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ABSTRACT In June 4, 2020, Corona Virus Disease 2019(COVID-19) cases in Wuhan were cleared, and
the epidemic situation was basically controlled. Such public safety infectious disease includes influences
great pressure on the national economy. At present, some countries and regions in the world are still
in epidemic situation, and there is an urgent need to judge the infection situation and travel risk in the
region. In a relatively fine scale down to perceive the surrounding situation, and then rational zoning
decisions to promote the resumption of production and work. In this study, indicators for the evaluation of
COVID-19 epidemic were constructed using multi-sourced data. A computational evaluation of 736 fine-
grained grids was performed using the GeoDetector model and the decision tree model. The study found
that the risk level in older neighborhoods was much higher than in newer neighborhoods; the population
density was the most important determinant of infection; the number of urban people slumped to 37% of
that in usual times according to Tencent data after the ‘‘city closure’’; The model this paper used portrays
the major factor in defining low-risk areas and high-risk areas, and offers suggestions and assessment from
a geographical perspective to fight COVID-19, thus presenting great practical value.

INDEX TERMS COVID-19, geographical detectors, decision tree, risk map, spatial grid.

I. INTRODUCTION
Infectious diseases are common risks across national bound-
aries and society; they seriously threaten not only public
life and health but also social stability and economic devel-
opment. Due to the rapid development of urbanization and
tourism and the changing ecological environment, as well
as the fragile public health system, epidemics are becoming
more frequent, more complex and more difficult to prevent
and control [1]. Novel infectious diseases, such as Ebola
hemorrhagic fever, Middle East respiratory syndrome, and
Coronavirus Disease 2019 (COVID-19), are constantly
emerging. Some of these diseases are characterized as
zoonosis and/or coexist with other epidemics, which greatly
increase their infectiousness and pathogenicity. Epidemics
that occur in densely populated metropolitans will likely
develop into global pandemics. The vulnerability of the pop-
ulation to these situations has increased, and the combina-
tion and interaction of these factors and influences have
contributed to a more complex epidemic. COVID-19, the
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pandemic that is spreading worldwide, has revealed the vul-
nerability of human society to severe infectious diseases and
the difficulty of solving this problem in a globally inter-
connected complex system. COVID-19 affected more than
100 countries in a span of weeks. As a result, the whole
human race should not only collaborate to overcome the
epidemic but also reasonably arrange to return to work and
production according to the actual situation of each region
and carry out geographical risk assessment [2].

In China, there is a key time difference between
COVID-19 and other epidemic viruses. The epidemic
occurred during the Chinese New Year, which generated an
immense population flow. According to the statistics, from
January 10 to 27, 2020, a total of 1.202 billion passengers
traveled by railways, roads, waterways and civil aviation.
In the early morning of January 23, Wuhan announced its
‘‘closure’’. The city’s public transport systems—subway,
airport, railway station, ferry and long-distance passenger
transport systems—were temporarily closed. For the first
time in human history, a large city with a population of
10 million people adopted ‘‘closure’’ measures to prevent the
epidemic.
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II. LITERATURE REVIEW
After the outbreak of COVID-19, some researchers employed
traditional SEIR (Susceptible-Exposed-Infectious-Removed)
model to simulate the spread of the epidemic and applied per-
sonnel migration data to modify the model [3]. Zhu et al. [4]
investigated the city-scale dynamics of the epidemic using
mobile phone city data. They also trained and validated
models based on the classic SIR (Susceptible-Infectious-
Removed) model to predict the future trend in different
scenarios. Liu et al. [5] designed a flow SEIR model that
utilizes Baidu migration data to estimate the risk of epidemic
spread when people return to work after holidays. Li et al. [6]
employed a SEIR model that considers the effect of control
measures to predict the spread of virus.

From a statistical point of view, Fu et al. [7] applied the
Boltzmann function to simulate the cumulative number of
confirmed cases in each province/municipality and mainland
China and predicted the developing trend of confirmed cases
in subsequent weeks. Danon et al. [8] constructed a model
to estimate early transmission trends and peak times of the
disease in England and Wales and analyzed the effects of
seasonal variation in transmission rates. Based on the accu-
mulated data sets of reports, deaths, isolation and suspected
cases, Tang et al. [9] consider that the epidemic trend mainly
depends on isolation and suspected cases. Thus, it is very
important to continue to strengthen quarantine and isolation
strategies and improve the detection rate. Wu et al. [10]
collected and analyzed medical observation, discharge, infec-
tion, nonsevere, critical, cure, and death data and employed
this state transfer matrix model to predict the peak inflec-
tion time and patient distribution to better allocate medical
resources [11]. Anastassopoulou et al. [12] evaluated the
basic regeneration number (R0) and other major epidemi-
ological parameters and predicted the infected population
three weeks after the outbreak development according to the
estimated parameters [13]. Bert-Dufresne et al. [14] empha-
sized the urgent need for tracking close contacts during out-
breaks of emerging infectious diseases and the need to use a
larger number than the R0 value when predicting the size of
epidemics. Based on data-driven analysis, Zhang et al. [15]
estimated the basic regeneration number and outbreak scale
of COVID-19 during the outbreak stage on the Diamond
Princess cruise ship.

The previously mentioned study mainly simulates the time
series of the number of infections, immunizations, deaths,
cures and time nodes of pandemic influenza based on the clas-
sical infectious disease infection model [16], [17]. In addi-
tion to the traditional SIR/SEIR infectious disease model,
some analytical methods from the Geographic Information
System (GIS) and Social Network Analysis (SNA) have been
introduced to the derivation of infectious diseases [18]–[22].
Powerful geospatial data collection, management, process-
ing, analysis and display capabilities of Geographic Informa-
tion System are increasingly employed by scholars for early
warning research on infectious disease surveillance based

FIGURE 1. The study area.

on a combination of the strength of prevention and control
measures, support capacity, support resources and severity of
outbreaks in different regions [9], [23].

Previous studies have focused on the macroscopic perspec-
tive of the COVID-19 epidemic using Baidu migration and
confirmed diagnosis data at the national or provincial scale.
This paper applies multisource and open-source data, which
is easy to obtain to perceive and classify the spatial situation
of the epidemic, and explores the influence and role of various
spatial elements on the breeding of the epidemic from a geo-
graphical perspective. We constructed a system of indicators
for the assessment of major infectious diseases. Based on this
evaluation system, a grid risk map was constructed.

III. STUDY AREA AND DATA
A. OVERVIEW OF THE STUDY AREA
The study area is Wuhan city center. As shown in Fig-
ure.1, there are 13 districts in Wuhan, which covers approxi-
mately 8,570 square kilometers, and a permanent population
of 1,089,290. Seven of the districts encompass urban areas.
According to the 2018 Wuhan statistical yearbook, there are
652,700, 868,500, 729,600, 962,400, 1,637,500, 1,276,300,
and 528,800 people in Qiaokou, Hanyang, Jianghan, Hong-
shan, Wuchang, and Qingshan, respectively. Wuhan has
a population of 6,655,800 permanent residents, excluding
college students and migrant workers. According to the
2018 Yearbook, except for a small number of rural residents
with household registrations in Hongshan district, other areas
have urban residents with household registrations. All coor-
dinates in this paper are transformed into the WGS84 (World
Geodetic System 1984) geodetic coordinate system.

B. INTRODUCTION OF DATA
The data set is directly or indirectly related to the epidemic
and is utilized to monitor, analyze the trend of the epidemic,
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FIGURE 2. Composition of big data of major infectious diseases.

and guide the epidemic prevention strategy. According to
the triangle theory framework of public safety, the big data
of the epidemic situation is categorized into three types
according to the disaster body (hazard, infectious disease
and infectious disease breeding environment), hazard bearing
body (subject affected by epidemic situation) and disaster
resistant body (epidemic prevention and control), as shown
in Figure.2. The disaster body is a kind of epidemic situ-
ation that damages human life, property and environment,
including disease data and disaster environment data. The
data include the confirmed infection caused by the epidemic
and suspected cases. The environmental data of disasters
is employed to reflect the external environment when an
epidemic occurs, including densely populated places (such
as supermarkets, fairs, public transport and other geograph-
ical entities). The hazard-bearing body is the social subject
that is affected and damaged by the epidemic, including
personnel data, location data and economic data. In this
paper, the hazard-bearing body consists of real-time location
data obtained by Tencent’s yichuxing heat map [25] and the
data of population migration obtained by the transportation
departments, such as highway, railway and airplane adminis-
trations. The economic data reflect the economic losses of
various industries, such as businesses, schools, and public
transport areas with dense populations that are closed with
suspended operations due to the COVID-19 epidemic. The
disaster-resistant body is the emergency response to break
the chain of infectious disease spread and gradually control
and eliminate the epidemic situation. This response consists
of epidemic prevention preparation and response by fever
clinics, rescue squads, etc. The epidemic data are organized as
{time(T ), space(x), epidemic(E)}within a unified spatiotem-
poral framework. This study utilizes some open-source data
for model calculation: Baidu map POI (point of interest)

data, Tencent yichuxing thermal data, government open fever
clinics and designated hospital location data, as well as
information about infected communities. Considering that
viruses have an incubation period [26], [27], we disregarded
the implications of POI closure. Based on the theory of
disease transmission, this paper constructs four prior indi-
cators for risk assessment, including ‘‘Infection source’’,
‘‘Transmission route’’, ‘‘Susceptible population’’, and ‘‘Pre-
vention ability’’, and nine second-order indicators, including
‘‘Fever outpatient distance’’, ‘‘Population flow’’, ‘‘Daily pop-
ulation density’’, ‘‘Population density after closure’’, ‘‘Mar-
ket distance’’, ‘‘Hotel density’’, ‘‘Quotient hyper density’’,
‘‘Catering density’’ and ‘‘Traffic density’’. The model
requires the discretization or classification of data. Different
data classification approaches may have different effects on
the experimental results. After repeated tests, we divide all
the evaluation indexes into 10 levels.

IV. METHOD
The geographic detector [28] consists of a set of statistical
methods for detecting spatial heterogeneity and revealing its
driving force. The basic assumption is that if an independent
variable has an important influence on a dependent variable,
the spatial distribution of the independent variable and the
dependent variable should be similar. The core of the the-
ory is to detect the consistency of the spatial distribution
patterns between the dependent variable and the indepen-
dent variable by calculating the spatial heterogeneity and
then to measure the explanatory degree of the independent
variable to the dependent variable. Geographical detectors
are extensively applied in space analysis, such as the explo-
ration of the driving factors of green buildings develop-
ment [29], evaluating indicator of surface water quality [30],
influencing factors of industrial sector carbon dioxide
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TABLE 1. Interaction condition.

emissions [31], [32], etc. A GeoDetector can be employed
in three aspects: measuring the spatial differentiation of
given data; finding the largest spatial differentiation of vari-
ables; and finding the explanatory variables of dependent
variables [33]–[37].

A. FACTOR DETECTION
There is a widely accepted basic hypothesis in geography,
i.e., the closer is the distance between two spatial elements,
the stronger is the correlation; the farther is the distance
between two spatial elements, the weaker is the correla-
tion. Because of the geographical isolation between two ele-
ments, the spatial heterogeneity emerges. The purpose of a
GeoDetector is to measure the spatial heterogeneity, which
is expressed by the statistical parameter q. The calculation
indexes of the statistical parameter q are integrated in Eq. 1.

q = 1−

L∑
h=1

Nhσ 2
h

Nσ 2 = 1−
SSW
SST

(1)

SSW =
L∑
h=1

Nhσ 2
h , SST = Nσ 2 (2)

The value range of q is [0, 1]. SSW represents the sum of
the variance in the feature layers, and SST represents the
total variance in the whole region. The higher is the value,
the stronger is the spatial heterogeneity. The greater is the
effect of the feature layer’s independent variable x on the
dependent variable y, the greater is the value of q. When
q = 0, the independent variable x has no effect on the
dependent variable y; when q = 1, the independent variable x
is the only determinant of the dependent variable y. Parameter
q can be employed to test the significance of the parameters
by a simple transformation to obey the noncentral distribution
of f in Eq. 3.

F =
N − L
L − 1

q
1− q

∼ F (L − 1,N − L; λ) (3)

λ =
1
σ 2

 L∑
h=1

Ȳ 2
h −

1
N

(
L∑
h=1

√
NhȲ2

)2 (4)

The noncentrality parameter is λ and Ȳ is the arithmetic mean
of element h.

B. INTERACTION DETECTION
To identify the interaction between different element layers,
to interact with different layer elements, and detect the better
interpretation and fitting of dependent variables under the

interaction, the interaction relationships among different ele-
ments are described in Table 1.

C. ECOLOGICAL EXPLORATION
Ecological detection of a geographical detector is performed
to determine whether significant differences exist in the
effects of different element layers on the spatial distribution
of dependent variables. The degree is expressed by statistic f
in Eq. 5.

F =
NX1 (NX2 − 1)SSWX1

NX2 (NX1 − 1)SSWX2
(5)

SSWX1 =

L1∑
h=1

Nhσ 2
h SSWX2 =

L2∑
h=1

Nhσ 2
h (6)

where NX1 and NX2 represent the sample size, and SSW
represents the variance sum of different feature layers. L1
and L2 represent the number of discretization levels for the
feature layer. If the hypothesis of zero is rejected at the
significant level, there is a significance difference between
the two factors.

D. SPATIAL GRID
A regular grid with fine resolution is advantageous over the
subjectively defined areal units [38]. The investigated area
is divided into the chessboard grid structure according to
latitude and longitude with the coding system, as shown
in Figure.3. Thus, a spatiotemporal cube model is estab-
lished with the dimension of time/layer and different grids
have different properties. The model is utilized to perform
time management and backtracking, discover space-time
hotspots, obtain spatial statistics and perform overlay cal-
culation of geographic information data [39]. A space-time
cube model is a three-dimensional geographic visualization
analysis method that maps spatiotemporal data into cubes and
is very useful for discovering spatiotemporal patterns. At the
same spatial location, the bars distributed in different time
step ranges share the same location ID and form a bar time
series. Within the same time range, the bars distributed in
different spatial locations share the same time ID and form
a time slice. Based on this model, we can systematically
describe the data from the three heterogeneous information
facets, i.e., semantics, space, and time/layer to take a spa-
tiotemporal snapshot for any attribute. The merits of this
model are its strong ability to share, store and acquire, which
facilitate dynamic community division and spatial data min-
ing [40], [41].

Each grid of the cube model represents an area in the real
space, and the mapping relationship between the research real
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FIGURE 3. Space-time cube model.

space and the attribute space is established according to the
longitude and latitude. By sampling the area data (such as
the density surfaces of interest points, and population density
surface at different times), the data can be assigned to each
grid so that they have certain attributes and each attribute has
a ‘‘slicing’’.

V. RESULT
A. DATA PREPROCESSING
The data need to be preprocessed before they are utilized.

1) POI PROCESSING
Considering that all the fever clinics are public hospitals
designated by the government, 71 fever clinics designated
by the government in the study area are counted and plot-
ted by the Euclidean distance [42]. The results are shown
in Figure.4. With the exception of some marginal and subur-
ban areas, most of the urban areas are closely located to fever
clinics. We used the Baidu map POI data set, which consists
of 9,896 supermarkets, 6,069 restaurants, 5,491 traffic types
(bus stations and subway stations), and 1,901 hotel types in
the study area.

2) POPULATION DATA PROCESSING
Tencent’s yichuxing location data is employed as the relative
change index of the population. Tencent’s yichuxing data is
obtained from Tencent’s big data location service window
(https://heat.qq.com/index.php), which is based on Tencent’s
multiple apps (cover nearly a billion people) for user location
analysis and calculation [43], with a maximum spatial reso-
lution of 25 meters by 25 meters.

This paper collects the data of Tencent’s yichuxing
heatmap for two specific times, namely, 18:00 on October 25,
2019 and 18:00 on January 23, 2020, after closure of the
city. The data include latitude, longitude, and counts, which
describe the population density information of the region.
As shown in Figure.5, data of the permanent population
statistical yearbook, Tencent’s yichuxing location data on

October 25, 2019, and the number of infected people reported
by each district are illustrated and compared. Pearson’s cor-
relation test was carried out using data of the resident pop-
ulation and Tencent’s yichuxing daily population data. The
positive correlation between the two types of data was 0.87,
which indicates that the use of Tencent’s yichuxing location
to represent the population is reliable [25], [44].

Compared with the statistical yearbook data, Tencent’s
yichuxing data shows abnormal values. The population of
Hongshan District, which has the largest number of online
locations, is three times larger than that of Wuchang District,
which is the second largest, while its resident population
is only 3,000,000. It is speculated that the phenomena are
related to the notion that college students are not included
in the resident population in the statistics. The kernel density
estimation method is employed to obtain the data of the two
periods, which are compared using the same level of classifi-
cation method. It can be seen from Figure.6 that the number
of people has declined significantly after sealing off the city,
and the relative data show that the population has decreased
to only 37% of the normal period after closure of the city,
according to Tencent data. Using the number of permanent
residents, we calculate that approximately 4.2 million people
have left the study area, which is similar to the official report
of approximately 9 million people remaining and 5 million
people leaving. By subtracting the grid, we determine that
the area with the largest population decline is Hongshan dis-
trict, and the population even increases in the suburbs of the
city. According to the statistics, the attenuation areas shown
in Figure.6C, from south to north, include university towns
and business districts. Due to the influence of the Spring
Festival and the fact that Wuhan has the largest number of
college students in Central China, the decreased activity in
these areas is very distinctive.

3) DISCUSSION OF POPULATION DISTRIBUTION DIRECTION
The standard deviation ellipse [45] was drawn, which con-
tains 68% of the data, as shown in Figure.7; the two ellipses
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FIGURE 4. Data preprocessing results.
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FIGURE 5. Evaluation of population data.

FIGURE 6. Population density data and infect data.

differ significantly between the daily ellipse and the ellipse
after lockdown of the city. The population is usually highly
concentrated in the ellipse centered between Wuhan Yangtze

River Bridge and Yuemachang, with a small area and a
high concentration of population. The population distribution
ellipse after closure is parallel to the main flow direction
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TABLE 2. Risk factor detector.

of the Yangtze River and the urban structure (southwest-
northeast), and the coverage area increases. This finding
shows that, at this time, the proportion of population in the
suburbs is increasing, the population distribution is more
scattered and the density is smaller.

The previously mentioned parameters are applied to assess
the risk of the epidemic. We employ the community infection
to fit the model. The community infection data is obtained
from the official notification data. After the nuclear density
estimation, the data are utilized as the dependent variable
field of themodel. Becausewewant to give each grid a certain
attribute, we apply the value extraction point tool. If we use
the appropriate density of points for spatial sampling, we can
describe the spatial distributions of different elements from
a certain dimension. Each grid is regarded as an independent
cell for data sampling within the grid.

B. GeoDetector RESULT
It can be seen from Table 2 that the single factor detection
results that the population density after closure of the city
is the most important factor in determining the risk of com-
munity infection. The second important factor is the traffic
density and daily population density, which show that its rea-
sonable epidemic prevention effect can reduce the areas with
a dense floating population and prevent long-term exposure
in the population. The factor with the smallest impact is the
spatial distance from the market. The second least important
factor is the space distance from the fever clinic, which is
not as strongly related to the probability of infection as we
assume, i.e., even if the patients are located far from hospitals,
they can receive better treatment.

We interact two by two with different elements; the detec-
tion results are shown in Table 3. After the interaction
between the distance index of the market and the population
density index after closure of the city, the best explanatory
effect for the risk of community infection is achieved, with a q
value of 0.57. After the interaction between any two indexes,
the explanatory effect of infection is greater than that of a
single factor.

Ecological detection was carried out using the F test with
a confidence of 0.05 in Table 4. ‘‘Y’’ means a significant
difference, and ‘‘N’’ means no significant difference. After
closure of the city, the population density index is signifi-
cantly different from all the other indicators, which is the
most important factor for measuring the risk of community
infection. As a comparison, there is no significant difference

FIGURE 7. The discussion of direction.

between the population density index and the densities of
hotels, markets, restaurants and bus stops, which shows that
the distribution of these POI is reasonable and consistent
with the population distribution and can better serve the vast
majority of the population at ordinary times.

C. DECISION TREE
The decision tree training results are shown in the following
Figure.8. When the depth of a decision tree is 10, the score in
the test set is the highest. As the depth of the tree increases,
the model does not improve.When the Gini index of a node is
less than or equal to a certain threshold value, the nodes of the
decision tree do not need to be further split; otherwise, new
partition rules need to be generated [46]. The training con-
centration accuracy score is 0.96, and the test concentration
score is 0.77.

The sub-tree judgment standard with the largest number
of sub-trees is that the population density level of the closed
city is less than or equal to 3 (a total of 10 levels) and the
market distance is greater than or equal to 2. This kind of
classified grid has the largest number, that is, the population
density of the closed city is not large and there is a certain
buffer distance from the market. Thus, the risk of this kind
of area is low, and there are more indexes of the population
density of the closed city, The level is less than or equal to 3,
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TABLE 3. Interaction detector.

TABLE 4. Ecological detector.

the market distance is less than or equal to 1, and the fever
clinic distance index level is less than or equal to 3, which
indicates that it is relatively close to the market but it is not far
from the fever hospital, which can achieve early detection and
early treatment, and that this kind of community is also rela-
tively safe. The population density index level is equal to 4,
the population reduction index level is less than or equal to 4,
and the minimum market distance is 2, that is, the population
density level after closure of the city is medium, which is not
very close to the market, and the area with a large attenuation
(population reduction statistics are negative), is also relatively
safe, such as universities, government agencies, office CBD
and other areas.

D. RISK MAP
Using the evaluation model generated by the decision tree,
the risks of 726 grids of the urban area are predicted; the

prediction results are shown in the following Figure.9. The
Qiaokou district and Jianghan district, have a higher den-
sity and smaller area, and the number of people infected
ranks second and third, respectively [47], [48]. According to
statistics, 397 grid areas have the lowest risk level, 63 grid
areas are divided into the second risk level, 93 grid areas
are divided into the third risk level, the highest risk level
grid areas have 130, followed by 43 grid areas are divided
into the fourth risk level. Using Anjuke and Google street
view and other channels to query, there is a common feature
among these communities, that is, many of them are old urban
areas or old communities that have not yet been transformed
by villages in the city. This discovery warrants the attention
of the management department.

The risk map applies the grid discrete kernel density anal-
ysis results of community infection as the dependent variable
of the decision tree model and extracts a part of it for training
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FIGURE 8. The decision tree model result.

FIGURE 9. The risk map of study area.

in the decision tree model. The decision tree model obtains
our judgment criteria for epidemic infection. Using the cri-
teria, we can predict the epidemic situation, and people in
the district can conduct a self-assessment of the risk situation
in their surroundings. We use the decision-making model to
classify all the grids. If the risk level (results of infection data
interpolation and dispersion) is reduced to three, the accuracy

of the model will increase correspondingly but the effective-
ness of the risk map will be greatly reduced.

VI. DISCUSSION AND CONCLUSION
A. DISCUSSION
In this paper, we divide the study area into 726 grids, use
the geographical detector to obtain the major factors that
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determine the magnitude of regional infection of COVID-19
by using the attribute difference and spatial difference
between different grids.We also employ themachine learning
method of the decision tree to calculate the exposure risk
of infection and we construct the community risk map for
fighting the epidemic.

The most important factor that determined the degree of
regional infection is the population density after closure of
the city, followed by the traffic density and daily population
density. From this point of view, a small area with a small
daily population and a small population after the closure
that is locate far from the traffic hub is relatively safe. The
measures of the lockdown are effective, necessary and timely.
To verify the results of the geo-detector and generate the risk
criteria from the perspective of the decision tree, three main
criteria are generated: The population density after closure of
the city is small and there is a certain buffer distance from
the market; It is close to the market but not far from the fever
hospital; After closure of the city, the population density level
is medium, which is not very close to that of the market.
The result of the decision tree shows agreement with that of
the GeoDetector, which also confirms the correctness of the
model.

B. CONCLUSION
According to relevant information, such as open community
infection data, patient trajectory data, cell phone signaling,
and population density or interest points, and referring to
the ideas of this paper, the city can be divided into high-
risk areas and low-risk areas with finer spatial granularity
according to the actual situation. Because there is no spe-
cific medicine or reliable vaccine for the new coronavirus
epidemic, the isolation and short-term ‘‘closure’’ of patients
remain effective means. After the calculation with reference
to the method in this paper, the communities with high risk
can appropriately extend the closure time, while the com-
munities with low risk can appropriately shorten or cancel
the closure, resume work and production, and then achieve
accurate prevention and control.

The limitations of this paper are that the acquired infection
data are not comprehensive, the generalization ability of the
model needs to be improved, and the resolution of the fine-
grained grid needs further adjustment. The evaluation indica-
tors can also be reconstructed to take into account the time
factor.
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