were considered.

FIGURE 3. Ship headings versus time.

FIGURE 4. Rudder deflection versus time.

Fig. 3 depicts a plot of the ship’s heading as a function of
time. The heading of a ship moving along horizontal path
sections (north) is approximately 25◦, indicating a course
error. This occurs because the examined vessel has only
two actuators (rudder and propeller) responsible for steering,
so it is underactuated, and only its surge and heading can be
controlled.

The above behavior of the ship is necessary to compensate
for the effect of currents. It should be borne in mind that
the main function of the controller is to reduce the output,
the cross-track error, to zero. Simultaneously bringing ψr
to zero in the presence of transverse current is sometimes
impossible for a ship with the actuators assumed in this study.
As a result, the process of following a specific path can only
be affected when a course error occurs (we can get only the
position tracking [3]).

FIGURE 5. Cross-track errors versus time.

Figure 5 illustrates the cross-track error as a function
of time. We can observe that our controller is capable of
effectively compensating for the steady-state error created by
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TABLE 1. Main details of the blue lady ship.

combined disturbance moments due to unmodeled dynamics,
external winds and changes in parameters.

As a criterion for selecting the moment of changing the
coordinate system relative to a given path segment, it is
assumed that the distance of the vessel to the turning point
Pi(xi, yi) is shorter than two lengths of the vessel. The result-
ing process perturbations are treated as additional distur-
bances. The influence of waves was modeled in the form of
a shaping filter driven by white noise [1].

In the ship simulation model, the steering gear was taken
into account. However, during the controller synthesis pro-
cess, its dynamics, as relatively small, was neglected.

VII. CONCLUSION
Based on the Davidson and Schiff model of a ship augmented
by linearized equations of its kinematics, a robust and adap-
tive ship steering system along a preset path is proposed.
This disturbance-resistant system has been examined using
a realistic, full, nonlinear simulation model of the training
ship ‘Blue Lady’, taking into account various environmental
disturbances. Good control performance has been achieved
despite unknown dynamics of the controlled object.

APPENDIX
We now present the main details and parameters of the
ship that was used as a test object for the control algo-
rithm presented in this study. The training ship ‘Blue Lady’
is an isomorphic model of a real tanker made to 1:24
scale [12], [13].

We assume here that out of many actuators installed on the
ship, we actually use the rudder and main propulsion only;
therefore, we apply only the surge force and the yaw moment
as available control signals. Such equipment is quite typical
for many supply vessels [3].

In this part we will provide: (i) the proof of theorem of
Section II, B. (cf. [16]), (ii) its extension that addresses the
parameter drift problem; and (iii) the condition guarantee-
ing system stabilizability i.e. preventing ĝ(x, θ̂

g
) of zero-

crossing.
(i) Let us define a Lyapunov function

V =
1
2
eTPe+

1
2γ1

θ̃
fT

θ̃
f
+

1
2γ2

θ̃
gT

θ̃
g
. (1A)

TABLE 2. Parameters of the mathematical model of the Blue Lady.

The time derivative of V is

V̇ =
1
2
ėTPe+

1
2
eTPė+

1
γ1

θ̃
fT ˙̃

θ
f
+

1
γ2

θ̃
gT ˙̃

θ
g
. (2A)

By the fact ˙̃θ
f
= −
˙̂
θ
f
, ˙̃θ

g
= −
˙̂
θ
g
and (14) and (20), the

above equation becomes

V̇ =
1
2

[
eTATPe−

1
r
eTPBBTPe+ wfT θ̃

f
BTPe

+ uwgT θ̃
g
BTPe+ d̃BTPe+eTPAe−

1
r
eTPBBTPe

+ eTPBθ̃
fT
wf + eTPBθ̃

gTwgu+ eTPBd̃
]

+
1
γ1

θ̃
fT ˙̃

θ
f
+

1
γ2

θ̃
gT ˙̃

θ
g

=
1
2
eT
[
PA+ ATP −

2
r
PBBTP

]
e

+

(
eTPBwfT +

1
γ1

˙̃
θ
fT
)

θ̃
f
+

(
eTPBwgT u+

1
γ2

˙̃
θ
gT
)

θ̃
g

+
1
2

(
d̃BTPe+ eTPBd̃

)
. (3A)

Considering that ru2α = r−1eTPBBTPe, from adaptive
laws (21) and the Riccati-like equation (22), we get

V̇ = −
1
2
(eTQe+ ru2α)−

1
2ρ2

eTPBBTPe

+
1
2

(
d̃BTPe+ eTPBd̃

)
=−

1
2
(eTQe+ru2α)−

1
2

(
1
ρ
BTPe−ρd̃

)T (1
ρ
BTPe−ρd̃

)
+

1
2
ρ2d̃2 ≤ −

1
2
(eTQe+ ru2α)+

1
2
ρ2d̃2 (4A)

Integrating the above equation from t = 0 to t = T yields

V (T )− V (0) ≤ −
1
2

∫ T

0
(eTQe+ ru2α)dt +

1
2
ρ2
∫ T

0
d̃2dt.

(5A)

Since V (T ) ≥ 0 the (5A) implies the following inequality

1
2

∫ T

0
(eTQe+ ru2α)dt ≤ V (0)+

1
2
ρ2
∫ T

0
d̃2dt. (6A)
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From (1A), the above inequality is equivalent to the following

1
2

∫ T

0
(eTQe+ ru2α)dt

≤
1
2
eT (0)Pe(0)+

1
γ1

θ̃
fT
(0)θ̃

f
(0)+

1
γ2

θ̃
gT
(0)θ̃

g
(0)

+
1
2
ρ2
∫ T

0
d̃2dt (7A)

Thus we have (17).
(ii) According to Remark 1. the theorem ensures per-

fect tracking i.e. lim
t→∞

e(t) = 0 under assumption that∫
∞

0 d̃2dt ≤ M . However, to cope with the parametric drift
problem, leading to a blow-up phenomenon [22], we prove
a variant of this theorem that guarantees ultimately uniform
boundedness (UBB) [23], [24] of the closed-loop system
under assumption that the total disturbance bound is

∣∣∣d̃∣∣∣ ≤ β,
where the constant β > 0 is not available.
To this end, we introduce into the adaptation laws (21)

so-called σ -modification term obtaining

˙̂
θ
f
= γ1(wf BTPe− σ θ̂

f
)

˙̂
θ
g
= γ2(wgBTPeu− σ θ̂

g
) (8A)

Considering again the fact that ˙̃θ
f
= −
˙̂
θ
f
, ˙̃θ

g
= −
˙̂
θ
g
and

substituting (8A) to (3A) the formula (4A) will take a form

V̇ =−
1
2
(eTQe+ ru2α)−

1
2ρ2

eTPBBTPe

+
1
2

(
d̃BTPe+ eTPBd̃

)
+ σ (θ̃

fT
θ̂
f
+ θ̃

gT
θ̂
g
)

=−
1
2
(eTQe+ru2α)−

1
2

(
1
ρ
BTPe−ρd̃

)T (1
ρ
BTPe−ρd̃

)
+

1
2
ρ2d̃2 + σ (θ̃

fT
(θ f ∗ − θ̃

f
)+ θ̃

gT
(θg∗ − θ̃

g
))

≤−
1
2
(λmin(Q) ‖e‖2 + ru2α)+

1
2
ρ2d̃2

+ σ (θ̃
fT

θ f ∗ −

∥∥∥θ̃ f ∥∥∥2)+ σ (θ̃gT θg∗ −

∥∥∥θ̃g∥∥∥2) (9A)

Based on identity

−x2 + xy = −
1
2
(x − y)2 −

x2

2
+
y2

2
(10A)

we obtain

θ̃
T
θ∗ −

∥∥∥θ̃∥∥∥2 ≤ ∥∥∥θ̃∥∥∥ ∥∥θ∗∥∥− ∥∥∥θ̃∥∥∥2
= −

1
2

(∥∥∥θ̃∥∥∥− ∥∥θ∗∥∥)2 − 1
2

(∥∥∥θ̃∥∥∥2 − ∥∥θ∗∥∥2)
≤ −

1
2

(∥∥∥θ̃∥∥∥2 − ∥∥θ∗∥∥2) (11A)

Using (11A), the formula (9A) will take the form

V̇ ≤ −
1
2
(λmin(Q) ‖e‖2 + ru2α)

−
1
2
σ

(∥∥∥θ̃ f ∥∥∥2 − ∥∥∥θ f ∗∥∥∥2)
−

1
2
σ

(∥∥∥θ̃g∥∥∥2 − ∥∥θg∗∥∥2)+ 1
2
ρ2d̃2

= −
1
2
(λmin(Q) ‖e‖2 + ru2α)−

1
2
σ

(∥∥∥θ̃ f ∥∥∥2 + ∥∥∥θ̃g∥∥∥2)︸ ︷︷ ︸
(a)

+
1
2
σ

(∥∥∥θ f ∗∥∥∥2 + ∥∥θg∗∥∥2)+ 1
2
ρ2d̃2 (12A)

Considering that

V =
1
2
eTPe+

1
2γ1

θ̃
fT

θ̃
f
+

1
2γ2

θ̃
gT

θ̃
g

≤
1
2
λmax(P) ‖e‖2 +

1
2γ1

∥∥∥θ̃ f ∥∥∥2 + 1
2γ2

∥∥∥θ̃g∥∥∥2 (13A)

we relate (a) to V , thus (12A) can be further derived as

V̇ ≤ −αV +
1
2
(αλmax(P)− λmin(Q)) ‖e‖2

+
1
2

(
α

γ1
− σ

)∥∥∥θ̃ f ∥∥∥2 + 1
2

(
α

γ2
− σ

)∥∥∥θ̃g∥∥∥2
+

1
2
σ

(∥∥∥θ f ∗∥∥∥2 + ∥∥θg∗∥∥2)+ 1
2
ρ2d̃2. (14A)

By picking

α ≤ min
{
λmin(Q)
λmax(P)

, γ1σ, γ2σ

}
(15A)

we have

V̇ ≤ −αV +
1
2
σ

(∥∥∥θ f ∗∥∥∥2 + ∥∥θg∗∥∥2)+ 1
2
ρ2d̃2. (16A)

Hence V̇ ≤ 0 whenever(
e, θ̃

)
∈ E =

{(
e, θ̃

)
: V ≥

1
2α

(
σ

(∥∥∥θ f ∗∥∥∥2 + ∥∥θg∗∥∥2)
+ ρ2 sup

τ
d̃2(τ )

)}
(17A)

This implies that (e, θ̃ ) is UUB. Note that the size of the
set E is adjustable by proper choice of α, σ, P, Q. Smaller
size E results in more accurate output tracking. However, this
parameter tuning is not always unlimited, as it may cause
controller saturation during the implementation.

(iii) At this point wewill present amodified tuning law (49)
that would guarantee that ĝ(x, θ̂

g
) of (7) or estimates θ̂

g

of (19) are bounded away from zero. This problem can be
solved by ‘projection modification’ method [22], [23], [25].

˙̂
θ
g
1 =

γ4εδ, if
∣∣∣θ̂g1 ∣∣∣ > θ

g
min ∨

[
θ̂
g
1 = θ

g
minsgnθ

g∗
1 ∧ (εδ)sgnθg∗1 > 0

]
0, if

∣∣∣θ̂g1 ∣∣∣ = θgmin ∧ (εδ)sgnθg∗1 < 0
(18A)
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Taking advantage of the fact that in our case ĝ(x, θ̂
g
) in (45)

is a scalar function θ̂g1 (t), the general projection modification
formula takes the following simple form (18A), as shown
at the bottom of the previous page, where θg∗1 = b1 + kb2
(cf. (41)). We also assume that sgnθg∗1 is known and θgmin

represents a known lower bound of
∣∣∣θ̂g1 ∣∣∣. This formula can

be combined with the σ -modification term [22].
The main goal here is to stop adaptation of θ̂g1 if the

parameter reaches its lower absolute limit value θ̂gmin, with a
nonzero time derivative θ̂g1 . The formal but elementary proof
of (18A), can be found e.g. in [25].
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