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ABSTRACT Smart contracts, as an added functionality to blockchain, have received increased attention
recently. They are executable programs whose instance and state are stored in blockchain. Hence, smart
contracts and blockchain enable a trustable, trackable, and irreversible protocol without the need for trusted
third parties which generally constitute a single point of failure. If a user creates and distributes a smart
contract, others will be able to interact with it while the underlying blockchain ensures a trustable execution.
In this paper, we aim to introduce state-of-the-art technologies of the smart contract protocol. We firstly
introduce the history of blockchain and smart contracts followed by their step-by-step operations. Then,
we introduce the survey results which are classified into four categories based on their purposes: cryptog-
raphy, access management, social application, and smart contract structure. By presenting the most recent
knowledge, this paper will contribute to the advances and proliferation of smart contracts.

INDEX TERMS Bitcoin, blockchain, smart contract, smart contract applications, smart contract operations,
recent advances in smart contract.

I. INTRODUCTION
A. HISTORY OF SMART CONTRACTS
Although smart contract technologies have begun to receive
more widespread attention from both industry and academia,
there is a long history along the path from cryptocurren-
cies leading up to blockchain and smart contracts. In 1991,
S. Haber and W.S. Stornetta proposed a hard-to-tamper sys-
tem to timestamp digital documents [43]. In their scheme,
a digital document is issued a certificate that contains the date
on which it was created and information about previously
issued certificates for other digital documents. Therefore,
it creates a link that can be used to retrieve and prove the date
on which a document was created. Later, in 2008, Satoshi
Nakamoto proposed a decentralized payment system called
Bitcoin, where the history of transactions is stored in a dis-
tributed ledger made of blocks [44]. Each block contains
a set of transactions, a nonce, a timestamp, and a hash to
a preceding block, which is similar to the approach used
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in [43]. It is the idea of Satoshi Nakamoto’s Bitcoin that
sparked what we know today as blockchain. A blockchain is
a distributed data structure made of blocks of data in which a
block is linked to another block through its hash value. It has
two basic operations: read (to read the content of blocks)
and append (to append new blocks). Although an adver-
sary might try to remove/modify some blocks, it requires
extremely expensive computations, which makes them non-
viable [44]. The read-append property of blockchain has
made it a suitable medium to develop different decentral-
ized payment systems by removing the need for centralized
institutions such as banks [44]–[46]. Any user can trans-
fer currencies to others and participate in the verification
process of transactions. With the growth of Bitcoin, people
have recognized that blockchain could be used to develop
decentralized solutions in other domains, such as in the food
industry, healthcare, etc. However, the Bitcoin architecture,
which only supports scripts to check and validate currency
transactions was not sufficient to support such applications.
Therefore, the smart contract protocol was introduced into
blockchain.
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In 1994, Nick Szabo introduced smart contracts,
which are computer programs that replicate the actions
described in physical/traditional contracts [47]. Later in 1996,
Szabo [48] defined the following objectives of a smart
contract: observability, verifiability, privity, and enforceabil-
ity. With its read-append property, Bitcoin and its scripts
language showed that blockchain is a suitable platform
to implement smart contracts. On a blockchain, a smart
contract cannot be modified, it can be easily observed,
verified, self-enforced, and depending on the access mode
of the blockchain, privity can be achieved. Despite the
fact that its script language only allows checking and val-
idating transactions, Bitcoin can be considered as the first
implementation of a smart contract on blockchain. Later
in 2015, Vitalik Buterin [46] created Ethereum, a blockchain
platform that features a decentralized payment system
and a Turing complete language, which allows for the
development of a wide variety of smart contracts on a
blockchain.

B. RELATED WORK
To introduce the variety of smart contract technologies, many
survey results collecting the advancements of smart con-
tracts have been presented before. At the level of security,
Liu et al. presented a survey that focuses on the security
and verification of smart contracts [49]. Atzei et al. pre-
sented a survey of different attacks on smart contracts on
the Ethereum platform [50]. Harz et al. presented a survey
of different languages currently used to develop smart con-
tracts and their security features, and they also presented
different verification methods used to assess the security of
smart contracts [51]. Murray et al. proposed a survey on
different works using formal verification to detect vulner-
abilities in smart contracts [52]. Angelo et al. proposed a
survey of different tools used to analyze smart contracts on
the Ethereum platform [53]. These surveys focus on security
in the implementation of smart contracts, whereas our survey
not only covers recent advancements in the implementation
of smart contracts but also covers the use of smart contracts
to improve security. At the level of general applications,
Hu et al. presented a survey on applications of smart contracts
in different domains [54]. However, there is a gap between
the survey results and the recent advances in smart contract
technologies. Rouhani et al. presented a survey that tackle
four different aspects of smart contract: blockchain platforms
supporting smart contract, security and performance issues
at the level of smart contract, and applications of smart
contracts in decentralized environments [55]. However, their
survey does not lean in the technical aspect of different works
that use smart contracts. Zheng et al. proposed a survey on
challenges around the life-cycle of smart contracts, recent
advancements in their analysis, and the status of current
platforms [56]. Though exhaustive, it does not provide a view
of the usage of smart contracts in some emerging fields such
as quantum computing.

C. OUR SCOPE AND CONTRIBUTIONS
The objective of this survey is to provide the reader with
a technical overview of a variety of emerging technologies
and the role of smart contract in their applications. With
this in mind, without disregarding the various publications
on the topic of smart contract, we surveyed works from
2017 to 2020. After reviewing each of the collected works,
we classified them into four categories with the representative
terms: Cryptography, Access Management, Social Applica-
tion, Smart Contract Structure.

Table 1 describes the areas and the summary of our sur-
vey. The category Cryptography introduces technologies that
bring cryptography to the smart contract domain, overcome
a drawback of a cryptosystem by leveraging smart contracts,
and introduce attack methods valid on smart contracts. This
can be further classified into four sub-categories: decentral-
ized public key infrastructure (PKI), pseudorandom num-
ber generation, quantum cryptography, and attack methods.
The category Access Management introduces access control
and/or management schemes developed for diverse appli-
cations on the basis of the smart contract structure. This
can be classified into four sub-categories of access man-
agement in the Internet of Things (IoT) environment, fed-
erated identity management, attribute-based access man-
agement, and role-based access management. The category
Social Application introduces useful secure solutions that can
be widely utilized for rich functionality in social applica-
tions, such as voting, auction, mobile payment, and energy
distribution. Lastly, the category Smart Contract Structure
introduces schemes focused on the development or redesign-
ing of smart contract structure in a way to improve its
performance and/or effectiveness for a given environment.
This can be classified into the four sub-categories of micro-
service, service-oriented computing, research framework,
and high-performance computing.

D. ORGANIZATION
The remainder of this paper is organized as follows: Section II
presents how smart contracts work. Our main contributions,
a survey of state-of-the-art smart contract technologies cate-
gorized by cryptography, access management, social appli-
cation, and smart contract structure, will be highlighted in
Section III, Section IV, Section VI, Section VII, respectively.
Finally, we provide some future directions in Section VIII and
a summary of this paper in Section IX.

II. HOW SMART CONTRACTS WORK
In this section, we introduce a high-level overview of a smart
contract’s process, starting from its development until the
verification of transactions. Figure 1 provides a graphic rep-
resentation of those different steps.

Before diving into the smart contract’s process, we give a
definition of the different terms that will be used:
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TABLE 1. Table of references.
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FIGURE 1. Overview of smart contracts.

• Developer: an individual who implements the logic of a
smart contract using a specific set of instructions com-
patible with or provided by a blockchain platform

• User: any entity that uses the services of a smart contract
• Transaction: a query made to a smart contract program
• Blockchain platform: the set of applications and proto-
cols used to maintain and manage a blockchain

• Node: an entity having an account on the blockchain
platform that can execute and validate transactions

• Faulty node: a node susceptible to submitting false
results after the execution of a smart contract

Following is a step-by-step process of the smart contract:
Step 1: Developers write the logic for the contract

in a programming language supported by the blockchain

platform they wish to use. Then, using a specific compiler
(usually provided by the blockchain platform), they compile
the source code representing their smart contract and obtain a
byte code.

Step 2: After obtaining the byte code, they will publish
it to the blockchain platform where it will be stored on the
blockchain. Depending on the platform used, once the smart
contract program is published, it will be either read-only or
modifiable. For instance, Ethereum does not allow smart con-
tracts to bemodified [46], whereas EOSIO allows overwriting
through the uploading of a new byte code [57]. In case it is
read-only, to provide an update, the developers will need to
publish a new version of the smart contract and redirect users
to it. Once uploaded, the smart contract is at its initial state.

VOLUME 8, 2020 117785



V. Youdom Kemmoe et al.: Recent Advances in Smart Contracts: A Technical Overview and State of the Art

The initial state represents the initial values of the internal
variables of that smart contract.

Step 3: Access to a published smart contract pro-
gram depends on the blockchain platform. In the case of
Ethereum [46] and Neo [58], the blockchain platform returns
an address to the developers. The address will then be used to
interact with the smart contract. In the case of EOSIO [59],
the smart contract is published to an account (hosted on
the blockchain platform) that was previously created by the
developers. The identifier of the account will be used to
access and interact with the smart contract. Once users obtain
the address/identifier, they can begin sending transactions.
Each transaction should contain the function of the smart
contract that theywish to utilize and the function’s arguments.
If an amount of platform currency is needed to start the func-
tion’s execution, that amount will be transferred alongside the
transaction. The transaction will be stored in the blockchain
platform’s pool of transactions that await to be executed and
validated. Step 3 in figure 1 is based on the functioning
of [46], [58].

Step 4: From the pool of transactions, the blockchain
platform will select a set of transactions to be executed and
validated. During the execution phase, the functions of a
smart contract that are specified in the transaction will be
executed by a set of nodes. During the validation phase,
the nodes that executed the transaction will compare their
results and select the one to be kept according to a consensus
protocol. For instance, in a Byzantine Fault Tolerant (BFT)
consensus protocol based on [60], the blockchain platform
will select n nodes to execute and validate a set of transactions
T = {t1, t2, . . . , tq}, where ti (i ∈ {1, . . . , q}) is a transaction
and n ≥ 3m + 1 with m being the maximum number of
possible faulty nodes. Each node k will execute the smart
contract tied to each transaction and submit a set of results
rk = {r1k , r2k , . . . , rqk } where rik represents the result of
each transaction ti ∈ T , with k ∈ (1, . . . , n). From the set
of results R = {r1, r2, . . . , rn}, a result r ′ that was obtained
by n′ nodeswith n′ > (n+m)/2will be considered as the valid
result. Also, there is proof-based consensus where instead of
a group of nodes agreeing on a final answer, each node has
to prove that it has executed a certain operation, or it is in
possession of a certain value. The first node to present a valid
proof is elected as the leader and is allowed to attach the result
of its execution to the blockchain [61]. In addition, there are
hybrid consensus protocols which are based on both BFT and
proof-based protocols [62], [63].

Step 5: Once the valid result has been selected, it will be
inserted in a block that will be appended to the blockchain.
Also, the initial state of each smart contract specified in set
T will be updated, i.e., if a validated transaction altered the
internal variables of a smart contract, those new values will
now be considered as initial values by future transactions.

III. CRYPTOGRAPHY
Cryptography is a discipline that aims to develop means to
secure and protect information and the channels over which

the information is passed so that only authorized entities can
have access to it. Blockchains and smart contracts are possi-
ble today thanks in part to some cryptographic primitives that
protect the integrity of a blockchain. For instance, by using
an asymmetric key scheme and digital signature, a party B
can send an amount x to a party A by using A’s public key
pkA as the address and signing the transaction with its secret
key skB. By taking the advantages of blockchains and smart
contracts, researchers and developers are looking for new
ways to use smart contracts as a medium to improve previous
cryptographic tools and develop new ones.

A. DECENTRALIZED PKI
Public Key Interface (PKI) is an entity or set of entities
that help support public/asymmetric key based encryption
systems by distributing, verifying, and revoking certificates
that bind the identity of other entities in a network with their
public key. One of the objectives of a PKI is to help pre-
vent a man-in-the-middle attack during an exchange between
entities in a network. Currently, the architecture of PKIs is
centralized, which means they are controlled by only a few
entities called certificate authorities. Certificate authorities in
their current form represent a single point of failure since they
can be hacked and forced to issue rogue certificates or have
some of their certificates compromised and become rogue.

Hence, some researchers and developers are proposing
to move from a centralized architecture to a decentral-
ized architecture that uses blockchain and smart contracts.
Patsonakis et al. propose a decentralized PKI scheme that
uses smart contracts and an RSA-based accumulator [1]. One
of the current problems of blockchain technology is the fact
that the space needed to store a complete chain increases
linearly with the amount of data. This makes the blockchain
difficult to maintain as it scales up. To avoid such a situation,
Patsonakis et al. use an RSA-based accumulator of constant
size to store valid certificates in a smart contract, but since
an accumulator may only be checked for added values, they
propose to store a copy of the certificates in a trusted database.
To check the authenticity of certificates, a user needs to obtain
a copy from the trusted database and check if it was added to
the RSA-based accumulator on the smart contract. However,
removing an item from the accumulator requires access to its
private key. To circumvent this issue, if one wishes to add
an item δ to the accumulator, it adds m = (δ, i, a) to the
accumulator, with a being the add operator and i representing
the ith time δ is added. To remove δ from the accumulator,
it suffices to accumulate m′ = (δ, i, d), with d being the
delete operator. The removal of δ from the accumulator is
equivalent to its revocation.

Still in the use of a cryptographic accumulator, as an
improvement to [1], Patsonakis et al. propose the use of a hash
tree-based accumulator over the RSA-based accumulator [2].
The hash tree-based accumulator allows for the addition and
deletion of items to and from the accumulator without the
need for the private key, thus offering a degree of improved
security over the RSA-based accumulator and rendering the
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inefficient method used in [1] to remove an item unnecessary.
It should be noted that in [1], [2], the revocation of a certifi-
cate is left in the hands of its owner. Therefore, the lifetime of
a certificate is infinite unless the owner decides to revoke it.

At last, Mustafa et al. propose a decentralized PKI based
on aweb of trust model [3]. In their proposed scheme, SCPKI,
the authors implement a smart contract on the Ethereum
platform in which an entity (people, organizations, etc.) can
register its attributes, such as a certificate. An attribute can be
stored on the blockchain (full version) or off the blockchain
(light version). In the case of the light version, a link pointing
to the location of the attribute is provided during the regis-
tration. After the registration, any entity except the owner of
the attribute can sign the attribute as proof of endorsement.
An entity can also revoke its signature on a signed attribute.
Since all operations are publicly visible, anyone can see who
signed what and base their trust on the information it has.
However, Mustafa et al. fail to provide a clear mechanism
to revoke an attribute. For instance, given a certificate that
was signed by a state authority and a federal authority, if the
federal authority revokes its signature, can we still consider
the attribute as valid? This may lead to a situation of anarchy
where an attribute is considered valid by an entity A, but
invalid by an entity B. Furthermore, there is no definition on
the lifetime of an attribute. Thus, unless one decides to not
trust any signature over an attribute, the attribute’s lifetime is
infinite.

B. ATTACKS ON SMART CONTRACTS
Even though blockchain and smart contract architectures
are secured and protected by cryptographic primitives and
elaborated protocols, smart contract codes are not. Generally,
their security is left in the hands of their developers, who
commonly do not take the time and consideration to imple-
ment measures that will make smart contracts secure and,
as a consequence, leave their implementations vulnerable
to attacks. A well-known example is the DAO attack [64]
that resulted from an error in the code of the smart contract
leading to a third of DAO’s assets being siphoned by an
attacker. To help developers in the identification of those
attacks, Perez et al. propose a list of smart contract vulner-
abilities on the Ethereum platform and an evaluation of their
severity [12].

As possible solutions to find vulnerabilities in written
smart contract applications, Feng et al. propose a smart con-
tract analysis tool called SMARTSCOPY [10]. It is a program
that can be used to produce adversarial smart contracts that
exploit vulnerabilities of a smart contract written in Solidity
(the programming language used to implement smart contract
programs on the Ethereum platform). To detect potential
vulnerabilities, SMARTSCOPY uses a novel approach based
on symbolic execution, which reduces the time it takes to find
vulnerabilities in a smart contract in comparison to a brute
force approach.

Memory overflow, also known as buffer overflow, is a
phenomenon that occurs when an algorithmwrites an amount

of data to a memory location that is larger than what the
memory location can hold and instead of stopping at the
memory location’s boundaries, the algorithm writes the sur-
plus of data to adjacent memory locations. This attack is quite
easy to perform and can put a smart contract in an unde-
fined state. Gao et al. present a tool called EASYFLOW [11].
Its objective is to detect overflow vulnerabilities in smart
contracts on the Ethereum Platform. EASYFLOW is made
of 4 components:

• extended go-ethereum: detects possible overflow vul-
nerabilities in a smart contract and outputs logs

• log analyzer: analyzes logs generated by extended
go-ethereum, sorts the results by category, sends poten-
tial overflow transaction to the transaction constructor,
and sends the sorted results to the report generator

• transaction constructor: using the transactions that were
flagged as potential overflow, it creates new ones
by changing their data and sends them to extended
go-ethereum for re-execution to reassess if an overflow
can be triggered

• report generator: gathers all results and produces a brief
analysis report

However, the proposed scheme is only capable of detecting
integer overflow.

Zhang et al. propose a tool called SolidityCheck that uses
regular expressions to detect potential vulnerabilities in smart
contracts [13]. Their scheme assigns susceptible dangerous
statements to different classes of specific vulnerabilities by
using regular expressions. Once each susceptible danger-
ous statement is labeled, it is further analyzed to provide a
possible solution.

C. PSEUDORANDOM NUMBER GENERATION
Pseudorandom Number Generation (PRGN) is a process that
consists of using an algorithm that takes an initial input,
generally called a seed, to generate a sequence of numbers
that is probabilistically similar to a sequence of truly random
numbers. This process is deterministic, i.e., if we use the
same seed as input for the algorithm, we will obtain the
same sequence of numbers. At the level of smart contracts,
PRGNs can provide many benefits, such as the implemen-
tation of secure lotteries. Current blockchain platforms sup-
porting smart contracts do not directly offer a PRGN because
of consensus protocols [46], [58], [59]. The majority of nodes
in a blockchain platform should obtain the same result after
executing a transaction to make it valid. Hence, PRGNs may
lead nodes to obtain different results, which makes the imple-
mentation of PRGNs in blockchain platforms challenging.

To circumvent this absence of PRGNs, some developers
use properties of the blockchain, such as the number of
blocks, to generate random numbers, but this approach has
shown to be insecure by Reutov [6].

Another method to obtain a random number in a smart
contract is by making a query to an oracle located outside of
the blockchain platform [7], but one of the major drawbacks
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of this solution is that the external oracle represents a single
point of failure. If it is out-of-service, then requests for PRGN
will not be fulfilled, which can cause some smart contract
programs to crash.

Still, on PRGN for smart contracts, the authors of [5]
propose a smart contract called RANDAO that can generate
random numbers directly on a blockchain platform. They
use a contribution scheme in which a set of n users on the
blockchain platform each selects a random number ai,i∈(1,...,n)
and computes a hashed value hi = SHA3(ai). Then, each
user i will select an amount mi and send (hi, mi) as a trans-
action to RANDAO. After a period of time t , each user will
send a′i to RANDAO. For each a′i received, RANDAO will
compute h′i = SHA3(a′i) and compare h′i with hi. If h

′
i =

hi H⇒ ai = a′i, then user i was honest and RANDAO
will keep a′i and return the amount mi. Otherwise, user i
was dishonest and RANDAO will discard a′i and keep mi.
Using a function f and the set of kept values {a′1, . . . , a

′
j}

(j ≤ n) RANDAO will compute r = f (a′1, . . . , a
′
j) and

return r . A smart contract k requesting a random number
from RANDAO will send an amount mk in exchange for r .
RANDAO will use the amount mk to reward honest users.
We have identified two drawbacks in this approach: first,
if more than one smart contract requests a random num-
ber from RANDAO before r is computed, they will all
receive the same value r and second, there is a possibility
that no users participate, which will result in a failure to
provide r .
As an improvement to PRGNs based on contribution

schemes, Chatterjee et al. propose a game theory approach
to improve the incentive for participants to be honest [4].
For a random bit request with ID rid , n participants each
select a random bit bi (where i = {1, . . . , n}), a nonce ni,
and an amount mi. Next, using a cryptographic hash function
H : {0, 1}∗ → {0, 1}`, each computes and sends hi =
H (bi, ni, i, rid ) to the smart contract. After a period of time t,
each sends b′i and n′i to the smart contract program which
computes h′i = H (b′i, n

′
i, i, rid ) and compares it with hi.

If hi = h′i, then the amount mi is returned to participant i,
otherwise, the smart contract sends mi as payment to the
requester and discards bi. After collecting and keeping only
valid random bits, the smart contract performs an XOR oper-
ation and sends the result to the requester. Using game theory,
each honest participant’s weight (utility/importance in the
computation of the result) is computed. Then, the weight is
used to determine its reward. Unlike [5], a new random bit
is computed for each request. Even though this scheme also
suffers from the risk of having no participants, the game the-
ory approach helps mitigate this by offering a higher reward
for honest participants. Furthermore, a request returns only
one random bit; hence, to obtain a random variable with high
entropy, multiple requests will be needed. This can be quite
costly in terms of currency for the requester and also for the
blockchain platform in terms of the number of transactions
generated.

D. QUANTUM CRYPTOGRAPHY
Quantum cryptography is a sub-field of cryptography that
leverages the properties of quantum mechanics to develop
cryptographic tools. Some properties of quantum mechanics,
such as superposition and entanglement, can tremendously
increase the computational power and transmission speed
of the information processing schemes that we currently
utilize.

Blockchain platforms, such as Bitcoin, still have a low
rate of transactions per second when compared to services
like Visa [65]. This slow transaction processing is cur-
rently a scalability issue that prevents other services such as
restaurants, retail stores, etc. from adopting blockchain-based
payment systems. As a possible solution to this issue,
Andrea Coladangelo presents a quantum money scheme that
uses smart contracts to facilitate the verification process
of banknotes [8]. Coladangelo’s quantum money scheme is
built upon Zhandry’s quantum lightning scheme [66]. The
quantum lightning scheme is comprised of two algorithms
(Gen, Ver).Gen is used to produce a quantum state |ψ〉 ∈ H$
and Ver either outputs s ∈ {0, 1}λ, a serial number, when it
is applied to a quantum state ∈ H$ or ⊥. The output (|ψ〉, s)
represents a banknote b that can be used for payment. Smart
contracts hold serial numbers, which are used for verification,
and amounts of coins (the currency of blockchain), which are
used to back quantum banknotes in case the quantum states
are lost.

First, to establish his scheme, Coladangelo adds the fol-
lowing propositions to the definition of Zhandry’s quantum
lightning scheme:

1) LetH be a function defined as follows:H : {0, 1}l(λ)→
{0, 1}λ ∪ {⊥} (for some polynomial lλ)

2) Let A∗ be a polynomial-time quantum algorithm such
that given a state |ψ〉 ∈ H$, A∗(|ψ〉) = (x, |ψ ′〉), with
x ∈ {0, 1}λ and H (x) = s

Second, Coladangelo proposes a definition of a global ideal
functionality FLedg that establishes the different features
that a blockchain should have to implement the proposed
scheme. The features that Coladangelo emphasizes are the
abilities of a party P to register itself, to retrieve infor-
mation about another party, to pay a party, to create a
smart contract, and to query information about a smart
contract. As to what blockchain platform one should use,
Coladangelo proposes Ethereum as an example, but leaves
the final choice to the developers. Following the definition
of FLedg, Coladangelo gives the basic structure of a smart
contract named banknote-contract that is used by the scheme.
A bank-note contract is defined by bank-note contract =
φ$(pid,w, t, (serial,ActivelostClaim), d)) where:

• φ$ or circuit represents the layout/structure of
banknote-contract in FLedg

• pid or party ID represents the ID of a party registering
the contract. In the case of the Ethereum contract, it is
similar to the address of an externally owned account
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FIGURE 2. Valid quantum banknote generation and payment.

• w or witness represents the type of action that the
banknote-contract should execute

• t or time represents an instance of time in FLedg
• (serial, ActiveLostClaim) represents the state of the
smart contract, serial represents a serial number as
defined in [66], ActiveLostClaim represents the statue of
a claim about the loss of a quantum state |ψ〉 such that
Ver(|ψ〉) = serial. ActiveLostClaim has two values:
‘‘No active claim’’ that means no party initiated a claim
and ‘‘Claim by pid’ at time t0’’ that means a party having
pid = pid ′ has initiated a claim at time t = t0

• d ∈ N represents the initial amount deposited in the
smart contract

Finally, Coladangelo gives a full picture of the proposed
payment scheme. The scheme is made of 5 protocols, which
combined together form a payment system. Those protocols
are:

1) Valid quantum banknotes generation: To initiate
a valid quantum banknote, a party P first generates
a quantum state |ψ〉 by running Gen and its serial
number s by running Ver on |ψ〉. Then, P sends
the message (InitiateSmartContract,Params) to FLedg,
where Params = pid, {pid, d}, φ, (s,‘‘No Active
claim’’). After receiving the message, FLedg cre-
ates a smart contract with Params, assigns an ssid,
and sets ssid .coins = 0. Then, it sends the
message(RecordedContract, ssid) to P as a confir-
mation. ssid represents the ID of the smart con-
tract in FLedg. In the case of the Ethereum platform,

it corresponds to the address of the smart contract
account. Once P receives the confirmation, it sends
(InitializeWithCoins, ssid,Params) to FLedg. Finally,
once FLedg receives the message of P, it performs the
following operations: first, it checks if pid .coins ≥ d is
verified, then it performs ssid .coins← ssid .coins+ d
and pid .coins ← pid .coins − d . Figure 2-Block A
shows a depiction of this protocol.

2) Payment: For a party P to pay a party Q, P should
hold |9〉 ∈ H$, a quantum state, s, a serial number,
and ssid, the ID of a smart contract in FLedg, such that
ssid .state =(s,‘‘No active claim’’) and ssid .coins = d .
Then, P sends |9〉 through entanglement or over a
quantum channel and a message m = (ssid, s, d)
over a classical channel to Q. Once Q receives |9〉
and m, it sends the message (RetrieveContract, ssid)
to FLedg. After receiving the message, FLedg sends
the message (RetrieveContract, ssid, z) back to Q,
where z = (ssid .Params, ssid .State, ssid .coins) if
ssid ∈ FLedg or z =⊥. Finally, once Q receives z,
if z = (ssid .Params, ssid .State, ssid .coins), then Q
checks if ssid .Params = pid, {pid, d}, φ, (s,‘‘No
Active claim’’). If verified, Q calculates s′ = Ver(|9〉)
and compares it with s. If s′ = s then Q sends
the message accept to P, otherwise if z =⊥,
Q aborts. Figure 2-Block B shows a representation of
this protocol.

3) Changing serial number of a bank-note contract:
A set of qubits in superposition can collapse due
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to decoherence and causes the loss of a quantum
state. Since a quantum state held by party P can
be lost, the aim of this protocol is to allow P to
create a new quantum state and replace the old quan-
tum state’s serial number stored in a smart con-
tract with the serial number of the new quantum
state. Once P has generated a new quantum state
and acquired the new serial number s’, it sends the
message (Trigger, ssid,BanknoteLost, d0) to FLedg.
Then, on the smart contract corresponding to ssid,
FLedg changes the ssid .state to (soriginal serial number,
ActiveLostClaim=‘‘Claim by pid at time t’’), t being
the time at which the claim was filed on FLedg.
After a period of time ttr , P sends the message
(Trigger, ssid, (ClaimUnchallenged, s′), 0) to FLedg.
If no one succeeds in challenging the claim of P
(i.e., P was honest), then FLedg updates ssid .state to
(s’,ActiveLostClaim=‘‘No active claim’’) and sends d0
back to P.

4) Challenge claim about loss of bank-note: Since any
party P can interact with FLedg, a malicious party M
having pid = pid ′ may acquire the ssid of a bank-note
contract and try to change its stored serial number s by
launching protocol 3. To avoid that, party P, rightful
holder of quantum state |ψ〉 having the serial number
equal to s, sends the message (RetrieveContract, ssid)
at regular interval time tr − 1 to FLedg. FLedg replies
with the message (RetriveContract, ssid, z). Then,
P checks if z=(Params,(s,‘‘Claim by pid’ at time t’’),d).
If verified, P executes the following procedure:

• Compute x = A∗(|ψ〉) where A∗ is the algorithm
defined in requirement 2, x ∈ {0, 1}′ and H (x) = s
with H being the hash function defined in require-
ment 1. This operation will destroy the quantum
state |ψ〉.

• Generate a new state |ψ ′〉 ← Gen and new serial
number s′ = Ver(|ψ ′〉)

• Message (Trigger, ssid, (ChallengeClaim, x, s′), 0)
is sent to FLedg. If P is honest, i.e., H (x) = s,
then FLedg will update the state of ssid:
ssid .state ←(s’,‘‘No active claim’’) and send d0,
the coins deposited by M when launching
protocol 3 to P

5) Change quantum banknote to coins: a party P
can change a quantum state |ψ〉 to coins if it holds
|ψ〉, s, ssid and ssid .state =(s,‘‘No active claim’’).
If verified, P executes the following procedure:

• Compute x = A∗(|ψ〉)
• Sendmessage (Trigger, ssid, (RecoverCoins, x), 0)
to FLedg. If H (x) = s then FLedg releases d the
initial coins deposited when executing protocol 1
to P.

Due to the fact that this scheme requires quantum memories
and quantum channels to store and transfer quantum states,
respectively, implementation represents a daunting challenge

because these quantum technologies are not yet readily avail-
able on the market. Nevertheless, it shows how smart con-
tracts on classical architectures can be used in conjunction
with quantum cryptography.
To reinforce the security of blockchain and smart contracts

against quantum attacks, Cai et al. propose a smart contract
architecture that employs a light-weighted quantum blind
signature [9]. The blind signature scheme allows miners to
sign on smart contracts without learning their content, which
allows for improvements to confidentiality. However, similar
to [8], it suffers from the lack of viable quantum channels and
quantum memories.

IV. ACCESS MANAGEMENT
Access Management is the set of procedures that define
and manage what entity has access to what resources in a
domain. Current access management systems are built around
a centralized architecture where key entities are in charge of
granting, declining, and revoking access control of resources
to other entities. This centralization slows down the treatment
of requests to access resources and also represents a security
caveat. Depending on the distribution of power among key
entities, if the most powerful entity is breached, then an
attacker can freely tamper with access controls in a domain.
For instance, in an operating system, if an attacker is able
to breach the root account, then it will be able to overwrite
the access control of all other non-root users. To improve the
treatment of requests and to reduce breach points, researchers
and developers are turning to smart contracts to develop new
secure and decentralized access management systems.

A. IoT ACCESS MANAGEMENT
The number of IoT devices is steadily increasing [67]. With
their augmentation, the attack surface of systems using IoT
is also increasing. Hence, there is a need for better systems
to manage their access and prevent unauthorized users from
accessing them.
OAuth 2.0 is an authorization protocol that allows a

client to access a protected resource, owned by a resource
owner (RO), through an authorization server (AS). However,
it requires a client, the protected resource, the RO, and the
AS to be online at the moment of the access request, which
is often difficult to fulfill when the protected resource is an
IoT device with intermittent network access. As a potential
solution, Siris et al. proposed a variant of OAuth 2.0 for IoT
devices: a two-fold scheme which uses blockchain and smart
contract technology [14]. Firstly, they proposed a scheme in
which the client requests the access for an IoT to an AS.
Then, the AS sends the portion of the credentials which
are necessary to access the IoT and the price the client
has to pay. Once the client makes its payment through the
blockchain, the AS sends the remaining credentials. Using
complete credentials, the client can access IoT. Secondly,
they propose a scheme in which instead of making a request
directly to the AS, the client makes the request to a smart
contract. Then, the smart contract sends the request to the AS
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which, in return, sends part of the credentials and a price.
Next, the client pays the required price to the AS through
blockchain. Once the AS receives the payment, it sends the
remainder of the credentials directly to the client. After that,
the client can access the IoT. In both schemes, the RO and
the protected resource are not required to be online, which
provides more flexibility. However, to replace the consent of
the RO, a payment is used. This can become an issue since
anyone with the required amount can access the IoT. Also,
there is no mechanism to revoke access once granted.

Zhang et al. propose an access control framework for IoT
based on smart contracts, which is self-regulated [15]. The
proposed framework is comprised of three contracts:

• a set of access control contracts which define the
access policies for a specific resource and oversee client
misbehavior

• a judge contract which analyzes any misbehavior
reported by the access control contract and delegates
penalties

• a register contract which maintains a lookup table
for different access controls and misbehavior judging
methods

To gain access to a resource, a client queries the register
contract to obtain the access control contracts associated
with that resource. Having obtained the list of access control
contracts, the client initiates the access request to each access
control contract, which returns access results to both the client
and the resource. Depending on the returned access results,
the client can or cannot access the resource. We note that the
capacity of the judge contract can be extended to completely
revoke the access of a client to a certain resource.

Capability-based access control (CapBAC) is a type of
access control in which an unforgeable token (also known
as capability) that contains a set of access rights for a
restricted resource is used to grant access control. Compared
to role-based access control and attribute-based access con-
trol, it can offer the possibility to craft more agile access
policies, which can be advantageous in an environment where
IoTs are constantly added and removed. However, the use
of a centralized authorization server can reduce the overall
performance. As a possible improvement, Xu et al. propose
a CapBAC for IoTs, which uses a smart contract to easily
update access control status [16]. Once a client is granted an
access token for an IoT, that access token is also uploaded in
a smart contract. Hence, the IoT will just need to update its
local blockchain copy, and the client will be able to access it.
Furthermore, an entity (delegator) can delegate its capabilities
to another entity (delegatee), but the delegation process must
be authorized by a trusted third party known as a delegation
authorization center. To revoke an access, BlendCAC uses
trusted entities that can modify the smart contract and execute
the revocation process. Nakamura et al. present a CapBAC
for IoTs implemented on the Ethereum platform that supports
multi-delegation [17]. Nakamura et al. uncover an issue with
the delegation process presented in [16]: it is not possible for

two entities Alice and Bob to delegate their capabilities to
the same entity Carl. Therefore, they propose to split each
operation (such as read, execute, etc.) into a single capability
instead of bundling all of them into one capability. Thus,
it allows a delegatee to receive a delegation from more than
one delegator.

With the caveats of public blockchains, such as the pos-
sibility for anyone to access the stored data, Islam et al.
propose the use of a permissioned blockchain to imple-
ment attribute-based access control (ABAC) for IoTs [18].
Since it is not uncommon for IoTs to handle sensitive data,
Islam et al. turned to a permissioned blockchain to better
ensure the confidentiality of data. In their proposed scheme,
they used Hyperledger Fabric as the underlying blockchain
platform. Resource owners issue attributes which provide
access to its resource. Access attributes are registered on the
blockchain through a smart contract, which also handles the
evaluation of an access request.

Wang et al. propose an ABAC scheme for IoTs designed
for Ethereum [19]. The proposed scheme uses four types of
smart contracts: a subject contract that is used to register
device manufacturers and IoTs, an object contract that is used
to handle the attributes of IoTs, a policy contract that is used
to define the access policy of an IoT, and an access control
contract that is used to handle access requests.

B. FEDERATED IDENTITY MANAGEMENT
Federated identity management (FIM) is a specific type
of access management that allows an entity to use the
same access control to access resources located in different
domains. In its current form, a special entity called a cre-
dential service provider (CSP) is trusted by other entities
(relying parties) belonging to the same or different domains
to identify and validate the access controls of clients wishing
to interact with those relying parties. In this current setting,
CSPs represent a single point of failure for FIM because if
they are not available then the relying parties will not be able
to validate the access control of a client. In addition, CSPs
can breach the privacy of clients since there is a possibility
for them to identify the relying party a client is interacting
with.

To solve the issue with CSPs, Mell et al. propose an Iden-
tity Management System (IDMS) where a client can send the
different attributes needed for an access control directly to a
relying party without relying on a CSP [20]. In their scheme,
Mel et al. identify five entities that interact through a smart
contract to provide an FIM:

• IDMS Owner: the entity in charge of the IDMS, its role
is to grant and remove access to an account manager on
the smart contract. To some extent, it can also modify
the smart contract code.

• Account Manager: grants and removes access to a user
on the smart contract. Also, if ordered by the IDMS
owner, it can perform a check of identity on users to
confirm that they are who they claim to be. It can also
add attributes that will help a user identify its account.
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• Attribute Manager: adds and removes attributes to
users’ accounts. Adding an attribute to a user account
requires its permission.

• User: the entity interacting with the relying party, it can
delete attributes which do not serve as its identity from
its account. It can also completely delete its account
from the IDMS.

• Relying Party: an entity that can read data stored in a
smart contract.

On a smart contract, the IDMS owner authorizes some
account managers to identify and register users. Once a user
is registered, an attribute manager can add attributes to its
account. To ensure the privacy of data in those attributes,
the attribute manager uploads an encrypted version of the
data to the smart contract. If a relying party requests certain
attributes from a user, the user will send those attributes to it
directly, and by using a copy of the state of the smart contract,
the relying party will compare the attributes received by the
user with those stored on the smart contract.

C. ATTRIBUTE BASED ACCESS MANAGEMENT
Attribute-based access management, also known as ABAC,
is a type of access management where access rights to a
resource are determined through the evaluation of given
attributes by a set of defined policies. The evaluation of those
attributes requires their authentication to make sure that they
were not forged by an adversary. This authentication process
is handled by a trusted attribute authority, but it’s possible that
for an access right, the different attributes required are shared
between different attribute authorities. This distribution can
render the evaluation process complex and time-consuming.
In [21], Guo et al. propose an improvement to attribute-based
access management through the use of smart contracts on the
Ethereum platform. Guo et al. identify three actors in their
scheme:

• Data Owner (DO), the entity in charge of a resource,
whose role is to define the required attributes and poli-
cies that should be fulfilled to obtain access rights to that
resource.

• Data User (DU), an entity in need of access rights to
a resource. A data user will communicate with a data
owner and attribute authorities to obtain access rights.

• Attribute Authority (AA), an entity in charge of issu-
ing and validating attributes necessary to obtain access
rights to a resource.

Figure 3 shows a graphical representation of the process that
a data user must undergo to obtain access rights for a certain
resource, the encircled numbers represent the order in which
operations are executed, and a similar number on different
operations means that the execution of those operations hap-
pen, roughly, at the same time.

First, a data owner has a resource M that it wishes to
share only with the entities it has approved. To ensure that
the resource cannot be accessed by anyone, the DO gen-
erates a fresh key k and encrypts M with k using an AES

encryption mechanism. Then, it sends C = AES(k,M ),
the encrypted version of M, to a shared database. Afterward,
the DO defines the set of policies to access C. The DO
also creates a smart contract DO that contains the functions
verifyAT() and sendKey().verifyAT() are used to validate the
attribute tokens sent by a DU that requests access rights forC,
if those attribute tokens are validated then verifyAT() will
invoke sendKey() to send C ′ = E(pkDU , k) to DU, where C’
is the cipher-text of k encrypted using pkDU which is DU’s
public key.

Second, a DU willing to access C will create a smart
contract RequestAT that contains the function checkA(). Also,
each attribute authority creates a smart contract AT that
contains the functions CheckAttribute() and sendToken().
The DU will execute the smart contract RequestAT to have
its attributes validated by attribute authorities and obtain
attribute tokens. The function CheckA() will invoke the func-
tion CheckAttribute() of each smart contract AT of each
attribute to validate the DU’s attributes. If the DU’s attributes
are validated, CheckAttribute()will invoke the function send-
Token() to send the attribute token corresponding to the val-
idated attribute. Also, the DU creates a smart contract called
RequestKey, which contains the functionCheckAT(). It will be
executed once the DU has collected enough attribute tokens
to request access rights to the DO.

Finally, once every smart contract programs have been
deployed, the DU executes RequestAT to collect the attribute
tokens from the attribute authorities. Once the attribute tokens
have been obtained, DU executes RequestKey and passes
the different attribute tokens as arguments. RequestKey will
invoke the method checkAT(), which will invoke the method
verifyAT() from the smart contract DO. This is to validate the
authenticity of the submitted attribute tokens and verify that
they comply with the set of policies defined. If everything
is in order, verifyAt() will invoke the function sendKey() that
will send C’ to DU. Once in possession of C’, DU obtains
the key k by deciphering C’: k = D(skDU ,C ′), with key k,
granting DU access rights toM.

V. ROLE BASED ACCESS MANAGEMENT
Role-Based Access Management, also known as Role-Based
Access Control (RBAC), is a type of access management in
which rights to access a restricted resource are assigned to a
role or entity’s position in a system. Once a user is assigned
a role, it is granted the rights related to that role.

Roles defined in RBAC can also be used across different
systems to grant various rights to a given user. For instance,
in a university, a user assigned the role of a student may have
the right to ‘‘read’’ the content of a lecture, whereas in a con-
ference, a user having the role of a student may have the right
to ‘‘apply’’ a promotion code to access a discounted price.
However, in the case of a conference, a user may be required
to submit a scanned copy of a student ID or a student email
for identity verification, which can be easily forged. To solve
this issue, Cruz et al. propose an RBAC system imple-
mented using Ethereum’s smart contracts that can be applied
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FIGURE 3. Multi-attributes based smart contract.

across multiple organizations [22]. In their proposed system,
the authors identify three principal actors: role-issuers which
are entities capable of creating roles (i.e., university, govern-
ment, etc.), service-providers which are entities outside the
domain of role-issuers that use those roles to grant specific
rights (i.e., conference, restaurant, etc.), and users which are
entities to whom roles are assigned. The role-issuer creates
a smart contract in which it manages users and their roles.
To preserve users’ privacy, only their blockchain addresses,
roles, and notes, such as the expiration date of the role,
are saved in the smart contract. Using the smart contract
created by the role-issuer, a service provider can query the
information provided by a user willing to access its services.
Once a match is found, the service provider sends a message
to the user who will then digitally sign the message using its
private key. The service provider will check the validity of
the signature by using the user’s public key stored in the role-
issuer’s smart contract.

RBACs need an authentication mechanism to prevent
unauthorized users from using roles and their related rights.

This can be resolved by using a username and password
to authenticate a given user, but this method is inefficient
since users and developers are not good at handling pass-
words [68], [69]. As a possible solution for an RBAC,
Lee et al. propose an RBAC that supports user authenti-
cation and anonymity, and that can be implemented using
Ethereum’s smart contracts [23]. For their scheme, Lee et al.
list three actors: role-issuers (RI) which are entities man-
aging roles, role owners (RO) which are entities to whom
roles are assigned, and role verifiers (RV) which are entities
that authenticate role owners and provide permissions to use
role owners’ roles in service. Each entity has an account
on the blockchain. Through a smart contract, a role issuer
can issue a role pass (RP) to a role owner, with RP =
H (RO’s address||roleid ), where H is a cryptographic hash
function. Using RP, RO can request permission to access a
service. The validation of such a request is handled by the RV,
which will check if RP is valid and if the rights haven’t
expired. The use of RP allows for user authentication while
preserving its anonymity.
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To improve the security of RBAC systems, Rahman et al.
propose an advanced RBAC model based on users’ locations
and implemented using Ethereum’s smart contracts [24].
When a user’s account is compromised, an adversary can
log into a system using that account and have access to
the same rights as the legitimate user. Adding the user’s
location as one of the attributes used to determine access
rights can help mitigate such an attack since the adversary
will have to be located in a valid area. In the scheme of
Rahman et al., we have four principal actors: a role man-
ager, an entity that manages roles and assigns them to data
users, a data user, an entity that needs access to restricted
resources, a resource owner, an entity that owns a restricted
resource, and a data provider, an entity in charge of handling
access requests from data users. Each actor has an account
on the Ethereum platform. Through a smart contract, the role
manager can create/delete roles, assign those roles to data
users, and set approved locations. Also, using the same smart
contract, resource owners can add/remove permissions based
on roles to access restricted resources.When a data user needs
access to a restricted resource, it will send a request to a data
provider. Using the smart contract, the data provider checks
if the role of the data user matches the role stored in the
smart contract. If true, it will check if the location data and
role match with the requirements of the permission. If the
permission requirements are fulfilled, the data provider will
grant access to the data user. However, instead of data users
providing their location data, a trusted third party such as
a localization server is used. This is to avoid location data
forgery by data users.

VI. SOCIAL APPLICATION
With such a large amount of users and data, applications
revolving around societies and social interactions face the
constant challenge of providing availability to its users while
simultaneously securing their data against breaches and tam-
pering by attackers. As we know, blockchain and smart
contract platforms offer not only hard-to-tamper storage but
also an architecture resistant to denial of service attacks.
Therefore, developers and researchers are proposing new
social applications that take advantage of the benefits of these
technologies.

A. VOTING
An important application that helps maintain order in a
society is voting. Through voting, people select their next
leader in a time of elections or the next path to take when
faced with a dilemma. However, one of the most important
aspects of voting is integrity, or to make sure that the votes
of all participants have been taken into account and were
not tampered with. Traditional voting systems contain several
points of failure. For instance, in the case of voting through
cards, it is easy for counters to dismiss or change the entry of
a participant during the counting process. Therefore, some
researchers and developers are turning to blockchain and
smart contracts to develop future systems.

McCorry et al. propose an e-voting protocol aimed at
boardrooms that use smart contracts to register users’ votes
and count the tally [25]. The voting protocol consists of
two rounds. During the first round, after the execution of
the setup process, which selects the different parameters of
a Diffie-Hellman group, each voter i uniformly randomly
selects xi, then it computes gxi and δi(xi), a non-interactive
zero-knowledge (NIZK) proof that proves the knowledge
of xi. Then, the values gxi , δi(xi), and an amount m are sent
to the smart contract. Once each voter has uploaded their
share, the smart contract computes gyi = 5i−1

j=1g
xj/5n

j=i+1g
xj .

During the second round, each voter selects vi ∈ {1, 0} as its
vote and sends [gxiyigvi , θ(vi)] to the smart contract, where
θ (vi) is a NIZK proof which proves vi ∈ {0, 1}. Once each
vote is sent, the smart contract returns the amount m and
computes the final result as follows: R = 5igxiyigvi = g

∑
i vi

because
∑

i xiyi = 0. To extract the actual outcomes of
the voting process, i.e.,

∑
i vi, the smart contract performs a

brute force search on g
∑

i vi . From an initial analysis, sending
gxiyigvi may seem to protect the anonymity of the voter and
its vote. However, we note that if the smart contract is able to
perform a brute force search on g

∑
i vi to obtain

∑
i vi, then it

is capable of breaking the discrete logarithm problem (DLP).
Thus, it is also possible to perform a brute force search on
gxiyigvi and obtain vi. Therefore, the anonymity of the vote is
not ensured.

Tso et al. present an e-voting system where users partici-
pating in a vote can use a smart contract to check if their vote
was validated [26]. If an anomaly is detected in their votes,
they can directly report to the election committee.

Lyu et al. present a privacy-preserving e-voting protocol
that uses threshold encryption to enable tallying and linkable
ring signature, a type of digital signature, to identify voters
and prevent double-voting [27]. Given a group of users G =
{U0,U1, . . . ,Un}where each userUi ∈ G has a secret-public
key pair (ski, pki), and a linkable ring signature Sig(m)Uj
issued byUj ∈ G on amessagem, it is possible for an outsider
U ′ /∈ G to know that Sig(m)Uj was issued by a member in G
without learning which member issued it. The linkable part
means that it is possible to retrace all signatures generated by
Uj without learning the identity of Uj. By using those prop-
erties of linkable ring signature, Lyu et al. are able to prevent
double-voting and the participation of unapproved users in
an election. During the voting process, each voter uploads its
encrypted vote using the public key generated by the thresh-
old encryption and its linkable ring signature to the smart
contract. After the voting process is completed, each voter
uploads its share of the secret key generated by the threshold
encryption. Once the smart contract receives enough shares,
it reconstructs the secret key, decrypts the uploaded votes,
and computes the final result. This prevents any user from
knowing the final result before the vote-counting process.

B. AUCTION
In auctions, participants have foundmultiplemethods to orga-
nize themselves into collusion and manipulate prices [70].

117794 VOLUME 8, 2020



V. Youdom Kemmoe et al.: Recent Advances in Smart Contracts: A Technical Overview and State of the Art

It is also more difficult for auctioneers to enforce participants
to pay the bade amount as promised.

Chen et al. propose an e-auction platform implemented
using Ehtereum’s smart contracts [28]. They take advantage
of the properties of blockchain and smart contracts to rein-
force the integrity of auction operations. Since blockchain is
read-append only, it is not possible for a bidder to deny a
bid. Also, if a participant Ui bids an amount mi, that amount
will be held in the smart contract. If Ui is the winner at the
end of the auction, mi will be automatically transferred to the
tenderer. However, it does not prevent collusion from bidders.

Desai et al. propose an e-auction system that uses public
and private blockchains to ensure users’ privacy and account-
ability [29]. Their system is comprised of three smart con-
tracts: an auction contract, PublicDeclare smart contract, and
CongressFactory contract. The auction contract is hosted on
a private blockchain whose access permission is managed
by the auctioneer. The PublicDeclare and CongressFactory
contracts are both hosted on a public blockchain. Each user
must own an account on both blockchains to participate in an
auction. The auctioneer is in charge of handling a hash table
that maps the address of a participant on the public blockchain
with its address on the private blockchain. The auction is han-
dled by the auction smart contract. To ensure accountability,
every time a participant submits a bid, it uploads H (n,m)
to the CongressFactory where m is the bade amount, n is
a random number, and H is a cryptographic hash function.
At the end of the auction, participants send the random num-
bers used to generate the different commits to the auction-
eer through the auction smart contract. Then, the auctioneer
checks the consistency between the values received by the
participants, and the commits are stored in the CongressFac-
tory. Once the verification phase completes, the auctioneer
compares bids and declares the winner through the PublicDe-
clare smart contract. The use of a private blockchain to run the
auction ensures the privacy of the participants, with only the
auctioneer being aware of the bade amounts. In the event that
the auctioneer is dishonest and declares the wrong winner,
participants can use the CongressFactory to check the values
used by the auctioneer and the commits that were made.
During this operation, the auctioneer must send the bids to
the CongressFactory, making it possible for a participant to
learn the bids of others. To mitigate this, participants seeking
to verify the auctioneer must place a stake in some amount
to access the information. Should the auctioneer prove to be
honest, then the staked amount is confiscated.

To prevent collusion among participants, Wu et al. pro-
pose a collusion resistant decentralized platform for e-auction
called CReam built on top of smart contract technology [30].
In the CReam, participants first submit a hash version of their
bids to the smart contract during the first round. In the second
round, participants reveal their bids to the smart contract.
After the second round, the smart contract computes the win-
ning bidder and punishes dishonest bidders by redistributing
their coins to honest bidders. The smart contract also forces
sellers to send the auctioned resources and the winning bidder

to pay the bade amount. Collusion resistance is ensured by the
use of a consensus estimation function during the determina-
tion of the winner.

In [26], Tso et al. also propose an e-bidding system based
on smart contracts that allow participants of bidding to check
if their bids were correctly taken into account. Their system
also ensures that participants can pay the amount they bid by
using a system of bonds.

C. PAYMENT
To ensure better traceability in transactions involving money
and to avoid the problems that come with physical cash,
society is moving towards cashless payment [71]. Compa-
nies like MasterCard, Apple, Samsung, Google, etc. are each
developing their own mobile payment systems. Since there
is no widely accepted standard, the burden lies on the side
of merchants who have to implement each service in their
business. To solve this situation, Yeh et al. propose a robust
mobile payment using smart contracts as a transaction repos-
itory [31]. This allows clients and merchants to easily query
smart contracts and check the validity of a transaction in case
of a dispute.

Blockchain platforms have offered a transaction rate,
which is very low compared to traditional systems such
as Visa [65]. To circumvent this issue, some use payment-
channel networks. Payment-channel networks (PCN) are
off-chain networks that allow parties to perform multiple
transactions without uploading them to the blockchain. Once
a PCN is closed, the final balance is uploaded to the
blockchain. However, PCNs suffer from concurrency issues
(multiple transactions involving the same payees may enter
into deadlock or starvation), and in case there are multiple
intermediaries in a transaction, some of them can collude
to reveal the identity of the sender and the receiver. As a
possible remedy, Malalvolta et al. propose two PCN pro-
tocols relying on a novel Hash Time Lock (HTL) smart
contract [32]. Our interest was centered on the proposed
HTL smart contract called Multi-Hop HTLC. During the
setup phase of Multi-Hop HTLC with a set of users U =
{u0, u1, u2, . . . , un}where u0 is the sender and un the receiver,
u0 samples n random strings xi and generates

∀xi ∈ {0, 1}λ; yi = H (
n⊕
j=i

xj), with i = {0, . . . , n}

Then u0 sends {xn, yn} to the receiver, and it sends {xk , yk , πk}
to uk , with k ∈ {1, n − 1}, πk being the proof issued by a
pre-chosen NIZK protocol. The NIZK is used by interme-
diary nodes to ensure that xi is legit. Next, using yi+1, each
pair set (ui, ui+1) set an HTL. Since the values (xi, yi) are
unique and sent through private channels, it is impossible for
intermediary nodes to collude and reveal the identity of the
sender and the receiver.

D. ENERGY DISTRIBUTION
Renewable energy allows individuals to gain independence
from the grid and produce their own energy, but occasionally,

VOLUME 8, 2020 117795



V. Youdom Kemmoe et al.: Recent Advances in Smart Contracts: A Technical Overview and State of the Art

the amount of energy produced may exceed or fall short of
the current demand. A quick solution is to allow individuals
in need to make a request to those who possess a surplus
through a dedicated grid. Wang et al. propose a decentralized
distribution energy system where users who have an excess
of energy can easily sell it to the grid [33]. In their approach,
users use smart contracts to automatically or manually sell
their excess energy through the grid. However, some partici-
pants with an excess of energy may decide to opt out and not
sell their excess to the grid, which could benefit those in need.
As a possible solution to this issue, Amanbek et al. propose
a scheme that uses a scheduling mechanism to sell energy to
the grid that benefits prosumers that contribute the most by
using smart contracts [34].

In an effort to completely automate grid management,
Afzal et al. propose a distributed energy management system
that uses smart contracts to monitor energy demands and
perform energy-related transactions [35]. In the proposed
scheme, they used sensors that communicate with a smart
contract to compute energy consumption. Furthermore, they
proposed a game theory model which can help ensure fair
pricing between parties.

VII. SMART CONTRACT STRUCTURE
The smart contract is a concept that is still in its infancy,
with each new blockchain platform proposing a structure that
is slightly or completely different from others. For instance,
in Ethereum, once a smart contract has been published, it can-
not be changed, whereas in EOSIO, the owner of a smart
contract canmake alterations. Researchers and developers are
also looking for ways to combine or change the structures of
smart contracts so that they can be used to benefit other appli-
cations. In this subsection, we are going to look into some
proposals that assess and challenge the current architecture
of smart contracts.

A. MICRO-SERVICE
Micro-service is a design approach in software engineering
that consists of breaking an application into sets of indepen-
dent services that will communicate together to solve clients’
problems. This approach generally requires always-on units
to run those services and an always-on message passing
interfaces to allow communication between them. Those
requirements are easily satisfied by blockchain platforms
that support Turing-complete language for smart contracts
such as [46], [58], [59]. Hence, in an effort to show the
feasibility of this proposition, Tonelli et al. propose a con-
crete implementation of a micro-service architecture using
the implementation of smart contracts in Ethereum [36]. For
simplicity, eachmicro-service is represented by a single smart
contract. To simulate the REST architecture, which is often
the underlying architecture to allow communication between
services in a micro-service architecture, the authors use the
address of each contract, which can be considered analo-
gous to the URI. Functionalities provided by micro-services
are implemented through public getter and setter methods

embedded in the smart contract. However, since all kinds
of information stored in a public blockchain are visible to
anyone, such a framework should not be used for applications
handling sensitive data. We also note that the delay caused by
the validation of each transaction in a blockchain downgrades
the overall performance.

Micro-service architecture also influences how schemes
using smart contracts are developed. In [37], Nagothu et al.
propose a surveillance system using a smart contract imple-
mentation based onmicro-service architecture. Nagothu et al.
assign each functionality of their surveillance system, such as
facial recognition, to a micro-service. Those micro-services
are loaded onto low-powered IoTs, such as cameras, and send
their output to a database. To ensure that the outputs produced
by micro-services are not tampered with, a hashed version is
stored on a blockchain. Access control policies for features
of the system are handled by smart contracts.

B. SERVICE-ORIENTED COMPUTING
Software oriented computing, also known as software-
oriented architecture, is a design principle similar to
micro-service architecture that consists of building an appli-
cation around a set of services that will communicate together
to offer the required functionalities. Compared to micro-
service architecture, services designed for software-oriented
architecture encompass more functionalities and can share
databases [72]. As in the case of micro-service, implementing
this designmay seem daunting, but blockchain and smart con-
tracts seem to be an effective platform for this. Daniel et al.
provide more insight into the possibility of implementing
a software-oriented architecture on a blockchain using the
smart contract in [38]. The authors study four blockchain plat-
forms supporting smart contracts to see if the technologies
can be used to implement a service-oriented computing archi-
tecture. At the end of their survey, they present different prop-
erties that couldmake them suitable for the implementation of
service-oriented computing. Finally, they conclude that none
of these platforms completely fulfill the requirements to build
service-oriented computing on top of a blockchain and make
propositions on what should be addressed next to allow future
generations of platforms to offer that architecture.

C. RESEARCH FRAMEWORK
Smart contracts and blockchain offer great potential to solve
problems in diverse fields, but with no concrete structure,
developers keep creating new applications and platforms.
During this process, they sometimes discard the advantages
or recreate the holes of previous versions. This situation pro-
motes anarchy in the field and can be considered analogous to
the beginning of computer networks before the presentation
of the OSI model: each engineer was creating different net-
work models that were not able to communicate with others.

Wang et al. propose a layered architecture to easily orga-
nize research on smart contract technology [39]. This layered
architecture can also be used as a reference to develop future
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blockchain and smart contract platforms. Their architecture
is comprised of 6 layers:
• Applications layer: represents the application of smart
contracts to specific domains such as finance, food
industry, etc.

• Manifestations layer: represents the different forms
smart contracts applications can take, such as decentral-
ized autonomous organizations (DAOs)

• Intelligence layer: this layer encapsulates elements that
can make a smart contract intelligent by learning and
adapting to presented situations

• Operations layer: this layer is focused on operations
that deal with the form of a smart contract

• Contracts layer: this layer encapsulates the logic of the
smart contract (i.e., how they are going to work)

• Infrastructures layer: consists of all infrastructures
supporting the development of smart contracts and their
applications

Wang et al. also propose a set of challenges that current
blockchain and smart contract implementations face and a set
of future development trends.

D. HIGH PERFORMANCE COMPUTING
In the current architecture of blockchain and smart contracts
in platforms such as Ethereum, the execution and validation
of smart contract transactions are sequential. Miner nodes
select a set of transactions to be processed and execute them
one after another. This approach not only limits the number
of transactions that can be processed per second, but it also
does not take advantage of the multiple central processing
unit (CPUs) architectures of modern computers. Therefore,
moving from a sequential execution to a parallel execution
can solve this problem. Some smart contracts can access the
same resources during their execution. In a parallel execution
setting, this can lead to problems of deadlock, race-condition,
cache coherence, etc. Also, at the level of consensus mech-
anisms, it can increase the likelihood for miners to obtain
different results, impeding the ability to reach a consensus.

As a possible parallel architecture for smart contract exe-
cution, Dickerson et al. propose a parallel architecture based
on software transactional memory (STM) and modeled after
the Ethereum consensus mechanism [40]. In the Ethereum
consensus mechanism, there are two types of miner nodes:
miner nodes, which are in charge of executing transactions
and creating new blocks and validator nodes, which are in
charge of checking if a miner node has correctly executed a
transaction and if the block it proposes should be appended
to the blockchain [46]. For a validator node to validate the
result of a transaction executed by a miner node, it needs
to re-execute that transaction and compare its result with the
result submitted to the miner node. Using the STM approach,
Dickerson et al. encapsulate each smart contract transaction
in a transaction. The term transaction used here refers to a
thread or a process in the context of multiprocessing. To avoid
confusion between a smart contract transaction and a trans-
action, we will refer to the transaction as a thread.

Each thread is equipped with an abstract lock that is used
to lock the access to a shared memory location, and it has
access to an inverse log that is used to record the inverse
of an operation performed on a shared memory location.
It should be noted that the mechanism of the abstract lock
and inverse log is invisible to developers of smart contract
programs, the tasks are handled automatically by the virtual
machine running those threads. If an instruction in a thread p
needs to access a shared memory location m, p will launch a
request to set an abstract lock on m. If the request is granted,
other threads that also requested m will have to wait for p’s
instruction to terminate so that p can release its abstract lock
on m. As we can see in Figure 4, we have three contracts:
A, B, and C that are concurrently executed. At phase (b),
A and C are both requesting access to the shared memory
location 0× 011, but it is A that is able to set its abstract lock
on 0 × 011. Therefore, C is obliged to wait, and its status
switches to idle.

For each action that a thread performs on a shared
memory location, it records the inverse operations in
an inverse log. During its execution, if a thread aborts
(fail/crash), the abstract locks stay effective until all the
inverse operations it has recorded in the inverse log are exe-
cuted to return the shared memory locations used in their ini-
tial states prior to the interaction. Once the memory locations
are back to their initial states, the abstract locks are released,
and the thread is rolled back (set to be re-executed from
the beginning). This process is carried-out by miner nodes
only. If validator nodes were to execute this same process,
the order in which their threads obtain abstract locks can
differ from that of miner nodes and will lead to different
results. To overcome this issue, Dickerson et al. introduce
a log of abstract locks in which the order in which the
threads acquired abstract locks is recorded. Using the log of
abstract locks and the set of threads executed, the miner nodes
generate a happened-before graph, which is a graph showing
the dependency between threads and a serial representation
of that graph. After obtaining the happened-before graph
and the serial representation, the miner nodes send them
to the validator nodes that will use them to reconstruct the
same parallel execution. However, we note that the proposed
scheme suffers from efficiency issues due to a lack of group
exclusive access for READ operations: it is not possible for
two or more threads to perform READ operations on a given
memory location in parallel since threads cannot set abstract
locks for the same memory location concurrently. Also, there
is a possibility for a conflicting transaction to be restarted,
which creates significant overhead.

Bartoletti et al. proposed a concurrent execution model
for smart contracts based on a swappability factor of trans-
actions [41]. They defined two transactions tx , t ′x |tx 6= t ′x
as swappable if executing them in any order produces the
same global state of the blockchain. Using this definition,
they define a more powerful swappability concept, strong
swappability, as follows: given two transactions tx , t ′x and
their respective set of WRITE and READmemories accessed
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FIGURE 4. Parallel smart contract execution using abstract locks.

(W ,R), (W ′,R′), tx and t ′x are strongly swappable if

(R ∪W ) ∩W ′ = (R′ ∪W ′) ∩W = ∅,

i.e., none of these transactions write in a memory location
accessed by the other. Using the strong swappability concept,
they define an occurrence net, which shows the relationship
between transactions and their execution order. Basically,
if two transactions are strongly swappable, they are executed
in parallel, else they are executed in series. This occurrence
net can be produced by a miner and shared with validators.
We note that this offers a possible solution to the issue of
conflicting transactions in [40] and is capable of offering con-
current READ operations on given memory access. Though,
the creation of an occurrence net can be difficult for a set of
transactions involving complex programming syntax, such as
recursion.

With Ethereum being the avant-garde of blockchain plat-
forms supporting smart contracts, Saraph et al. propose an
empirical analysis of speculative parallel smart contract exe-
cution [42]. During their analysis, they used a custom engine
to run past Ethereum’s transactions in two phases. During
the first phase, all transactions are executed in parallel. Only
transactions that fail to terminate are sent to the second
phase, where they are executed sequentially. This produces

an execution history that can be shared between a miner
and a validator. To avoid READ/WRITE conflicts, they used
a read-write memory lock. This lock is used by WRITE
operations. Hence, multiple simultaneous READ operations
can be executed unless a WRITE operation has set a lock.
At the end of their analysis, they concluded that for a block
containing a transaction whose execution time is significantly
greater than others, the speed-up gained by using speculative
parallel execution could be insignificant. They also concluded
that speculative parallel execution is disadvantageous when
multiple smart contract applications access the same memory
location.

VIII. FUTURE RESEARCH DIRECTIONS
Following a thorough analysis of the related papers, wewould
like to suggest the following future research directions:
• Smart Contract Applications: Smart contracts pro-
vide verifiable and trustworthy protocols without the
need for a trusted third party. Due to this property,
it can be utilized for many applications involving
resource-constrained devices, such as IoT, vehicular
ad-hoc networks (VANET), smart home products, and
so forth. Since those devices have a limited capacity
of storing verified protocols, including cryptographic
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tools, smart contracts will be a potential source of rich
functionality.

• Parallelization of Code: Despite the efforts of pro-
posing parallel smart contract execution framewo-
rks [40]–[42], we believe that parallelization in smart
contract execution can be pushed further to allow task
parallelism and a limited degree of data parallelism. For
instance, in the case of task parallelism, a smart contract
that handles a loan application may have to check if
a client has enough money for the prepayment and an
insurance before proceeding, which could be performed
concurrently by different threads if the code allows.
In the case of a limited degree of data parallelism,
a for-loop that only reads from a given memory location
and does not suffer from loop-carried dependency can be
executed by multiple threads with each thread handling
a given number of iterations. Traditional frameworks
such as OpenMP, OpenCL, or CUDA can be regarded as
potential templates to produce a possible solution. Fur-
thermore, since such parallelization is only at the level of
the smart contract code, theoretically, there is no risk of
an issue with a consensus protocol. Hence, the existence
of such a framework could improve the execution time
of a transaction, improve the CPU utilization of miners,
and possibly reduce the execution cost. This could also
be a possible solution to solve the issue raised by [42]
on transactions with significant execution time.

• Distributed Execution of Smart Contracts by IoT
Devices: we remarked that when IoTs are used in con-
junction with smart contracts, they mostly perform push
transactions (upload data to a blockchain via smart con-
tract) or pull transactions (get data from a blockchain
via smart contract). They are not used to execute smart
contracts, due in part to their low computing power.
Therefore, we think that distributing the execution of a
smart contract program among a set of nodes instead
of having one node executing the whole program can
not only allow the execution of a smart contract by a
set of IoTs but also open the door for the implementa-
tion of smart contract based solutions in more restricted
environments.

• Revocation of Certificates and Tokens: throughout our
analysis, we observed that schemes that issue certifi-
cates or tokens either do not provide a mechanism to
revoke them (certificates and tokens can have a limitless
validity duration) or centralize the revocation mecha-
nism by delegating it to trusted entities (which may
leave a scheme open to adversary attacks). Using an
attribute-based signature scheme in which the expiry
date of a certificate/token is one of the attributes might
be a possible solution. With such a scheme, one will be
able to prove that a certificate/token is still valid if the
associated signature is verified. Kumar et al. proposed
an encryption scheme that uses such an approach to
revoke delegated keys [73].

• Random Number Generation: Chatterjee et al. pro-
posed a PRNG for smart contracts based on a contribu-
tion scheme [4]. However, a request results in the return
of one bit. As a possible improvement, we propose the
use of the result returned after XORing the hash value of
retained numbers sent by honest participants. Depending
on the hash function used, this can provide a random
number of high entropy in one round.

• Smart Contract Execution with NIZK as Proof of
Correctness: In our studies, we observed that unless
the access type of the blockchain platform is private,
it is difficult to conserve the confidentiality of data being
handled. Even with private access, the total confidential-
ity of data is not guaranteed since certain trusted entities
still have access to them. Hence, to provide stronger con-
fidentiality while allowing any party to check the sound-
ness of operations, we believe that a blockchain platform
in which the execution of smart contracts results in the
production of a NIZK proof could provide a possible
solution. This could allow any party to check that a
smart contract was correctly executed without the need
to access the data.

IX. CONCLUSION
This paper introduced state-of-the-art technologies in the
smart contract protocol. Specifically, we surveyed the most
recent advances, then classified them into four categories
based on their goals and purposes to effectively deliver
knowledge of the current status of smart contracts in domains
such as cryptography, access management, and social appli-
cations, as well as the structure of smart contracts. In each
of these categories, we highlighted the shortcomings of some
recent works. We also proposed interesting future research
directions that may help improve the current status of smart
contracts and solve some of the identified shortcomings.
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