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ABSTRACT Due to the lack of living space and the increase in population, there has been a construction
boom in the underground space to improve the quality of human life. Tunnel engineering plays a vital role in
the development of underground space. In addition to traditional methods, some intelligent methods such as
artificial neural networks (ANNs) have been applied to various problems in the tunnel domain in recent years.
This paper systematically reviews the application of ANNs from different aspects of tunnel engineering.
It reveals that the backpropagation algorithm (BPA) and Levenberg-Marquardt algorithm (LMA) are the
most widely used. Due to the limitations of some original models, some scholars use optimization algorithms
such as particle swarm optimization (PSO) and genetic algorithm (GA) to optimize the original ANNs to
obtain better prediction results. A comparison between the ANN-based methods and methods like statistical
methods is conducted. Finally, the following conclusions can be drawn: (1) The recommended ratio of the
training set and test set is 3:1; (2) The advantage of optimized ANNs is not apparent when the optimization
algorithm varies. Additionally, the performance of ANNs is always better than that of statistical methods.

INDEX TERMS Artificial neural networks, tunnel engineering, prediction accuracy.

ABBREVIATIONS IN ALPHABETICAL ORDER
(ANFIS) Adaptive neuro-fuzzy inference system
(AIC) Akaike information criterion
(AF) Application field
(ABC) Artificial bee colony
(ANNs) Artificial neural networks
(ANNFF) Artificial neural network with forgetting factor
(AIER) Average inference error rate
(ARE) Average relative error
(BPA) Backpropagation algorithm
(BPNN) Backpropagation neural network
(BLR) Bayesian linear regression
(BNC) Bayesian network classifier
(CGA) Conjugate gradient algorithm
(CFT) Curve fitting toolbox
(DWF) Daughter wavelet function
(DT) Decision trees
(ELM) Extreme learning machine
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(FFNN) Feedforward neural network
(FLM) Fuzzy logic model
(GPOD) Gappy Proper Orthogonal Decomposition
(GF) Gaussian function
(GP) Gaussian process
(GA) Genetic algorithm
(GIS) Geographic information system
(TANSIG) Hyperbolic tangent function
(ICA) Imperialist competitive algorithm
(KNN) K-nearest

neighbors
(KSOFM) Kohonen self-organizing feature map
(LMA) Levenberg-Marquardt

algorithm
(LMBP) Levenberg-Marquardt

backpropagation algorithm
(LIN) Linear function
(LMRA) Linear multiple regression analysis
(LIR) Linear regression
(LRM) Logarithmic regression method
(LOGSIG) Logistic sigmoid function
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(MABE) Mean absolute bias error
(MAE) Mean absolute error
(MAPE) Mean absolute percentage error
(ME) Mean error
(MSE) Mean squared error
(MSEREG) Mean squared error with Regularization
(MRNN) Midpoint recurrent neural network
(MNN) Modular neural network
(MLP) Multilayer perceptron
(MOE) Multi-object

error
(MRA) Multiple regression analysis
(MARS) Multivariate adaptive regression splines
(NMRA) Nonlinear multiple regression analysis
(NM) Not mentioned
(PSO) Particle swarm optimization
(PE) Percentage error
(POSLIN) Positive linear function
(PA) Prediction accuracy
(PNN) Probabilistic neural network
(PURELIN) Pure linear function
(RBF) Radial basis function
(RBFNN) Radial basis function neural network
(RRNN) Radius recurrent neural network
(RF) Random forest
(ReLU) Rectified linear units function
(RNN) Recurrent neural network
(RE) Reference
(RAE) Relative absolute error
(RRMSE) Relative root mean square error
(RMSE) Root mean square error
(RRSE) Root relative square error
(SCGA) Scaled conjugate gradient algorithm
(SIG) Sigmoid function
(SPSS) Statistical Product and Service Solutions
(SSRE) Sum squared relative error
(SVM) Support vector machine
(SVMFF) Support vector machine with a forgetting

factor
(SVR) Support vector regression
(SM) Surrogate model
(VAF) The variance accounted for
(TL) Transfer learning
(TBMs) Tunnel boring machines
(UD) Uniform design
(WNN) Wavelet neural network

NOMENCLATURE
(R2) Coefficient of Determination
(R) Correlation coefficient
(α) Learning rate
(tk) Measured output
(β) Momentum constant
(yk) Predicted output produced by the ANNs
(σ ) Standard deviation

(tk ) The average value of actual tk values
(yk ) The average value of actual yk values
(Ncountry) The number of countries
(Ndecade) The number of decades
(Nh) The number of hidden neurons
(Nimp) The number of imperialists
(Ni) The number of input neurons
(No) The number of output neurons
(var(tk-yk)) The variance of tk-yk
(var(yk)) The variance of yk
(wj) The weight vector
(n) Training epochs

I. INTRODUCTION
According to World Urbanization Prospects, 55% of the
world’s population lives in urban areas, and it is expected
to increase to 68% by 2050 [1]. Together with urbanization,
the overall growth of the world’s population will increase
the urban area by another 2.5 billion people by 2050. The
growing population leads to the extensive development of
underground space, which offers the possibility of improving
the quality of life [2]. Tunneling is one of the methods to
develop underground space using machinery such as shield
TBMs. In the past few decades, researchers have been using
traditional methods such as analytical methods and numerical
simulation methods to solve tunnel-related problems [3], [4].
However, obtaining accurate results is not easy because many
calculations require detailed external parameters and reason-
able estimates. Driven by big data, ANNs are considered to
be an emerging method used in tunnel engineering and have
been applied to solve these tunnel-related problems.
ANNs are inspired by the biological behavior of neurons

and human brain research and can help tunnel engineers
establish relationships between input parameters and output
parameters [5]. Shi et al. applied ANN to predict settlements
during tunneling [6], and then the tunnel support stability was
obtained [7]. Benardos et al. predicted the performance of
TBM, mainly including the TBM advance rate, by present-
ing an ANN model [8]. To learn more about the hazardous
geological zones in front of a tunnel face, Alimoradi et al.
built an ANN model to classify the mechanical properties
of rock mass in the zones [9]. Lau et al. applied RBFNN to
estimate production rates on the following cycle in tunneling
construction [10]. Mahdevari et al. estimated the unknown
nonlinear relationship between the rock parameters and tun-
nel convergence by using the data from the Ghomroud water
conveyance tunnel in Iran [11]. Rastbood et al. developed an
ANN to predict the stresses executed on segmental tunnel
lining [12]. Wu et al. applied ANN to verify the proposed
tunnel ventilation systemwith variable jet speed [13]. Ribeiro
e Sousa et al. used different types of data mining techniques
ranging from ANNs to naive Bayesian classifiers to predict
the type of rockburst [14].

Lai et al. reviewed the main developments in the field of
tunnel deformation prediction system based on ANNs [15].
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Lu et al. present applications of artificial intelligence in civil
engineering [16]. However, the thorough investigation of the
application of ANNs in tunnel engineering is still insuffi-
cient. Providing a brief review of the studies related to the
application of ANNs in the context of the tunneling field can
help plan, design, and construct tunneling projects with ANN
techniques.

This study aims to review the application of ANN-based
models in the field of tunnel engineering. Section 2 shows the
methodology of this paper. Section 3 presents an overview of
the ANNs. Section 4 demonstrates the application of ANNs
in different aspects of tunnel engineering. Section 5 discusses
the features of ANNs, such as architecture, transfer functions,
prediction performance. In Section 6, primary conclusions
and future works are summarized.

II. METHODOLOGY
The research methodology of this paper can be summarized
as follows:

A. CONDUCTING A KEYWORD-BASED SEARCH
This paper employs Web of Science to perform a
keyword-based searching of published papers from 1900 to
2019. The keywords include artificial neural networks and
tunnel. In this step, 422 published papers are collected as a
basic literature library.

B. SEARCHING TOP 100 HIGH LOCAL CITED PAPERS
Histcite pro is used to select 100 papers with the highest
citation among 422 papers.

C. SEARCHING PAPERS PUBLISHED IN 2017-2019
Reviewing recently published papers can help readers know
the latest developments in related research. Finally, 52 papers
of the remaining 322 papers are selected.

D. SCREENING THE COLLECTED PAPERS
There are several criteria for screening the 152 papers col-
lected in the above two steps. First, the content of the paper is
directly related to tunneling engineering. Second, the model
used in the paper should use at least one ANN-based model.
Finally, 61 papers are extracted from the 152 collected papers.

E. REVIEWING THE PAPERS
To summarize different characteristics of the ANNs, such as
the number of the hidden layers and learning rate, 61 papers
are carefully reviewed.

III. OVERVIEW OF ARTIFICIAL NEURAL NETWORK
Many studies have detailed the definition and development
process of ANNs [17]. ANN can be applied to approxi-
mate functions between a large number of input parameters
and output parameter(s) because it has the ability of self-
learning. Moreover, ANNs can learn from previous data and
can help obtain useful information from the raw data. These
strengths make ANNs a valuable tool for predicting some

TABLE 1. Pros and Cons of the ANNs.

complex problems. According to different factors, ANNs can
be divided into different categories (see Fig. 1).

A. ARTIFICIAL NEURAL NETWORK
Training an ANNmodel is a process of adjusting weights and
biases until it meets the stop criteria defined by the users,
or until the error converges to the minimum value initially
set [18]. After establishing an ANNmodel, the optimal model
is found by optimizing the number of hidden layer(s) and
hidden nodes, the type of transfer function, and so on [19].
Table 1 lists the pros and cons of ANNs.

The ANNs in tunnel engineering can be demonstrated in
three aspects: the characteristics, the modeling process, and
the main types of ANN used in this field.

1) CHARACTERISTICS OF ANN
The activation function, also called the transfer function,
is used for transferring the information in the artificial neu-
rons. The derivative of SIG can be expressed according to the
function itself, thus it can be applied to the most common
training algorithm. Park et al. stated that SIG is the most
efficient through its better performance [25]. Rajabi et al.
stated that SIG is more efficient when it is compared with
linear functions in general [28].

In theory, the activation function can be different from one
layer to another [29]. The selection of activation functions is
related to the complexity of the problem and the purpose of
the model [5], [30].

The learning ability of the ANNs comes from its network
topology, which mainly includes the number of layers and
the number of neurons. When the ANN model is applied to
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FIGURE 1. Classifications of main ANNs applied in the tunneling field.

the tunnel-related field, it always has one input layer, one
or two hidden layers, and one output layer. Among these
layers, one of the most critical steps in building an ANN
model is to determine the number of hidden layers because
mathematical adjustment operations are performed in these
layers [19], [31].

The neurons in the input and output layers correspond to
the input and output variables of the problem. Hidden neurons
enable the network to solve complex problems and are closely
related to the performance of ANNs [32].

The training algorithm automatically adjusts the weights
and thresholds of neurons to minimize errors [29]. There
are many existing ANN training algorithms, including BPA,
LMA, the conjugate gradient method, and so forth. BPA
and LMA are the most commonly used training algorithms
in ANNs. LMA is 10 to 100 times faster than the usual
BPA and proved to be the quickest and most robust algo-
rithm [33], [34].

2) MODELING PROCESS OF ANN
The ratio of training, validation, and test sets is a significant
factor that affects ANN’s performance. So far, there is no
specific method for defining the ratio of available data.

Different dimensions and scales of input parameters will
lead to instability learning and a decrease in learning speed.
To obtain dimensionless data, it is necessary to normalize the
data before network training [35], [36].

Three main steps, including training, validation, and test-
ing, constitutes a successful ANN. During the training pro-
cess, the training algorithm is applied to update the weights
and minimize the error. The validation step is the criterion for
stopping the training step, and the test procedure is applied to
a trained and validated ANN to measure its performance [37].
In most cases, only the training and test steps are carried out
because an appropriate model can be chosen through previous
experience.

Regarding the performance evaluation of the trained ANN
model, Table 2 summarizes some main performance metrics.

TABLE 2. Main Performance functions of a trained ANN model.

When using two or more performance indicator(s), the total
rank method proposed by Zorlu et al. is commonly used to
obtain the optimal model from the different results of these
indicators [30], [38]–[40].

As shown in Table 1, the interpretability of the result pre-
dicted by ANNs is poor because ANN is a black-box model.
Thus, sensitivity analysis is conducted to find out the relative
importance of the influencing factors that affect the prediction
results [28], [29], [41].

3) MAIN ANN TYPES USED IN TUNNEL ENGINEERING
Basic ANNs includeMLP, RBFNN,WNN, and KSOFM (see
Figs. 1 and 2). Commonly used optimized ANNs include
PSO-ANN, ICA-ANN, GA-ANN, and ABC-ANN.

Among the most popular basic ANN types, MLP belongs
to FFNN and contains at least one hidden layer. The advan-
tage of the MLP is that it can be used in high nonlinear
problems [42]. BPA is the most popular and efficient learning
procedure in ANNs, especially for MLP [21], [30], [43].

RBFNN is an FFNN that uses radial basis functions such
as a GF as the activation function [11]. Unlike BPNN,
RBFNN performs in two ways: (1) is more efficient and
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FIGURE 2. Structure or map of different basic ANNs: a) MLP; b) RBFNN;
c) WNN; d) KSOFM.

straightforward, thereby reducing training time; (2) avoids
falling into a local minimum and overtraining [44]. There
are an input layer, hidden layer, and output layer in RBFNN,
as shown in Fig. 2.

WNN is usually an FFNN composed of one input layer,
one hidden layer, and one output layer. WNN uses wavelets
as its activation function [21].

Among unsupervised ANNs, KSOFM is the most widely
used neural networks [43]. Using KSOFM can automatically
divide the dataset into multiple clusters according to the
similarity of the dataset.

B. IMPROVED ARTIFICIAL NEURAL NETWORKS
Although the BPA is the most commonly used algorithm,
the learning speed is relatively low and may fall into a local
minimum [20], [45]. Therefore, optimization methods such
as PSO, ICA, GA, and ABC are introduced to improve the
performance of the network andmake it easier for the network
to find a global minimum. A simple comparison between
these optimizers is shown in Table 3 [20], [30], [41].

IV. APPLICATIONS OF ANNs IN TUNNEL ENGINEERING
ANNs have a wide range of applications in tunnel engi-
neering, such as tunneling-induced settlement, tunnel support
stability, roadheader or TBM performance, and so forth. The
reviewing results are shown in the Appendix.

A. TUNNELING-INDUCED SETTLEMENT
The application of the ANNs in tunneling-induced settlement
accounts for a large part of the reviewed papers.

Many factors affect the tunneling-induced settlement,
including tunnel geometry, geological conditions, and shield
operation factors, and so on. In such a complex problem, the
relationship between the influence parameters and the ground
settlement is unknown, and it is usually nonlinear. ANNs
proved to be the best way to analyze settlement data since
they can predict the settlement by establishing an unknown
relationship between structural features and existing settle-
ment data [46]. One of the most challenging difficulties in
ANN modeling is obtaining parameters that may be related
to ground settlement [47].

Boubou et al. utilized ANNs and least square approxima-
tion to correlate ground surface movement and TBM operat-
ing parameters [29]. The accuracy of the model is evaluated
by using the monitoring data of the Toulouse subway line
B tunnel. They concluded that the most critical parameters
affecting ground surface movements are the TBM’s advance
rate, the hydraulic pressure used for the cutting wheel, and
the TBM’s vertical guidance parameters.

B. THE STABILITY OF UNDERGROUND STRUCTURES
ANNs can be used to predict the stability of underground
structures such as tunnels, gate roadways, and rock caves.
An ANN can be applied to establish a model to depict the
complicated relationship between the stable status of tunnel
support and rock mechanics and construction parameters.
BPNN, MLP, RBFNN are the primary neural networks for
predicting the interaction of underground structure stability,
tunnel support pressure, and ground-support during deep rock
excavation [7], [53]–[56].
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TABLE 3. A Comparison between PSO, GA, ICA and ACO.

C. ROADHEADER PERFORMANCE AND TBM
PERFORMANCE
ANNs can help predict the performance of TBM [8]. The
results show that the ANN system has achieved satisfac-
tory results in predicting the TBM advance rate. ANN is
integrated with a GIS platform for tunnel performance pre-
diction. The integrated model makes full use of GIS’s capa-
bilities in data management, storage, and visualization. The
results show that the integrated GIS-ANN approach can be
used as a decision support tool for tunnel engineers to pre-
dict tunnel performance [57]. Statistical methods, such as
MRA, SPSS, together with ANNs, are conducted to predict
TBM performance [58], [59]. For the penetration rate of
TBM, the prediction accuracy of SVM, LMRA, and ANN
are compared [60], [61]. In order to predict the penetration
rate and advance rate of TBM, Armaghani et al. utilized an
ANN, PSO-ANN, and ICA-ANN to make the prediction and
compared the prediction ability of these methods [30], [39].
A hybrid finite element and surrogate modeling approach
based on RNN is proposed to simulate and support TBM
steering, which provides support for the steering decisions of
tunnel engineers [62], [63].

Roadheaders can bring productivity to tunneling, mining,
and civil engineering. Thus roadheader performance predic-
tion has become one of the main issues in the economic pro-
cess of undergroundmining. ANNs, together with KSOFMor
statistical methods such as MRA, RF, zero R, etc., are applied
to predict roadheaders’ performance [31], [37], [43], [64].

D. GEOLOGICAL CONDITIONS
The ground condition ahead of tunnel face can be predicted
by ANNs. In the literature [65], the proposed ANN model
shows high efficiency in predicting ground type in front of
the tunnel face. Thus, it is valuable to utilize the proposed
ANN model to reduce the influence of geological condi-
tions changes. Zhao et al. conducted a data-driven framework
based on different methods, including ANN, XGBoost, Cat-
Boost, DT, KNN, and BLR, to predict the geological types of
stratum [24]. It reveals that the proposed ANN predictor out-
performs other models. Moreover, ANN can also be applied

to predict hazardous geological zones in front of the tunnel
face and void behind the lining [9], [66].

E. OVERBREAK PREDICTION
Mottahedi et al. applied various methods, including ANNs,
LMRA, NMRA, SVM, adaptive neuro-fuzzy inference sys-
tem, and FLM, to predict the relationship between the causing
factors and overbreak data [67]. The results indicate that
specific drilling, specific charge, and rock mass rating are the
most effective factors on the overbreak. Among these meth-
ods, the prediction performances of adaptive neuro-fuzzy
inference systems and FLM are better than that of MRA,
ANN, and SVM.ANN-based hybrid models are always being
used in recent years. For example, hybrid models that com-
bine GA and ANN, ABC and ANN are utilized to predict
overbreak separately [38], [40], [68]. The results show that
the prediction performance of the hybrid model is better than
that of the original ANN.

F. TUNNEL CONVERGENCE
In the research field of tunnel convergence, MLP is applied
frequently. Mahdevari et al. usedMLP, RBFNN, andMRA to
estimate the nonlinear relationship between the rock param-
eters and convergence [11]. The results show that the MLP
has higher accuracy compared with the RBF and MRA.
However, the prediction performance of ANN is worse than
that of SVM [36]. In addition, Adoko et al. applied MARS,
together with ANNs, to predict tunnel convergence [35]. It is
concluded that the accuracy of the MARS method is lower
than that of the MLP model. Zarei et al. utilized SPSS and
discrete element methods to introduce a new convergence
criterion for water conveyance tunnel, and it comes out that
the ANN is more suitable than the other two methods [69].
Note that the performance of different data mining methods
and statistical methods varies depending on different data.

G. OTHER APPLICATIONS
Rastbood et al. applied MLP to predict yield stresses and
displacement of segmental tunnel lining rings based on the
results obtained from the numerical method [12]. It is con-
cluded that among all input variables, height is the most
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effective parameters on outputs parameters. Thus, the pro-
posed model shows an excellent ability to predict different
types of stresses and extreme values of ring displacement.

A few researchers in recent years also studied the appli-
cations of ANN in the tunnel ventilation system. To regulate
the pollutant concentration,Wu et al. applied the ANN unit in
the comprehensive dynamic model designed for tunnel venti-
lation systems with jet fans. Also, a new neural network was
utilized to approximate the cost-to-go function that is used
to optimize the performance [13]. Zheng et al. predicted the
inside air temperature and ventilation rate of a tunnel by ANN
instead of complex mathematical models. It is concluded that
the average air temperature inside the tunnel is predictedmore
accurately than the single inside temperature at the center of
the tunnel [70].

Regarding the use of ANN in rockburst and flying rock
generated by blasting, the in-situ rockburst database is ana-
lyzed by ANNs, SVM, and other two different data mining
techniques [14]. Based on the PNNmodel, Feng et al. predict
rockburst in the deep tunnels [71]. The flyrock distance gen-
erated by blasting is predicted by three hybrid ANN models,
including ICA-ANN, GA-ANN, and PSO-ANN [41]. The
results show that the prediction performance of PSO-ANN
is better than that of the other two methods.

Moreover, ANNs can be used to estimate next-cycle pro-
duction rates in tunneling construction. Lau et al. utilized
RBFNN to analyze the nonlinear relationship between system
states and systems outputs at consecutive time events [10].
It is proved that RBFNN can help tunnel engineers forecast
the production rate in the following cycle.

V. DISCUSSION
The main features and performance of different methods are
summarized in this section.

A. CHARACTERISTICS OF ANN-BASED MODELS
As can be seen from the Appendix and Fig. 3, the per-
centage of the training set, validation set, and test set are
in the intervals of [54.7%,94.1%], [0%,25%],[5.9%,39.4%],
respectively. In addition, in the 50 datasets that available for
analysis, the validation set is only applied in 11 datasets,
which means that only the training set and test set exist
in most models when ANNs are involved in the tunneling
engineering field. The Appendix implied that the average
percentage of the training, validation, and test set is 74.70%,
3.94%, and 21.34%, respectively (see Table 4). Besides, there
are some previous recommendations that can be a guide to the
ratio of the training set to the test set (see Table 5).

TABLE 4. The maximum, average, and minimum percentages of training,
validation and test set.

FIGURE 3. Stacked column graph of the percentages of training,
validation, and test set.

TABLE 5. Recommendations of the percentages of the training set and
test set.

According to Tables 4 and 5, setting the ratio of the training
set to the test set to 3:1 is suggested in the future tunneling-
related research.

The performance of the ANNs depends mainly on the
architecture, namely the number of input, hidden and output
layers, and the number of neurons in the hidden layer(s).

Some scholars believe that neural networks with a
single hidden layer are sufficient to approximate any
function [20], [43], [77]–[80]. The strength of an ANNmodel
with one hidden layer is that it can decrease the complexity
of a model [81]. Other scholars consider that two hidden
layers can meet the requirements to solve high complexity
problems [19]. Jung et al. stated that the number of hidden
layers is restricted to two because additional hidden layers
could trigger the vanishing gradient problem in the activation
function [65]. Two or more hidden layers are known as a way
to solve the overfitting problem. However, the performance
of ANNs is not improving with more than two layers [18].
In practice, some scholars decided the number of hidden lay-
ers by the trial and error method or experience [5], [28], [47].

In conclusion, single hidden layer networks can be applied
in most problems, especially in linear or low nonlinear prob-
lems. However, in nonlinear problems, two-layer networks
are more proper to be utilized while the difficulty in opti-
mization and risk of overdetermined ambiguity exists. One
to three layers are reckoned to be sufficient for most of the
problems [82].More hidden layersmay cause issues like huge
calculation.

Numerous empirical equations are proposed to guide
the determination of the number of hidden neurons (see
Table 6) [20], [30], [38], [40], [81]. After the range of Nh is
determined, the trial and error method is conducted to obtain
the optimal value of Nh [20], [28], [30], [40], [41], [83], [84].
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TABLE 6. Equations for determination of the hidden neurons.

Data in Fig. 4 illustrates that the number of hidden layers
is mostly set to be one (36 datasets), followed by two (20
datasets) and three (4 datasets). When Nh = 1, the number of
hidden neurons is always between 3 and 24, and the average
number is 13 (see Fig.4 a)). Figs. 4 b) and c) indicates that
whenNh = 2, both the numbers of the neurons in the first hid-
den layer and the second hidden layer are either beyond 20 or
between 3 and 13. Only in a few cases, Nh = 3 is applied.
Although the learning rate, the momentum constant, and

the training epochs are three essential parameters determined
by experience, their values are not given in some cases.
Note that the success of the training process varies with the
selection of the momentum coefficient [58].

The values of the learning rate and momentum constant in
the collected papers are fluctuant, the learning rate is from
0.01 to 0.7, and the momentum constant is from 0.01 to
0.9(see Appendix). The magnitude orders of learning rate
values are either 10−1 or 10−2. The learning rate should be
decided through the trial and error method until the gradient
descent process is working correctly. The training speed will
be slow when the learning rate is too low. However, oscil-
lations will occur when the learning rate is too large. Thus,
the momentum coefficient is proposed to promote the process
of computation, which can fasten the learning speed and
keep the change of the weight stable. Most of the magnitude
orders of the momentum coefficient are equivalent to those
of the learning rate, i.e., either 10−1 or 10−2 except in two
cases [55], [84].Moreover, different value domain ofmomen-
tum constant have been proposed by different researchers,
such as 0.4-0.9 [93], 0.0-1.0 [94], [95], close to 1.0 [96], [97].
The value of the training epochs in the reviewed papers is
mostly from 13 to 10000. However, the training epochs value
was set to be 600000 by Leu et al. [7], which is far beyond
other cases. Most values of the training epochs are lower than
1000, only in several cases are they beyond 1000. Besides, the
average value of the training epochs is 1534.

In summary, the determination of the learning rate and the
momentum coefficient should be determined together. The
magnitude orders of these two factors are always set to be
the same. Additionally, the initial training epochs can be set
to 1500 and then decided by the trial and error method.

Regarding the training algorithm, as shown in Fig. 5, the
BPA is the most commonly used algorithm in all the collected

FIGURE 4. The number of hidden neurons: a) one hidden layer; b) two
hidden layers; c) three hidden layers.

cases, and LMA is the second widely used one, followed by
LMBP, CGA, SCGA, PSO, RBF, ICA andGA. In conclusion,
BPA and LMA are used to train the ANNs in most cases.
However, because of the limitations of these two algorithms,
some optimization algorithms such as ICA, PSO, and GA
have been utilized to optimize the original ANNs to obtain
better prediction results.

Concerning the transfer function, as can be seen in
Fig. 6, the most commonly applied transfer functions are
TANSIG, LOGSIG, and PURELIN alternately. It can be
concluded that the SIG, TANSIG, and LOGSIG functions are
always applied in the hidden layers; however, the PURELIN
functions are always utilized in the output layers in the
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FIGURE 5. Percentages of training algorithms in the ANNs applied in the
tunneling field.

FIGURE 6. Percentages of transfer functions in the ANNs applied in the
tunneling field.

ANNs. Although the transfer functions should be deter-
mined by the specific situation of the real problems, it is
recommended that the SIG, including the TANSIG and
LOGSIG, can be firstly tried for the hidden layers, and
the PURELIN functions can be firstly tried for the output
layers.

B. PREDICTION ACCURACY OF ANN BASED MODELS
ANN-based models such as ICA-ANN, PSO-ANN are com-
pared with a bunch of methods, including data mining meth-
ods (such as SVM, RF), statistical methods (such as LMRA,
NMRA). Different prediction functions or methods are con-
ducted to estimate the accuracy of the models.

Concerning the prediction accuracy, different prediction
functions are introduced to compare the efficiency of different
methods. The most used prediction functions are R2, RMSE,
MSE, MAE, R, VAF, RRSE, RAE, and RRMSE. The corre-
sponding functions have been shown in Table 2.

According to the review results, the comparison results
between the ANNs and other methods are listed in Table 7.
It illustrates that when comparing the ANN models with the
optimized ANN models, most of the optimized ANN models
outperform the original ANN models [11], [56]. Moreover,
the advantage of optimized ANNs is not apparent when

TABLE 7. Comparison of ANNs and other methods.

the optimization algorithm varies. For example, in litera-
ture [30], [56], the performance of ANN optimized by ICA
is better than ANN optimized by PSO. However, in litera-
ture [39], an opposite conclusion is drawn: the performance
of PSO-ANN is better than that of ICA-ANN.

In addition, Table 7 demonstrates that the performance of
ANNs always outdoes that of statistical methods, including
MRA, LRM, SPSS, and MARS. Moghaddasi et al. have
obtained a similar conclusion before [20].

The performance of the ANFIS model is better than the
ANNmodel in two cases. Besides, the comparison can obtain
opposite results when comparing SVM with the ANNs.
However, the conclusion cannot be decided yet because of
a lack of datasets. Nevertheless, the abovementioned con-
clusions can provide a reference in the tunnel engineering
field.
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TABLE 8. (Continued.) The review results of 61 published papers.

VI. CONCLUSIONS AND FUTURE WORKS
This paper reviews the based-ANN models and optimized-
ANN models utilized in tunneling engineering problems.
The characteristics and modeling process of the ANNs are
described; the main ANN types are introduced. Additionally,
the application area of the ANNs in tunnel engineering is
divided into several fields, including tunneling-induced set-
tlement, the stability of underground structures, the perfor-
mance of roadheaders and TBMs, the prediction of geological
conditions, the prediction of overbreak, tunnel convergence
and so forth. The characteristics of these related references
have been discussed and the following major conclusions are
reached:

• The average percentage of the training set, validation set,
and test set is 74.7%, 3.94%, and 21.34%, respectively.

• In most cases, one hidden layer is capable of solv-
ing linear problems. Two hidden layers are enough to
solve nonlinear problems.More hidden layersmay cause
issues like huge calculation.

• The determination of the learning rate and the momen-
tum coefficient should be determined together. Themag-
nitude orders of these two factors are always set to be the
same. Additionally, the initial training epochs can be set
to 1500 and then decided by the trial and error method.

• It is recommended that the SIG, including the TANSIG
and LOGSIG, can be firstly tried for the hidden layers,
and the PURELIN functions can be firstly tried for the
output layers.

• BPA and LMA are used to train the ANNs in most cases.
However, the BPA may be trapped in local minima; this
kind of limitation calls for optimization. As a result,
algorithms such as ICA, PSO, andGA have been utilized
to optimize the original ANNs to obtain better prediction
results.

• Most of the optimizedANNmodels outperform the orig-
inal ANN models. The advantage of optimized ANNs
is not apparent when the optimization algorithm varies.
Additionally, the performance of ANNs always better
than that of statistical methods.

Note that this research has potential limitations. Depending
on the search criteria, there is no guarantee that all relevant
literature can be searched. Nevertheless, several suggestions
for future works can be proposed according to the review
results as follows: (1) it is recommended to set the ratio of

the training set to the test set to 3:1 in the tunneling-related
research. (2) The usage of optimization algorithms in the
ANN models is suggested in the future to prevent trapping in
local minima and obtain a better performance. There may be
differences between the performance of different optimized
ANN models such as PSO-ANN, ICA-ANN, GA-ANN, and
ABC-ANN. Thus it is meaningful to compare the perfor-
mance of different optimized ANNmodels applied in various
problems. (3) The data amount is one of the most critical
aspects of the application of ANNs.More data can bringmore
precision to the model. Therefore, big data and data mining
will lead to an application boom in the engineering field.

APPENDIX
See Table 8.
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