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ABSTRACT This paper proposes an adaptive fading Bayesian unscented Kalman filter (AF-BUKF) and
explores its application for state estimation of unmanned aircraft systems (UASs). In the AF-BUKEF, the
state and noise densities are approximated as finite Gaussian mixtures, in which the mean and covariance for
each component are recursively estimated using the UKF. To avoid the prohibitive computational complexity
caused by the exponential growth of mixture components, a Gaussian mixture simplification algorithm is
employed. Moreover, the AF-BUKF algorithm employs a novel adaptive fading strategy to recursively update
the Gaussian components, so that the adverse effect of inexact knowledge of the state and measurement noise
covariance can be mitigated. An AF-BUK Smoother (AF-BUKS) is also proposed by extending the AF-
BUKEF algorithm using the concept of optimal Bayesian smoothing and the Rauch-Tung-Striebel Smoother
to improve estimation accuracy. Experimental results on simulated and real UAS data show that the proposed
AF-BUKEF/S algorithms can achieve better performance compared with the conventional methods. Thus, they
can serve as attractive alternative approaches for nonlinear state estimation of UASs and other problems.

INDEX TERMS Bayesian smoothing, nonlinear and non-Gaussian system, Gaussian mixture, unmanned

aircraft systems, unscented Kalman filter.

I. INTRODUCTION

Small unmanned aircraft systems (UASs) [1]-[4] have gained
growing popularity owing to their convenience for mobile
missions such as search and rescue [5], monitoring [6], path
planning [7], [8], and target tracking [9]—[11]. The control of
UASs requires the prior knowledge of the corresponding state
parameters which may include the positions, velocity, orien-
tation and orientation rate of the aircraft. Though some of the
parameters can be measured using specialized sensors such
as Global Positioning System (GPS) receivers and Inertial
Measurement Units (IMUs) [12], the signals obtained from
such sensors may be contaminated by noise/interference from
ambient environments and the bias inherited in the sensors
themselves. Therefore, it is important to develop appropriate
onboard algorithms for estimating the states of UASs from
noisy measurements.
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Kalman filter (KF) and its various extensions have been
widely utilized in state estimation since the dynamic model of
the system states can be incorporated through the state space
model for tracking together with their measurements. Con-
sequently, the estimation performance can be improved by
taking advantage of the additional prior information provided
by the state dynamic. Moreover, uncertainties in the system
model and measurements can be conveniently incorporated
via the additive noises in the model.

In the traditional KF [13], the system model, which
includes the state equation and measurement equation, is
assumed to be linear. Moreover, the modeling error or noise in
the state equation and measurement noise in the measurement
equation are assumed to be zero mean Gaussian distributed
with known covariance matrices. Under these conditions, the
KF is the optimal estimator with minimum mean squares
errors. However, for more complicated systems, both the state
and measurement equations are nonlinear functions. Further-
more, the uncertainties encapsulated in form of modeling and
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measurement noises may be non-Gaussian. Thus, in this case,
there are generally no analytic expressions for the a posteriori
densities, and various extensions of the KF have been devel-
oped towards this end. For general nonlinear systems with
non-Gaussian densities, the state and noise densities can be
approximated by various methods such as histogram or Gaus-
sian mixtures (GMs). The nonlinearity in the state and mea-
surement equations are usually tackled through linearization
as in the extended Kalman filter (EKF) [11], [14], [15] or by
approximating the state density after the transformation using
Gaussian distribution through unscented transformation as in
the unscented KF (UKF) [16]-[18]. Other approximations
include the cubature KF [19] and Gauss-Hermite KF [20].

The Monte Carlo (MC) statistical approach represents the
density as a set of particles and it gives rise to the particle
filter (PF) technique [21], [22], which approximates the non-
Gaussian densities with a set of weighted particles. However,
the computational complexity of the MC statistical method
will grow exponentially with the dimension of the states
and particles. To address this problem, many GM-based PFs
[22]-[24] have been proposed but the number of components
in the GM will grow rapidly with the number of iterations.
To avoid this growing complexity, re-sampling and clustering
techniques have been used to simplify the resultant density
at each iteration. These developments paved the way for
filtering algorithms to solve more challenging problems such
as the simultaneous localization and mapping problem [16].
Furthermore, various algorithms have been proposed for
KEF filtering with heavy-tailed non-Gaussian noises, such as
Student’s + UKF (STUKF) [25], Student’s ¢ cubature KF
(STCKEF) [26], robust KF [27] and other techniques described
therein.

In our previous work [28], a Bayesian Kalman filter (BKF)
for linear systems with non-Gaussian noise was proposed.
It approximates the non-Gaussian density as a Gaussian
mixture and uses a novel Gaussian mixture simplification
algorithm to maintain the number of components in the mix-
ture at areasonable level. This helps to keep the complexity of
the resultant BKF at a reasonably low level. The effectiveness
of the BKF algorithm has been demonstrated in video object
tracking and other applications [29], [30]. The usefulness of
the non-Gaussian state and measurement noises is their abil-
ity to model sudden change in system dynamics and possible
measurement outliers.

In applications such as small unmanned aircraft sys-
tems (UASs) [1]-[4], the system models can be highly
nonlinear [3], [14] and may subject to various disturbances.
Therefore, it would be desirable if the above linear BKF
with simplified Gaussian mixtures can be extended to these
nonlinear settings. Another major practical issue in KFs is
the selection of the covariance matrices of the modeling
and measurements noises. This is also true for the Gaussian
mixtures in the BKF where the covariance matrices of the
GMs need to be determined a priori.

To address these important challenges, this paper aims
to extend the BKF concept in the following perspectives:
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1) State estimation of nonlinear systems with non-Gaussian
distributed noises: as mentioned earlier, the BKF algorithm
offers promising performance for state estimation of linear
non-Gaussian systems. It is desirable to extend these nice
properties to solve nonlinear system identification problems.
2) Adaptive estimation of GM parameters under modeling
and time-varying model errors: the BKF algorithm offers a
framework for state estimation using a simplified GM model.
It works well when the state and measurement noises are per-
fectly known a priori. However, in practical situations, such
quantities may not be known exactly or even be time-varying.
Moreover, it is usually tedious to select such parameters by
trial and error. In time-varying scenarios, the performance of
the BKF with these preset values may also be compromised.
Therefore, it is necessary to devise an automatic method for
updating adaptively the parameters of the GMs so that such
modeling or time-varying errors can be mitigated.

To this end, we propose a novel adaptive fading Bayesian
unscented Kalman filter/smoother with simplified Gaussian
mixtures (AF-BUKF/S) for state estimation in nonlinear
and non-Gaussian systems. Among different nonlinear fil-
tering methods, we have chosen the unscented transform!
as our starting point due to its outstanding performance in
approximating the mean and covariance of the state using
a minimal set of sample points, rather than linearizing the
nonlinear function as in the EKF. While the nonlinearity is
captured using the unscented transform, the state density in
the proposed approach is modeled using an efficient GM
simplification procedure, which directly simplifies the GMs
by minimizing an upper bound of the approximation error
between the original and the simplified models. The resul-
tant filter is similar to the Gaussian sum unscented Kalman
filter (GSUKEF) [31], [32], except that the noise covariances
are made adaptive by utilizing the adaptive fading approach
and the BKF-SGM method in [28]-[30] is used for mixture
reduction.” The adaptive fading approach?® estimates a cor-
rection factor for the nominal noise covariance matrices so
as to account for possible mismatch in these parameters, as
they may not be exactly known or even be time varying.
Furthermore, the correction parameters are tracked using
BKF-SGM using a random walk model to further reduce
its variance and improve its tracking speed. This greatly
extends the applicability of the BUKF-SGM and yields
improved estimation performance. Finally, the AF-BUKF
method is further extended to an AF-BUKS algorithm by
employing the optimal Bayesian smoothing formula and the

IThe proposed approach is also applicable to the cubature KF [19] and
Gauss-Hermite KF [20]. Here, we shall present the details on UKF.

2The usefulness of this concept was briefly introduced using simulation
in our preliminary work [33]. Here we further improve its adaptability by
using the adaptive fading approach and propose its smoother counterpart.
Its application to the state estimation of UASs is demonstrated by detailed
simulations.

3Dueto page limitations, previous works on adaptive fading estimation are
reviewed in the supplementary materials where we show that the proposed
adaptive fading approach can offer better performance than the other state-
of-the-art algorithms in [34]-[37].
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Rauch-Tung-Striebel smoother concept to improve estima-
tion accuracy by using future measurements. The AF-BUKS
algorithm is useful when finite delays can be tolerated by
utilizing certain amount of future data for improving the
current estimation. Experimental results and comparisons
on simulated UASs datasets and real flight data show that
the proposed AF-BUKF/S algorithm can offer significantly
better performance for state estimation of UASs than the
conventional approaches.

In summary, our contributions are:
o« We extended the BKF-SGM to state estimation in non-

linear and non-Gaussian systems using the UKF and the
Gaussian mixture representation of the excitation and
measurement noises. It utilizes the Gaussian mixture
simplification algorithm to avoid the exponential growth
in complexity over time and the resultant BUKF-SGM
algorithm gives better estimation accuracy than the par-
ticle filter (PF) and other GM simplification methods
including the pruning and Kullback-Leibler-based merg-
ing (KLM) approaches.

« A novel adaptive fading method to update the scale
parameter of the Gaussian component, which is
proposed for the BUKF-SGM framework to give an
AF-BUKEF algorithm for better estimation of the GM
parameters to account for modeling and time-varying
model errors.

o To further improve the estimation accuracy, the
AF-BUKEF algorithm is extended by means of an optimal
Bayesian smoothing concept, yielding an AF-BUKS
algorithm which can be used in offline applications or
online applications where certain delay can be toler-
ated. Moreover, it yields better performance than the
AF-BUKEF. Finally, the application of the proposed algo-
rithms to UASs is studied through extensive simulations
on real and synthetic data under both non-Gaussian

excitation and measurement noises.
The rest of the paper is organized as follows: we briefly

review the background and the conventional UKF method
in Section II. The proposed AF-BUKEF/S algorithms are
described in Section III. In Section IV, the performance of the
proposed methods for state estimation of UASs are evaluated
and compared with the conventional algorithms including
EKF and UKEF. Section V concludes the paper.

Il. BACKGROUND AND UKF
For simplicity, we consider the following autonomous
discrete-time nonlinear state-space model:

X = fi (kk—1) + oy, (1a)
Zk = he(xr) + vy, (1b)

where x; € R and 7z € R™ denote respectively the
state and measurement vectors at time instant k, f;(-) and
hi(-) are respectively known nonlinear state and measure-
ment functions, and w; and vy represent respectively the
state and measurement noises, which are independent of each
other. We first introduce in this section the conventional
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UKF where w; and vy are Gaussian distributed, whereas in
Section III, we shall describe the proposed Bayesian UKF
with Gaussian Mixture (BUKF-GM) by allowing the noises
to be non-Gaussian distributed. The adaptive fading BUKF
(AF-BUKF) for adaptively updating the covariance matrices
of the GM will also be described.

The UKEF algorithm belongs to a general class of nonlinear
KEF filter called Gaussian filtering [36], which assumes that
the probability density functions (pdfs) of the state noise @i
and measurement noise vy to be Gaussian distributed, i.e.,

p(wi) = N(wg; ok, Qp), (2a)
p(vik) = N(vi; vk, Rp), (2b)

where N (uy; iy, C) denotes a Gaussian distribution with
mean u; and covariance Cy. Usually, the noises are of zero
mean and hence @y = 0 and vy = 0. Consequently,
using (la), one gets the predicted state mean and covariance
as:

B k-1 = Elxx] = E[fi (ck—1)] + E [wx]
=/fk(xk—1)N(xk—1; Boi—1s Prk—1) dxg—1+@x,
(3a)
Py kjk—1 = covxik] = cov [fi (xk—1)] + cov [wi]
Z/(fk(xk—l) —E[fitex-1)])
X (fiGer—1) — E [fiGex—1)] )T
XN (Xk—1: fy g1, Pri—1) dxi—1+0;
= /(fk(xk—l) + % — My k—1)

_ T
X (fiGer—1) + @k — My gpi—1)
XN (Xk—1: py g1 Pek—1) dxs—1+Qy.  (3b)

Similarly, according to (1b), the predicted measurement
mean, covariance as well as the cross-covariance of the state
and measurement can be obtained as follows:

B k-1 = Elzi] = E [h (xp)] + E [vg]

/hk Gek) N (ks B gp—15 Prkik—1)dxx + g,
(4a)

P k-1 = covlzi] = cov [y (xr)] + cov [v]
/ (7o) + Uk — B k1)

_ T
x (he(er) + Uk — R gp—1)
X N (x5 g gpe—1, Prkik—1)dxx + R, (4b)

Py k-1 = / (x — sy k1)

_ T
X (hk(xk) S ﬂz,klkfl)
X N (X My gpe—15 Prkj—1)dxr. (4¢)
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Finally, one can update the state mean and error covariance
as:

Ki = Poip—1P (5)
R = Ryjk—1 +Kk(zk - I’vz,klk—l)’ (5b)
Poi =Pyip—1 — KiPoip—1KJ. (5¢)

In the conventional EKF, fi(xx) and hi(xy) are locally
linearized at xj to obtain a locally linear state space system.
Its limitation is that the error resulting from the linearization
will usually increase with the step taken. Hence, one would
expect that when a large step is taken at region with strong
nonlinearity, the error in tracking the states will be large.
Rather than linearizing the nonlinear functions as in the EKF,
UKEF utilizes an unscented transform to approximate the non-
Gaussian state density arising from the nonlinearity by a
Gaussian distribution through sampling at a set of sigma
points. Other methods to approximate the integrals in (3b) and
(4b) include cubature KF [19], particle filters [21] and Gauss-
Hermite KF [20]. It was shown in [38] that the performances
of the cubature KF, UKF and Gauss-Hermite KF are similar if
the covariance is estimated by the variational Bayes approach.
Therefore, we shall focus on the UKF in this paper.

Given an L-dimensional state vector x; with mean p;
and covariance Py, the UKF algorithm [16], [18] generates
two samples, so-called sigma points, along each dimension
and evaluates the outputs of the corresponding nonlinear-
ity. By doing so, one can estimate the Gaussian approxi-
mation of the state density by estimating empirically the
corresponding mean and covariance from the samples at
the sigma points. For instance, given the Gaussian approx-
imated state density at time k — 1, p (xx—1|Zx—1), where
Zi—1 = {z1,...,2k—1} denotes the measurements up to the
(k — 1)-th time instant, one can update the predicted density
P (xxlxk—1) = prw k—1|Zg—1) from the dynamic equa-
tion through sampling, where py ,, (xx—11Zx—1) denotes the
density after the nonlinear transformation of p (xx—_1|Zx—1)
with f(-) followed by the addition of @; o< N(@k; @k, Q).
To this end, samples of py ,,, (xr—1|Zx—1) at the sigma points
are computed and thus p (xx_1|Zx—1) is approximated by a
Gaussian distribution empirically. This gives the time update
in Algorithm 1. The sampling technique can also be used
to update the state density p (xr|Zy) from p (xi|xx—1) via
the measurement equation in (1b), where Z; = {z1, ..., 2k}
denotes the measurements up to time instant k. This yields
the measurement update in Algorithm 1.

Next, we shall propose a new Bayesian UKF with GM
(BKF-GM) algorithm, which allows the noises to be GMs.

lll. THE PROPOSED BAYESIAN UKF/S

We first briefly outline the notation of the BUKF in Section A
below, which is also similar to the GSUKF [31], [32].
As mentioned in the previous section, our development is
also applicable to the cubature KF [19] and Gauss-Hermite
KF [20]. The proposed mixture simplification algorithm
will be introduced in Section III-B. The adaptive fading
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Algorithm 1 The UKF Algorithm

1: Time Update

2: Generate sigma points {Xl,k,l}, [l =1, ---,L, with
weights {w;} from p(xx_1):

Xok—1 = Mxk—1, W0 = 5>

Xkt = Hesm1 +(VEFOP 1)), W= 37

Xitth—1 = by o1 + (VEHOP k1), WLy = wi,
where k is the scaling parameter, (v/A); denotes the [-th
column of the matrix square root of A.
Propagate each sigma point:

8 Xikk—1 =Sk (Xl,k—l)v [=0,---,2L.
9: Approximate the mean and covariance for p (X |xx—1):

A

~

2L
100 Mpjp—1 = Zz:zoLWIXZ,k\k—l’

1 Pyge—1 = 2 iZo WilX k-1 — /Lx,kT\kf])
12: X (X1, kjk=1 — By kk—1)" + Ok

13: Measurement Update
14: Generate new sigma points with fz ;1 and P jk—1:

150 Xokk—1 = Kxklk—1> W0 = Iro> 1
160 Xy kk—1 =My k—1 +(VLHOP L kk—1), wi= ST avat
17 Xt kk—1 =B k1 + (VEAHOPL kk—1) s W1 =WI,

18: wherel=1,---,L.
19: Estimate the measurement mean:
200 zZrkk—1 = h(Xypk—1)s 1=0,--- 2L,

2 Mg k-1 = Zzzio WIZI k|k—1-

22: Estimate the measurement error covariance and cross-
covariance:

230 Prpk—1 = Z;zio wi (Zz,k|k—1 - Mz,k\k_l)

24: X (Zl,klk—l —Zk|k—1)T,

250 Prik—1 = Pyip—1+ Ry,

260 Pykk—1 = Zzzio wi(X1kk—1 — Pz klk—1)

27: X (@1 kk—1 = Rekppet) -

28: Estimate the Gaussian approximation of p (xx|Zy)

290 ek =Zk — My k-1,

30 Ki =sz,k|k—1P;]l‘k_1,

3Lt Mk = My ki1 + Kkeg,

320 Pyg=Pypk—1 — KiPoip—1K7 .

BUKF will be introduced in Section III-C. The Adaptive
Fading BUK Smoother (AF-BUKS) will be discussed in
Section III-D.

A. BAYESIAN UKF (BUKF)

As mentioned earlier, the pdfs of the state noise w; and mea-
surement noise vy in the proposed BUKF are characterized
by a finite set of GMs as:

P@) =Y el (@) (6
pw0) = Y BN (06 T Ris) (60)

where I and J are respectively the numbers of components in
the GMs of @y and vy with o x and B as the probabilities
of the corresponding components in the GM, which satisfy
S aix =1land Zf:l Bj.k = 1.The GM in (6a) is useful to
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model sudden change of states in the dynamical system such
as directions in UASs. On the other hand, (6b) is useful to
model measurement noise corrupted by impulsive noise and
outliers. Since wy and vy are now GMs, the pdf of the state
is generally not Gaussian distributed. Hence, it is assumed
that the a posteriori pdf of the state at the previous time
instant is approximated by the following finite GM with G
components:

G
p (xk—lIZk—l)%ZgZIVg,k—lN(xk—l; Poi—1,Pgi-1),
(M

where ygr—1, & = 1,---, G, denotes the weight of the
g-th component at the k — 1 instant and Zg=1 Yek—1 = L.
Consequently, the predictive priori density can be written as

P XplZi—1) = [P(xk—1|Zk—l)P(xk|xk—1)dxk—l

G
A / Zgzl Vek—tN (Xk—1: tg x—1. Pgik—1)

I
X Zi:l ai N (o xx — fi(er—1)
— @ik Qi p)dXi—1, ®)

In (8), each combination of NV (xx_1; ptg x—1. Pgx—1) and
N (wk; X —fi(k—1) — @ik, Q; k) after the integration can be
approximated as a Gaussian distribution N (xk; Mg k—1k +
@y k, Py gk—1), where ¢ = 1,---, GI, is used to index
all such combinations. The subscript k|[k — 1 denotes the
quantities in the predicted density of x; given measurements
up to time instant k — 1, Z;_;. Consequently, for zero mean
modeling noise, i.e., @y x = 0, (8) can be approximately
simplified to

G/
/Zg’=l Ve kik—1tN (e By kg1, Py kik—1)dxi—1. (9)

where G’ = GI and Yo' kk—1 = Yeg.k—1% . The quantities
g k-1 and Py k-1, for each g'-th component, can be
predicted using the time update of the UKF in Algorithm 1.

Similarly, when the current observation at time instant k
is available, the a posteriori density at time instant k can be
updated as

P (xk|Zy) = crp @i lxr) p k1 Zk—1)
J _
Ck E 1 Bi kN (Vi zk — hi(xk) — Uy Rjk)

G/
X Zg Vg’,k|k—1N(xk§ ﬂg’,k|k71an’,k\k—l)

'—1

G//
Zg”:l Vg”,kN(xk; ng”,k’Pg”,k)v (]0)

where ¢, = (fp @ lx) p k| Zi—1) dxk)_l is a normaliza-

. )’g/,k|k71ﬁj<k17j(zk\ﬂg//,k)
tion constant, Yo'k =

- , and
Z:/:l Zf:] Ve klk—1Bj.kDj (zk“"g”,k)

G” = G'I = GUJ is the number of components after the
update. v j and P gy,  are respe.ctively the mean an.d cova.ri—
ance of the corresponding Gaussian component obtained with
the prior component density N(xk; Ry kik—1> Pg/,k|k_1) and
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measurement z; and component noise covariance R; ;. This
can be obtained with the measurement update of the UKF in
Algorithm 1.

It can be seen that the number of mixture components
will grow from G to G’ in the prediction step and further
from G’ to G” in the subsequent measurement update step.
Over time, the number of mixture components and hence
the complexity will grow exponentially, which makes the
computation prohibitive. Fortunately, this issue can be over-
come by using the order reduction approach which we have
proposed in [28] for the BKF. More precisely, the GM model
in (10) is simplified to the form of (7) so that the number of
mixture components is maintained after each pair of time and
measurement update steps. For completeness, we shall briefly
describe this order reduction process for GM simplification in
the next subsection.

B. BUKF WITH SIMPLIFIED GM (BUKF-SGM)
Consider the GM model in (10) with G” components:

/!

P =30 vy @) (an

where ¢ (x) = N (x; g, P gn) is the g”’-th component and
Zg:/:l Yg» = 1. For notational convenience, the subscript
k and the measurement matrix Z in (10) are dropped. Our
goal is to approximate p(x) as a simplified mixture with
fewer components in the form of p(x) = ZgG=1 VePe(X),
where ¢,(x) = N(x;pg, Pg) with Zgzl Ye = 1 and
G < G’. Given a distance measurement D (¢g~ ), g (x))
between the functions ¢,~(x) and ¢,(x), the error of approx-
imating ¢y (x) with ¢,(x) is given by D (¢g(x), pg(x)) =
(f (B @) — 6 @) )",

Traditionally, the simplification is done by resampling
followed by clustering using the K-means or EM algo-
rithm. However, the complexity depends exponentially on the
dimension of the state and hence it will soon become infeasi-
ble. As an alternative, simpler algorithms such as pruning and
merging can be used for mixture reduction. In the pruning
method, GM components with relatively lower weights are
discarded directly and then the remaining components are
renormalized for the estimation. Rather than simple pruning,
the merging method performs mixture reduction by calcu-
lating the expected parameters for each merged component
across a set of components to be fused. It has been proved
that pruning is inferior to the merging method [39]. Moreover,
for better determination of the components to be merged, a
Kullback-Leibler-based approach is proposed in [40] where
mixture reduction is achieved by minimizing an upper bound
on the increase of the Kullback-Leibler divergence between
the original and reduced mixtures. In this paper, instead of
using the pruning and merging methods, we follow our pre-
liminary work in [28] to adopt a two-step algorithm in [41] for
model order reduction, which offers more accurate estimates
than the Kullback-Leibler approach [40] at the cost of a small
increase of computational complexity for mixture reduction.
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Due to space limitations, interested readers are referred to
Part 1 in the supplementary material for a detailed comparison
of the two-step algorithm against the other approaches. The
two-step algorithm goes as follows:

At the ¢-th iteration, the comFonent mixture is partitioned
into G groups {S!, S([) . S ).

o Mean update: The representative component C m(x) for

(1) that minimizes the local quantization error of the
group is solved using coordinate descent, C}f,)(x)
argmin 3=, o0 ver [ (C) = pyr () dx
o Clustering: Given C* = {C(I)(x)}G |» One re-assigns
¢gr(x) to the nearest Cé)(x) based on the distortion
measure Dy o = D(Cg)(x), ¢¢(x)), and then updates
The above process is re%)eated until either the change in total
distortion or C®) = {C( (x)}g: | is less than a certain thresh-
old, or a maximum number of iterations is reached. The main
steps of the GM simplification algorithm are summarized
in Algorithm 2, where k(r) and k’(r) are Gaussian kernels,
ol = (W — ) Py — PO — ), o' is a
normalized constant, ¢ and ¢, are stopping thresholds for
the update of p, and P, respectively.

It is seen that by using this GM simplification algorithm,
the mixture model in (10) can be approximated by the mix-
ture model in (7) with fewer components, so that the num-
ber of components after each iteration can be maintained
at a constant level. If the dimension of the state is d, the
complexity of the above-mentioned two-step algorithm is
O(T (L + G)G"d?), where T and L are respectively the
numbers of iterations for the outermost loop and the loop
from line 8 to 21 in Algorithm 2. Their values are typically
small* [41].

C. ADAPTIVE FADING BUKF (AF-BUKF)
As mentioned earlier, the BUKF-SGM algorithm works
well when the system dynamics and measurement relation-
ships are known a priori. However, its performance may be
degraded when the parameters of the state and measurement
noises are not known exactly or time-varying. In order to
achieve better state estimation, we propose in this subsec-
tion an adaptive fading BUKF algorithm to adapt the noise
parameters. We first introduce a novel adaptive fading UKF
(AF-UKF) that can adaptively adjust the state and measure-
ment noise covariance in the conventional UKF to better
explain the observations. Then, it is extended to the BUKF
framework.

Given the residual in the measurement update of UKF (line
29 of Algorithm 1), the measurement residual covariance can
be calculated as

P =E [exe] | =Pyt +Re (12)

4F‘reliminary results in [33] has demonstrated the potential of the proposed
BUKEF approach over other methods in a simulated example. T is around 15,
L is around 6 as observed in our experiments.

VOLUME 8, 2020

Algorithm 2 The Two-Step Order Reduction Algorithm

1: Input: p(x) = Zg:/:
¢g//(x) into {S1, S>,...
g1 =0.01, &, =0.01;

1 Vo' N (x, g, Pgr), partitioning
JSglit = 0,9 = 1019,

2: repeat
3 t=t+1;
4: Mean update
5 forg=1,2,...,Gdo
6 MO _ Zg’/ESg yg//[Lg// .
4 g”eSg )/g//
T
5 PO _ Zg”esg 174 Pg”‘f’(ll'g*ﬂg//)(ﬂg*ﬂg“) )
: g Zg”ESg Ve ’
8: repeat
9: p=0,g=0;
10: repeat
11: p=p+1;
-1
o1 Sgesy vk (70) (Por—PY) \ -1
R
Pgu—Pg‘ |
% Z yg,/k,(rgg”PvO)(Pg” —Pg) ’Lg” .
g”ESg o /2 ’
Pi—P)
13: until H[l,g me IHF <ég
14: repeat
15: U= (ng — we) (g —ug ;
16: M =k(ry)P ~—4k( nu
(Pq + Pgu) 'pe,
-1
g1 (Pe4P ) yrk (20) \—1
17 py = (3 ) i)y
g”eSg ‘PZ +Pg//‘
-1
<P2+Pg//) V2%
« .
g+1 127
g”ES ‘Pg +P g
18 qg=q+1;
19: until ﬁPq P(q ])H <&
. q 1/2 verk (rgg”) .
20: Ve = |2P | g”eSg ‘PZH ry 72>
21: untilp < landg <1
22: end for g
23: Clustering
%@ D=0
25: forg” =1,2,...,G" do
26: forg=1,2,...,Gdo
27: Z = Zg”ESg )/g/’;
—1 1/2 1/2
28: D (¢g, Cg) = ck (|2Pg” |2Pg|
% \q 1721y,
— 2k(2) [Py +Pgw ):
29: end for
30: Assign ¢gr to Sy g = arg n}(inD(qﬁgu, Ck);
31: e = e® + D (¢gr, Cr);
32: end for

33: until |el) — ~D] < 0.001 || or t == tyay
34: Output:  p(x) = Zngl YePe(x) =
G .
Dot VN (x¥: pg. Py).
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where INIk is the measurement error covariance resulted from
the true state error covariance PL klk—15 an£1 Ry is the true
measurement noise covariance. P gjx—1, Py gk—1 and Ry
are different from their nominal values denoted by P, xx—1,
Py jjk—1 and Ry, respectively.

We aim to find positive scalar correction or fading factors
Ps,k and oy, i for Py g x—1 and Ry, respectively, such that

(13a)
(13b)

Py k-1 = ps kPx kik—1,
Ry = pm iRy

In other words, we hope to compensate for the mis-specified
covariance by adaptively scaling the covariance matrices
through the fading factors, while the nominal shape of the
covariance is still fixed. Since P xx—1 and P jx— 1 can be
approximated by the unscented transformation of P, xjx—1
and P, yk—1, the ratio of the latter quantities, i.e., oy«
in (13a), is approximately equal to that of the former. There-
fore, from (13a), we have

P ifi—1 ~ ps P kik—1- (14)
Substituting (13b) and (14) into (12) gives
P]i = Ps kP kik—1 + PmkRi. (15)

Instead of matching the whole matrix, we take the trace of
the left and right hand sides of (15), yielding the following
equation at each time instant k:

tr (Pf) = psxtr (Pzik—1) + pmitr (Ri) . (16)

Note that the measurement residual covariance Pi can be
estimated empirically as:

~e 1 k T
Pi= ZTZHM ee! (17)

where M specifies the window size for estimating the empir-
ical covariance. Thus, the estimation of the fading factors
reduces to a recursive linear regression problem over time as

tr (ﬁZ) ~ psxtr (Peziik—1) + pmitr (Ri) (18)

where k = 1,2+, psu > psk = ps.2 20, pm,U = Pmk =
pm.L > 0, and ps y and ps 1 are respectively the upper and
lower bounds of ps x (likewise for py, k).

To solve the above linear regression problem recursively,
one can use KF with the following state-space model:

(19a)
(19b)

x, = Fix;_, + &,
Yi = Hpxj + g,

where x{ = [pst, pm,k] stands for the state vector
containing the fading factors, y; = tr(ﬁ,i), F, = 1,

¢ = [tr (Pzzkk—1) . or Ry)], and &; and n; are the corre-
sponding state and measurement Gaussian distributed noises,
respectively. This allows the fading factors to be estimated
recursively using Kalman filtering approaches. To be more
specific, if &, and n, are modeled by single Gaussian com-
ponents as &, ~ N (0, QF) and n; ~N(0, RY), the estimation
of fading factors can be achieved by using the conventional
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Algorithm 3 The Proposed AF-BUKF/S Algorithm
1: AF-BUKEF Tracker
2: Initialization: p(xg) =
3: fork=1,2,--- do

Zle Ve.0N (x0: pg 0. Pg0) 3

4: Time Update
5: fori=1:1do
6: forg=1:Gdo
7: g =8+0— DG Ygik-1=Vek—1%ik;
o Estimate g i1 and Py jx—1 from pg ;.
P, x—1 and Q; ; (UKF Time Update),
9: end for g
10 end for |
11: Covariance Compensation
12: 8y = max{yy kjk—1}g=1:G1;
13: Estimate g, g,y and P gx—1 with g ki1 and
Py k-1 using Unscented Transform; !
14: ek—zk—”’zklk D P = 3 Dk €€l
15: Compute 0s.k and pp, x by solving
lr(Pk) R skt (P oz kk—1) + pmrtr (R );
16: Set gf th state error covariance to ps,kPg},Hk_];
17: Measurement Update
18: forj=1:Jdo
19: for g =1:GI do
20: =g+ U = DGI; yg kk—1 = Vg.k—1Qik>
21: lfg == gf then
22: Estimate per yjx—1 and Py gx—1 with
g k—1- Py k—1 and pm iRk
(UKF Measurement Update),
23: else
24: Estimate ILg”,k\k—l and Pg//’k|k_1 with
Ro k—1> Py k—1 and R i
(UKF Measurement Update);
25: end if
26: ex =2k — i (Rg gk—1) — 05
27: ”’g”,k = ”’g’,k|k71 +Kg//’kek;
28: Pg”,k = (I _Kg”,ka)Pg”,klkfl;
29: Yerk = V' kik—1Bikpi(zk g )3
30: end for g’
31: end for j
) v o k —~ i G" .
32: Yo'k = —ZG,, > Xklk = Zg”:l Vg”,kﬂg”,k’
" 1 /" k
33: Order Reductli)n
34:  Compute {yg,k}g}:l, {;;,g,k}gzl and {Pg,k}gzl.
35: end for k

36: Backward Smoother
37: fork=N—1,...,1do

38: forg=1:Gdo

39: Get component indices g* and i*;

40: Compute pgx, k+1|k,Pl* k+1jk and Cgx g4 1;

41: Kg (kIN) = C * k+ng (k+]|k)’

4z: Ko (k|N)= Pegx, k+Kg *IN) (B (k1 V) — B (k115)):
43: Py ) =Py i + Ko gom) (P, er1iv)

T .
_Pg*s(k+l|k))Kg,(k|N)’
44: end for g

—~ G .
45 XEIN) = g1 Ve, (kIN) Rg (kINY}
46: end for k
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KF. Particularly, the parameters for Qf and R}, should be set
according to the characteristics of systems to be estimated.
More precisely, let Q; = diag(a, b) where diag(a, b) rep-
resents the diagonal matrix with diagonal elements a and b.
The setting of values for @ and b should be as follows: for
systems with inaccurate state equations, a relatively larger
value shall be assigned to a so that more compensation for the
state can be achieved than that for measurement, while b shall
be larger than a for systems with inaccurate measurement
equations. On the other hand, we also examine the case where
&, is modeled as GMs as in (6a). This allows faster tracking
of the fading factors and the BKF algorithm [28]-[30] we
developed previously can be utilized. The advantages of GM
modeling for fading factors over the single Gaussian repre-
sentation are demonstrated with simulated data and UASs
examples in Part 2 of the supplementary material. Moreover,
in each recursion, the estimated parameters will be projected
to the bound constraints above. This is in contrast to other
adaptive KFs [34]-[37], [42]-[45]. Due to page limitations,
a comparison of the proposed AF-UKF and the state-of-the-
art approaches in [34]-[37] is given in the supplementary
materials. It is shown that the proposed AF-UKF offers a
better performance than the conventional methods. It should
be noted that the measurement covariance matrix can also
be estimated using variational Bayesian approach in [38].
However, its extension to uncertainty in the state noise is not
yet available. On the other hand, the proposed AF approach
has fewer parameters to be estimated and is applicable to both
state and measurement noises. Therefore, we shall focus on
the AF approach in this paper.

To incorporate the proposed AF-UKF into the BUKF
framework, one can notice that the basic UKF is used to
compute each of the G” components in (10) before they
are simplified to a GM with G components in (7) using
Algorithm 1. Ideally, one can simply replace the UKF in the
AF-BUKF with the AF-UKF algorithm. However, such adap-
tation may result in all mixture components of the state and
measurement noise converging to a single solution. In case
of sudden changes of state or measurement covariance, these
changes can no longer be modeled as a GM using the prior
distribution. Therefore, we propose to select the most likely
component from the GMs and utilize the AF-UKF instead
of the conventional UKF to update its distribution. The AF
component together with other components will then be
approximated as a GM with G components. This yields the
AF-BUKEF tracker in Algorithm 3. Finally, it is worth noting
that our AF and SGM approaches are also applicable to other
methods for approximating the integrals in (3) and (4) such
as cubature KF, EKF and Gauss-Hermite KF. Due to page
limitation, the details are omitted.

D. ADAPTIVE FADING BUK SMOOTHER (AF-BUKS)

In filtering, the objective is to recursively estimate the current
state given the observation up to the current time k. Smooth-
ing can yield significantly better estimates than filtering if the
estimation of the current state can be delayed so that more
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data can be utilized in the estimation process [46]. Therefore,
it aims to improve the estimation accuracy by utilizing a
certain number of future samples in exchange for a delay in
obtaining the required smoothed estimates. This is desirable
in offline applications or applications which certain delay can
be tolerated. Here, we extend the AF-BUKF algorithm by
means of the backward smoother, i.e. Rauch-Tung-Striebel
Smoother [47] for further improving the estimation accuracy.
More specifically, it can be shown in [48] that the desired
pdf at the current time k, p(xx|Zy), is given by the following
general Bayesian smoothing formula:

P&k 1 X0)pXk+11ZN)
PXk+11Zk)

pOck|Zn) = plee|Ze) / dxeer. (20)

where p(xr+1|Zy) is the posterior pdf obtained from back-
ward smoothing at time k 4 1. Since it has used data up to
time N, we have used Zy in the condition of p(xx+1|Zn).
It can be seen that the pdf obtained in the Bayesian fil-
tering step, p(xx|Zy), is updated through the integral term
in the smoothing step. In the Gaussian case, the integral
and the entire computation can be further simplified to
the RTS smoother. In preparation for the approximated
Bayesian smoothing, we save the GIJ components before
the mixture simplification at time k + 1: D Xkt11Zky1) =
Zg’:l }/g//,k+1./\/'(xk+1; ’Lg/’,k+17Pg//,k+l)‘ The number of
components in p(xx+1]/Zy) is chosen to be G, which is the
same as that of the simplified density p(xi|Zy). Therefore,
the backward smoothed pdf of p(xy41|Zy) will take the form
plxr11Zy) = Z;ll Yokt NN (Xkt1: g g 1n Pokr 1N)-
To simplify the evaluation of the integral in (20), we
assume that there is a correspondence between the GMs
in p(xx4+1|Zy) and p(xr|Zyx). Consequently, the update
in (20) can be reduced to the update of individual com-
ponents of the mixture. Moreover, the RTS smoothing can
be applied to each of the components to give p (xix|Zy)
= Zle )’g,(kw)N(Xk; ng,kw,Pg,k\N), where pg 4y and
P, v are the mean and covariance of the GMM, respectively.
To find the correspondence between the GMM, we propose to
find the closest neighbor of N (xy41; fg k41 5) Pek+13) in
P Xx11Ziy1), ie. N (xip1s mgr i1, P icy1) for some g7,
since it is possible to trace back the component in p (x|Zy)
which leads to the identified component in D (xg41|Zgs1).
Consequently, RTS algorithm can be applied to these com-
ponents to update the corresponding component in p (xx|Zy).
Thus, the GM of the smoothed pdf p (xx|Zy) can be obtained
from the updated components by appropriate normaliza-
tion. Particularly, we propose to use the Bhattacharyya
distance [49]:

Dp(8k+1N+ 84 41)
1

= g(ﬂg,kﬂw» Mg/’,k+1)TF(Mg,k+l|Nv ﬂg//,k+1)
+ % In ( det(P) . QD
\/det (Pg,k+1|N) det (Pg”,k+l)
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to measure the distance between the g-th compo-
nent N (Xy1; Rg g1 v Pek+1y) and the g’-th com-
ponent in (N (¥x+15 g k15 Pgrkt1)lgr=1....Gs» Where
P = Iw, and det(-) denotes the operation
of matrix determinant. From the identified component
in AN (Xxq1: pgr k11 Pgr k1) Ygr=1....Gi» We can iden-
tify the corresponding component g* in p(xi|Zg) =
Z?:l N(xk; u,g,k,Pg,k), and the corresponding indices i*,
and j* which lead to the g”-th component above. Then, we
can update all the components in p(xy|Zj) by performing the
unscented RTS smoothing steps for each of the components
in p(xx|Zy) as follows:

Step 1: Generate the sigma points {}; ;_},/=1,---,L,
with positive weights {w;} from the Gaussian approximation
of p(xx—1) with mean pt,« ; and covariance P g i as follows

K
N - , 22
X0k—1=Mgx x> W0 p (22a)
1
1= s L P * ), = —
Xik—1=HMg ,k+<\/( +OPgx i oo Lo
(22b)
XLyl h—1=Mgr )+ (,/(L+/<)Pg*,k )1’ WL = Wi,
(22¢)

where « is the scaling parameter, and (,/Pg*,k) ; denotes the
[-th column of the matrix square root of Pgx x.

Step 2: Propagate each sigma point through the nonlinear
system state function to obtain samples of the prediction
density p (X1 |xx):

Xiks1k =it (Xz,k), l=0,---,2L. (23)

Step 3: Approximate the predicted mean g ;i the
predicted covariance Py« ry1x and the cross-covariance
Co+ is1)k as follows:

2L

g jer1jk = Zz:o WIX 1 k+1]k> (24a)
oL
P pyie = Zz:o WIX 1+ 11k — Prg* k1K)
T
X (X k+1k — Pgrkr1k) + Qi kg1 (24b)

2L
Cor k1 = Zz:o w1 = Pge )X L1k — g 1)
(24¢)

Step 4: Compute the smoother gain K x|, the smoothed
mean o x|y and covariance Pg x|n:

-1
Koy = CoeP e i 1pp (25a)
Roiiv = Mgk + Ko kv (Bg sty = Bgrgrae),  (25D)
Poin = Pg i+ Kg N (Pgs k1N — Pg*,k+1|k)K;k\No
(25¢)
As such, the smoothed density p(x;|Zy) can be obtained
by normalizing the weight of the updated components so that
they sum to one. The smoothed state (point) estimates is thus
the mean of the mixture:

A G
XN = ZFI Yo kIN Mg kN - (27
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The key ideas and steps of the proposed AF-BUKS algorithm
are illustrated by the block diagram in Fig. 1. Finally, the
proposed AF-BUKS is summarized in Algorithm 3.

IV. APPLICATIONS OF AF-BUKF/S IN UASs AND
EXPERIMENTAL RESULTS

In this section, we focus on the application of the pro-
posed AF-BUKEF/S algorithms to state estimation in UASs.
We shall first describe the state-space model of the UASs
used for simulation data generation. Then, the performance of
the AF-BUKF/S algorithms are compared with conventional
approaches including EKF and UKF on the simulated UAS
data. Finally, we present experimental results on real flight
data to show the efficiency of the proposed algorithm for state
estimation of UASs.

Due to space limitation, comparisons with previous works
on adaptive fading are presented in the supplementary mate-
rials where we have shown that the proposed AF approach
outperforms the state-of-the-arts algorithm in [34]-[37].
We have also compared the proposed algorithm with the
STUKF/STCKF algorithms using a maneuvering bearing-
only tracking example in [26] and the proposed approach is
able to offer better accuracy for state estimation of the moving
target. The results are also provided in the supplementary
materials.

A. STATE-SPACE MIODEL OF UASs
The system dynamics of small UASs can be mathematically
represented by a continuous-time state-space model as

X(1) = f (1)) + &(1),
2(1) = h(x(1)) + v(1),

(28a)
(28b)

where w(¢) and v(¢) take into account the non-deterministic
influences, e.g., state propagation errors and sensor mea-
surement noise that affect the system state dynamics and
measurement, respectively. The IMU, GPS and other avail-
able measurements can be included into a complete inertial
navigation system (INS) for the state estimation. To convert
the continuous-time model in (28) to a discrete-time version
in (1), the following equation can be used to propagate xj_
forward At seconds for an estimation of xy:

xp =x (kAt) =~ xp—1 + x(t)At, 29)

where At is the sampling time.

B. SIMULATED DATA CASE

The UASs simulation model designed in [3] is used for
performance comparison between the proposed method and
the conventional approaches. There are totally 6 simulated
UAS datasets in [3] including Letter E (D1), Letter E with
Gusting (D2), Loiter (D3), Loiter with Gusting (D4), Square
Spiral (DS) and Square Spiral with Gusting (D6). The gusting
data (D2, D4 and D6) take the practical wind flickering
problem into account, as small UAS flying at relatively slow
speed may be heavily influenced by the movement of the air
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FIGURE 1. lllustration for the proposed Bayesian filtering and smoothing. For simplicity, we use G = I = J = 2 for demonstration. It can be seen at
time instant k + 1 in the Bayesian filtering, the number of mixture components will grow from 2 to 4 in the prediction (P) step (Time Update) and
from 4 to 8 in the subsequent measurement correction (C) step (Measurement Update). Here the two dots in the dotted box represent the / =J =2
GMs of the state and measurement noises. Using the two-step order reduction (R) algorithm, the component number is reduced to 2. The pathes are
drawn in different colors for each understanding. For the backward Bayesian smoothing, among components in p (x.11Zx1) (which is saved in the
filtering), we first search the closest neighbor for A/ (xj 13 Ig,(k+1IN)> Py, (k+1 IN)) in p (Xj11Zy)- Then, by tracing back, say for the component
denoted by the red circle, the corresponding component indices j*, i* and g* for the component can be identified successively by following the
corresponding path in the filtering step. Thus, RTS can be used to estimate the mixture components for p (x4 |Zy) in the backward direction.

mass around it. The time duration for the simulation of each
data is 400s and the sampling rate is 10Hz.

1) STATE-SPACE MODELS FOR SIMULATION

The nonlinear state and measurement functions are given
in (26), as shown at the bottom of the page [3], where
the time index is omitted for notation simplicity and the
parameters involved are described in Table 1. The contin-
uous time state-space model described above can be lin-
earized and discretized so that an EKF algorithm can be

employed for the state estimation. Due to space limitation,
interested readers are referred to [3] for more details of
the system model and its EKF implementation. In con-
trast to the EKF approach, the UKF-based algorithms rely
on the unscented transformation and avoid the lineariza-
tion of the state-space model. Hence, the UKF-based meth-
ods can mitigate the error caused by linearization and
offer better tracking results as we shall show later in
Section IV-B.3. Since the number of states is rather large,
the complexity of particle filter-based methods is expected

¢f 1 singtanf singtanf
6 0 cos ¢ —sing
v 0 singsecd cos¢psechd
Py Va
P, Ve
hyst —Va
Yn f;c,acc - bax
X = Ve = C;Z’Ed fy,acc - bay
,Vd fz,acc - baz
by 0
by 0
bo: 0
bax 0
bay 0
L bee 1L 0
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Wy, gyro — wa
Wy,gyro = Doy
Wz gyro — bwz
1;0ref W
Pn.Grs Py
P, Gps P,
i 2= | husL.eps | = | hmse (26)
Vn,GPS Vn
Ve,GPS Ve
Vages | | Va |
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TABLE 1. Notations in UASs model.

Notation Description Capture Sensor
) Roll attitude N/A
0 Pitch attitude N/A
P Yaw attitude N/A

p w Rotation rate Gyroscope

bw Gyroscope bias N/A

ba Accelerometer bias Accelerometer
face Specific force N/A
C;w‘i Attitude state function N/A

Vref Reference Yaw Magnetometer
P, cps North position GPS
P aps East position GPS
z | hysr,acps | Height above mean sea level GPS
Va,apPs North velocity GPS
Ve,cPs East velocity GPS
Va,aps Downward velocity GPS

Note: N/A denotes ‘Not Available’.

to be extremely large. Therefore, they are not included in the
comparison.

2) SIMULATION AND PARAMETER SETTINGS

We first describe the settings for simulation data genera-
tion. Specifically, the uncertainties of the simulated system
were mimicked by the following two scenarios: C1) Abrupt
change of the measurement noise covariance to illustrate
sudden changes in environmental condition’: the measure-
ment noise was chosen as Ry in the first 100s and abruptly
increased to 50R; in the subsequent time, where R, =
diag(0.05%,22,22,22,1, 1, 1) with diag(ay,--- ,a,) being
a diagonal matrix with diagonal elements ay, - - - , a,; C2)
Measurement with impulsive noise components: impulsive
noises with occurrence probability of 0.1 were incorporated
into the measurement data, and the amplitude is randomly
generated with zero mean and variance S0R;.

We now describe the settings for various approaches
including EKF, UKF, STUKF, STCKF, BUKG-SGM and
AF-BUKEF/S. For a fair comparison, the state and measure-
ment covariance matrices of the EKF, UKF, STUKF and
STCKEF algorithms in our experiments were set identical to
those in [3], which are denoted with O, and Ry, respec-
tively. For BUKF-SGM, the system state noise wy in (6a)
is p(owg) = Zl-z:loti,kj\/' (wk;ai,k,Qi’k) with @y = 0.8,
ok = 02, alyk = 62’]( = O, Ql,k = 10Qk and Q2,k =
2Q),.. Here, we used a component with relatively larger state
covariance to model possible uncertainty stemmed from sys-
tem state noise, which was manually set by trial and error.
The system measurement noise vy in (6b) is p(vy) =
Z?:l ,3.,',](./\/ (Uk;ﬁj,k,Rj,k) with B1x = 09, Box = 0.1,
Vixg = U = 0, R = I_ik and Ry, = IOI_?k. The
component with larger measurement covariance could be

3Since only the measured data and true state are available from [3], only
measurement noise mis-matching can be modeled in our simulation.
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used for impulsive noise suppression. Again the value was
manually chosen via trial and error. The initial a posteriori
pdf of the state was a GM with four components having the
same weight.

In order to better show the effectiveness of the covariance
compensation that benefits from the incorporated adaptive
fading strategy in the proposed AF-BUKF approach, we
let one of the GM components, both in state and measure-
ment covariance matrices, be randomly generated with spe-
cific variances. Specifically, its settings were the same as
those in BUKF-SGM, except that: 1) @, , = rsQy, where
the value of ry; was randomly generated with variance 2;
Q)R = rmI_Zk, where the value of r,,, was randomly gener-
ated with variance 10; We will see later in Section IV-B3 that
the overall performance of the AF-BUKF approach is better
than those of EKF and UKF with carefully chosen noises.
3) Additional parameters for the BKF during the estimation
of fading factors in the AF-BUKF/S were as follows: the
window size was M = 20; the initial a posteriori pdf of
the state vector composed of fading factors was a GM with
two components having the same weight; the pdf for the
state noise was modeled by a GM with two components, i.e.
P& = Y aigN (£4:0,05,) with ayx = 0.5, a2 =
0.5, 0, = diag(107*,10%) and Q5 , = diag(1072, 10%);
the pdf for measurement noise was modeled by single zero
mean Gaussian as p(n;) = N (1;; 0, Rf) with R{ = 1072;
the upper and lower bounds of the fading factors are set as
10 > fox = 1,100 > fi,x > 1. 4) the delay for smoothing
estimation of the AF-BUKS algorithm was set to be 10s
(100 samples) which is quite less than the duration for the
whole simulation, 400s. This is designed to mimic the case
of online tracking when certain delay can be tolerated by the
system. Settings for various algorithms were identical in both
of the above-mentioned cases.

3) SIMULATION RESULTS

We now compare the performance of the proposed
AF-BUKF/S algorithms with the EKF, UKF, STUKE,
STCKF and BUKF-SGM approaches in turns through visual
and quantitative assessments.

First, the estimated state variables in case C1 are presented
on the left hand side of Fig. 2 for visual assessment. The plot-
ted position (East and North locations) and orientation (Roll,
Pitch and Yaw angles) were obtained by averaging the results
over 100 Monte Carlo trials of various approaches. Due to
page limitations, only the results for D4 are presented here
for visual comparison. We refer interested readers to Part 4 of
the supplementary materials for more results. In the first 100s
duration for each data, it can be seen that all algorithms can
track the state parameters accurately without any obvious
visual artifacts, while the AF-BUKS is the best and the rest
are with similar performances. However, for the subsequent
tracking after the abrupt change in the measurement covari-
ance, the BUKF-based methods perform significantly better
than the other approaches, especially for the estimation of roll
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FIGURE 2. Simulation case C1 for data D4: Left and right columns present the estimated UASs state variables and the corresponding AEs, respectively:
the East/North Positon, Roll, Pitch and Yaw are shown from the top to the bottom row in order. The position AEs are obtained by averaging the AEs of

East and North.

and pitch attitude. The improvement is mainly attributed to
their non-Gaussian dynamic state modeling of UASs. This
allows them to better track the state variables during rapid
system changes by modeling the state and measurement noise
as GMs. In contrast, the state or measurement variations
in the conventional EKF or UKF are modeled by a single
Gaussian component, whose noise covariance may not be
exactly known a priori especially in time varying and other
practical applications. On the other hand, the performances
of the STUKF and STCKF algorithms are worse than the
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EKF and UKF methods. This suggests that the performance
of the Student’s 7-based filters will be degraded substantially
when the system noises are not heavy tailed, while the pro-
posed AF-BUKF algorithm does not suffer from such restric-
tions. Moreover, from the calculated absolute errors (AEs)
shown on the right hand side of Fig. 2, it can be seen that
the proposed AF-BUKF/S algorithms yield better estima-
tion accuracy than its non-adaptive BUKF-SGM counterpart.
This demonstrates the benefits of using the adaptive fad-
ing strategy for state estimation with system uncertainties.
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FIGURE 3. Simulation case C2 for data D6: Left and right columns present the estimated UASs state variables and the corresponding AEs, respectively:
the East/North Positon, Roll, Pitch and Yaw are shown from the top to the bottom row in order. The position AEs are obtained by averaging the AEs of

East and North.

Furthermore, the AF-BUKS algorithm outperforms the AF-
BUKF method on the estimation of various state variables,
especially for the position parameter as shown on the top right
plotin Fig. 2. We attribute such improvements to the fusion of
Bayesian smoothing and adaptive fading strategies. Overall,
the proposed AF-BUKF/S methods are particularly useful for
UAS:s state estimation under various uncertainties which may
stem from unknown ambient noises such as wind force.
Now, the results of case C2 are demonstrated in Fig. 3.
Again, due to space limitations, only the results of D6 are
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presented here for illustration and more results can be found
in the supplementary materials. To better visualize the differ-
ent behaviors of various approaches, the locations of impul-
sive noises are randomly generated and then fixed at some
specific time instants and the results with 100 realizations are
shown in Fig. 3 for visual assessment. It can be seen that the
BUKF-SGM and AF-BUKF/S algorithms are less sensitive
to impulsive noises than the other compared approaches.
From the AEs presented in the right column in Fig. 3, we
can see that the student’s ¢-based algorithms, STUKF and
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STCKEF, are slightly better than the EKF/UKF approaches,
while the BUKF-based methods can offer significantly better
performance than the EKF/UKF algorithms. Moreover, it
can also be seen that the overall performance of the AF-
BUKEF algorithm is significantly better than the BUKF-SGM
approach. This is due to the fact that, in our simulation, the
amplitude of the impulsive noise was randomly generated
with variance 50R; which is larger than the largest compo-
nent in the GMs of the measurement noise. In other words,
there is a substantial model mismatch in the measurement
noise for the BUKF-SGM method. In contrast, the AF-BUKF
algorithm is able to automatically compensate for the mis-
match through the adaptive fading strategy. Consequently,
the adverse effect of the impulsive noise component can be
effectively mitigated yielding better performance. Further-
more, the overall performance provided by the AF-BUKS
algorithm is better than that of the AF-BUKF. This shows
the significance for extending the AF-BUKEF to its smoother
version via the proposed unscented RTS smoothing concept.
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Next, we compare the algorithms quantitatively in terms
of the following time-averaged root mean squared error
(RMSE), which is defined as

1 1
RMSE = — Zle \/ i ZZZ] (xh(m) —®Lm)%,  (30)

where xfC (m) and ’x\i(m) denote respectively the /-th element
of the true and filtered state x; and X at the m-th Monte Carlo
run (m = 100 both in cases C1 and C2 for quantitative
analysis). It shall be noted that, unlike in the visual analysis,
the locations of impulsive noises were randomly generated in
the quantitative assessment. The averaged RMSEs for various
algorithms on each dataset are compared in Fig. 4. It is seen
that the overall performance of the UKF algorithm is slightly
better than that of EKF. It seems that the improvement of
the unscented transform is somewhat marginal in this case,
except for the estimation of the position in case C1 (see left
hand sides in Fig. 4(a)). This is mainly due to the mild non-
linearity of the simulated UASs. It can also be noticed that
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FIGURE 5. Experimental results of AF-BUKF/S and EKF algorithms: left column shows the estimated attitude parameters including roll, pitch and yaw;
right column presents the corresponding errors. The data length is from 7 to 13.5 minutes, which is the same as in [50].

the BUKF-SGM algorithm yields better performance than
the EKF, UKF, STUKF, and STCKF approaches. This fur-
ther confirms the usefulness of non-Gaussian dynamic state
modeling of UASs. Moreover, as seen in Fig. 4, the proposed
AF-BUKF/S algorithms outperform the BUKF-SGM and
they provide much better performance than the other com-
pared methods. This demonstrates the effectiveness of the
proposed AF-BUKEF/S algorithms for adaptive estimation of
nonlinear states with system uncertainties.

C. REAL DATA CASE

To further demonstrate the performance of the proposed
AF-BUKF/S algorithms, a benchmark test on real flight data
was conducted. We use the real small UAS flight data in [50]
to evaluate the performance of the AF-BUKF/S algorithms
with comparison against the EKF, UKF, STUKF, STCKF
and BUKF-SGM methods. The dataset is obtained from a
low-cost IMU/GPS system made by Crossbow. It consists of
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GPS data from Micro Nav. and IMU data obtained from gyro
and accelerometer readings. The ground truth is obtained by
MIDG II, which is an integrated IMU/GPS system equipped
on the aircraft that can provide higher quality state variables.
The specifications of the MIDG II system are 0.4°(lo) in
pitch and roll, and 2°(1o) in heading. The dataset was col-
lected from an unmanned aircraft flying in circular patterns
over 13.5 minutes. For detailed description of the nonlinear
system models of the flight, we refer interested readers to [50]
for more information.

1) PARAMETER SETTINGS

For the EKF algorithm, we keep the original settings of
the model parameters ( i.e., the initial state and state error
covariance, state noise covariance J; and measurement noise
covariance Rk) in [50] unchanged as they are carefully
assigned. Same quantities are used in the UKF, STUKE,
STCKF algorithms for fair comparison. For the BUKF-SGM,
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TABLE 2. MDerr for various algorithms.

Algorithms Roll (Degree)  Pitch (Degree)  Yaw (Degree)

EKF 3.35 4.16 21.75
UKF 2.98 3.52 18.34
STUKF 3.87 4.88 16.60
STCKF 3.53 4.39 16.17
BUKF-SGM 2.99 2.32 15.26
AF-BUKF 2.56 1.83 12.07

AF-BUKS 2.06 1.54 8.73

the settings are as follows: The system state noise is p(@y) =
33 @i N (0 @ik, Qi g) With ar g = 0.5, anx = 0.25,
a3k = 025, @1k = @k = @3k = 0,01 = O,
Q> = 20 and @, ; = 50, . The system measurement noise
is p(vy) = Z}:l BixN (vi: Uik, Rjx) with Bix = 0.5,
Bok = 0.5,V = Uox = 0, R1x = Ry and Ry = 2Ry.
The initial a posteriori pdf of the state is a GM with four
components having the same weight. These parameters were
manually selected by trial and error for fair comparison. For
the AF-BUKF/S, the settings of the GMs were identical to
those in BUKF-SGM. Additional parameters for the BKF
during the estimation of fading factors in the AF-BUKF/S are
the same as those in Section IV-B.2.

2) EXPERIMENTAL RESULTS

We first compare the performance of the proposed
AF-BUKF/S algorithms with that of the EKF algorithm
in [50]. Specifically, the attitude parameters of roll, pitch
and yaw estimated by these two algorithms are presented in
the left hand size of Fig. 5. It can be seen that the overall
performance of the proposed AF-BUKF algorithm is better
than that of the EKF. We attribute this improvement to the
non-Gaussian modeling of the state noise of the UASs in the
AF-BUKEF. This yields more accurate estimation results than
the conventional EKF approach with a single component.
Next, the error statistics for the AF-BUKF/S and EKF
algorithms are plotted in the right hand size of Fig. 5 for
comparison. The Euclidean distance between the estimated
state X and the ground truth x; is used as the error measure

Derr (X, xi) = % — x¢ll3- 31)

It can be seen that the AF-BUKS algorithm outperforms the
AF-BUKF method, whole performance is much better than
the EKF approach. As mentioned earlier, the AF-BUKS
algorithm is particularly useful for offline applications or
online applications where certain delay can be tolerated. This
provides more freedom to users according to the system
requirements.

Finally, in Table 2, the proposed AF-BUKF/S algorithms
are compared with other approaches based on the mean
Euclidean distance criterion, i.e., the errors of (31) averaged
over time:

1 N 2
MDerr = — Zk:1 %% — x5 (32)
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The results indicate that the AF-BUKF/S algorithms are able
to obtain better estimation accuracy than other approaches.

V. CONCLUSION

A novel AF-BUKEF algorithm has been presented for state
estimation of nonlinear and non-Gaussian processes. In con-
trast to the UKF approach, the AF-BUKF algorithm models
the state and noise densities with finite Gaussian mixtures so
that the problems caused by system noise uncertainties can
be alleviated. Moreover, the AF-BUKF approach is capable
of adapting the Gaussian components to further mitigate the
adverse effect of inexact knowledge of the state and mea-
surement noise covariance, and thus avoids tedious tuning
and offers better adaptation to time-varying environment. In
addition, the proposed AF-BUKF algorithm has been further
extended to an AF-BUK smoother (AF-BUKS) using the
concept of Rauch-Tung-Striebel smoothing for more accurate
state estimation. Experimental results on both simulated and
real flight data show that the proposed AF-BUKF/S algo-
rithms can better adapt to the uncertainties of system noises
and lead to more accurate and reliable estimation of the state
of UASs than conventional approaches.
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