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ABSTRACT Pneumaticmuscle is a relatively new pneumatic component in some precise and flexible control
systems and such systems are needed to achieve a higher controlling performance. However, the existence
of practical uncertainties will make it hard to achieve a higher control accuracy and better performance.
In this paper, the adaptive control problem for the pneumatic muscle joint system with input saturation,
external disturbance and modeling errors is investigated. The auxiliary signals r1, r2 and function ψsgn as
an approximation of sign(·) function is introduced to deal with the unknown saturation and uncertainties
caused by modeling errors. Then an adaptive control scheme is proposed by using these auxiliary signals
and functions. Finally, simulation studies are used to verify the effectiveness of the proposed control scheme.

INDEX TERMS Pneumatic muscle joint system, external disturbance, modeling errors, backstepping, input
saturation.

I. INTRODUCTION
Pneumatic muscle [1], [2], also known as pneumatic mus-
cle actuator, is a relatively new pneumatic component in
some precise and flexible control systems, such as robotic
knee prosthesis [3], virtual reality, and bionic robot, etc.
There are several good characteristics of the pneumatic mus-
cle in practice, for example, light-weight, low cost, high
power-weight ratio, and high power volume ratio. In a word,
the most important advantage is that pneumatic muscle is
similar to human skeletal muscle. Therefore, the pneumatic
muscle has extensive application prospects in the fields of
rehabilitation medicine, virtual reality, and bionic robot, etc.
However, uncertainties of the pneumatic muscle systems
caused by non-smooth nonlinearity and gas compressibil-
ity [1] may result its controlling becoming more complicated.
Then higher control accuracy is difficult to be achieved.

As we all know, all sorts of uncertainties [4]–[27] are
common to the practical system. Such uncertainties includ-
ing unknown parameters [4]–[7], [10], [13]–[27], external
disturbance [4]–[7], [10] and modeling errors [8], [9] may
lead to the degradation of system performance. To guarantee
good performance, uncertainties must be fully considered
in the controller design and stability analysis. To deal with
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linearized parameters, there are some advantages to using
adaptive control approaches. The update laws can be designed
to realize the online estimation of unknown parameters. Espe-
cially, the estimation laws can be adjusted automatically
to the new parameter value when the value of parameter
changes suddenly. This sudden change is usually caused by
unknown actuator failures [11]–[27] during the operation
of systems. To compensate for the uncertainties caused by
external disturbance, we usually assume that such distur-
bance is bounded by an unknown positive constant. By esti-
mating this upper bound, the disturbance can be restrained
effectively. Unknown modeling errors are difficult to be
handled compared with these above two uncertainties. The
neural-networks method is popular to compensate for the
uncertainties caused by modeling errors [28]. Some inequali-
ties can also be used to restrain modeling error when its upper
bound being a known function.

In addition to the above uncertainties, input satura-
tion [4], [6] is inevitable in a pneumatic muscle joint sys-
tem. The existence of saturation which is unknown due
to the unknown parameters may reduce the system perfor-
mance. Therefore, to obtain the high precision control perfor-
mance unknown saturation and above uncertainties can not be
ignored in controller design and stability analysis. In recent
years, several results have been proposed about the control
design for systems with non-smooth nonlinear inputs [4]–[9].
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By using the linear approximation of backlash-like hysteresis,
a control scheme have been proposed in [4], [5] and [27].
Considering unknown saturation, an approximation has been
constructed in [6] which must be handled by fuzzy and NN
techniques. How to compensate for the effect caused by
unknown saturation by traditional backstepping is always an
important problem. To solve such a problem, we consider
the adaptive control for pneumatic muscle joint system with
unknown parameters, external disturbances and modeling
errors in this paper. Furthermore, input saturation is also
fully considered in the controller design. We use different
techniques to do with different uncertainties. The auxiliary
signals are introduced to reduce the influence of unknown
saturation input nonlinearity. The main contributions of this
paper can be summarized as follows: (I) The control problem
is investigated for pneumatic muscle joint systems with input
saturation, external disturbance, unknown modeling errors,
and parameters are fully considered in the controller design.
An adaptive control scheme is proposed to guarantee system
performance; (II) In contrast to existing results, we consider
all sorts of uncertainties. The auxiliary signals r1, r2 are
introduced to deal with the unknown saturation; (III) To
improve system performance, we introduce function ψsgn as
an approximation of sign(·) in controller design which helps
to compensate for the effects caused by modeling errors.

The paper is organized as follows: Section II describes
controlled system model with unknown saturation, unknown
external disturbance and unknown modeling errors.
Section III presents the designed adaptive controller and
analysis of the closed-loop system. Simulation results are
given in Section IV to verify the effectiveness of the proposed
control scheme. Finally, the paper is concluded in Section V.

II. PROBLEM STATEMENT
The force generated by the pneumatic muscle and the pres-
sure value of the pneumatic muscle can be expressed by the
following equations [2].

F1(t) = P1(t)(C1ε1(t)2 + C2ε1(t)+ C3)+ C4

F2(t) = P2(t)(C1ε2(t)2 + C2ε2(t)+ C3)+ C4 (1)

where F1,F2 are the pulling forces on two pneumatic mus-
cles. C1,C2,C3,C4 represent parameters in the mathemati-
cal model of aerodynamic muscles. P1(t) and P2(t) will be
described in following equation (3). ε1, ε2 are the contraction
rate of the pneumatic muscle and given as

ε1(t) = ε0 + rl
−1
0 θ (t)

ε2(t) = ε0 − rl
−1
0 θ (t) (2)

where ε0 and l0 represent the initial contraction rate and
initial length of the pneumatic muscle, respectively. θ (t) is the
rotation angle of the pneumatic muscle joint. Clearly, we have

P1(t) = P0 +4P(t) = k0u0 + kuu(t)

P2(t) = P0 −4P(t) = k0u0 − kuu(t) (3)

where k0 is the proportionality factor. ku is the voltage coef-
ficient. u0 is the initial voltage. P0 is the initial pressure of
the pneumatic muscle. 4P(t) is the pressure change of the
pneumatic muscle. P1(t) and P2(t) are the pressure values of
the pneumatic muscle.

According to the dynamic model of the Lagrangian form
of the pneumatic muscle joint, the following equation can be
obtained

T (t) = J θ̈ (t)+ bvθ̇ (t)
= F1(t)b1 − F2(t)b2 + ϑ(t) (4)

where J is the moment of inertia of the pneumatic muscle
joint. bv is the damping coefficient of the pneumatic muscle
joint system. ϑ(t) represents unknown terms such as exter-
nal disturbances and unmodeled dynamics of the pneumatic
muscle system. b1, b2 represents the radius of the pneumatic
muscle joint.

In the pneumatic muscle joint platform targeted in this
article, the joint radius is the gear radius of the joint, b1 =
b2 = r . With (1) (2) (3) and (4), we have

T (t) = k0u0r(4C1ε0rl
−1
0 + 2C2rl

−1
0 )θ (t)

+ k0kur(2C1ε
2
0 + 2C1(rθ (t)l

−1
0 )2

+ 2C2ε0 + 2C3)u(t)+ ϑ(t) (5)

By simplifying the aerodynamic muscle model, we have

θ̈ (t) = −
bv
J
θ̇ (t)+

2k0u0r2(2C1ε0 + C2)l
−1
0

J
θ (t)

+
2k0kur(C1ε

2
0 + C2ε0 + C3)

J
u(t)+ d(t) (6)

In order to facilitate the design of the controller, the system
stats are selected as follows{

x1(t) = θ (t)
x2(t) = θ̇ (t)

(7)

Then the system model can be rewritten as

ẋ1(t) = x2(t)

ẋ2(t) = d1x1(t)+ d2x2(t)+
ϑ(t)
J
+ b0u(t)

y = x1 (8)

where y is the output signal and

b0 =
2k0kur(C1ε

2
0 + C2ε0 + C3)

J

d1 =
2k0u0r2(2C1ε0 + C2)l

−1
0

J

d2 = −
bv
J

(9)

We let η(t, x) = ϑ(t)
J representing all unknown modeling

errors and external disturbance. Then the controlled system
model can be rewritten as

ẋ1(t) = x2(t)
ẋ2(t) = d1x1(t)+ d2x2(t)+ b0u(t)+ η(x, t)
y(t) = x1(t) (10)
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where x1, x2, y and u are system states, output and input.
d1, d2 are unknown constants and b0 is a known parameter.
Remark 1: As we all know, uncertainties including

unknown parameters, modeling errors and disturbance are
inevitable in practice. So we use η(x, t) representing all
unknown modeling errors and external disturbance. η(x, t) is
an unknown nonlinear function and such that

|η(x, t)| ≤ D+ δ(x, t) (11)

where D > 0 is an unknown constant and δ(x, t) is a known
function. D will be estimated by designing the estimator.
Modeling error is handled by introducing δ(x, t)ψsgn(

z2δ(x,t)
ε

)
in α which will be shown in (26). Then we use the inequality
amplification technique given in (29) to restrain the unknown
effect modeling errors.

Consider the following saturation input

u(v) = sat(v) =


uM v > uM
v −uM ≤ v ≤ uM
−uM v < −uM

(12)

where uM > 0 is an unknown constant. u(v) is the control
input which will act on system and v is the control signal
which will be designed.
Remark 2: Actually, saturation input is the most common

non-smooth nonlinearity of actuators in practical systems.
In pneumatic muscle joint system, due to the limitation of
inflation catheter we must consider the saturation in the con-
troller design and stability analysis.

With the saturation model (12), the controlled system is
reorganized as

ẋ1(t) = x2(t)

ẋ2(t) = d1x1(t)+ d2x2(t)+ b0u(v)+ η(x, t)

y(t) = x1(t) (13)

The above mathematical model is a triangular system. Back-
stepping approach will be used to design the adaptive
controller. To propose the controller design the following
assumptions are made.
Assumption 1: The reference signal yr and its i-th(i = 1, 2)

order derivatives are continuous and bounded.

III. DESIGN OF ADAPTIVE CONTROLLERS
To deal with the uncertainties caused by unknown saturation,
the following auxiliary signals r1, r2 are introduced.

ṙ1 = r2 − Ck1r1
ṙ2 = −Ck2r2 + b04u (14)

where 4u = u − v is the error between the output and input
of saturation actuator. Ck1,Ck2 are positive constants. To
proceed the controller design, we first perform a coordinate
transformation.

z1 = y− yr − r1
z2 = x2 − α1 − ẏr−r2 (15)

The above coordinate transformations are different from the
traditional backstepping technique. To characterize the effect
caused by saturation input, signals r1 and r2 generated by1u
have been introduced in z1 and z2, respectively.

As we all know, the nonlinear approximation shown in [6]
and inverse can be used to compensate for the effect of
unknown saturation input. Fuzzy and NN technique are usu-
ally used when we use a nonlinear function to approximate
saturation. Inverse control can not be used in backsteppt-
ing control design due to the inverse being non-smooth.
So an auxiliary system (14) was introduced to overcome such
difficulties.
Step 1: We start with the first equation of system (13) by

considering x2 as a virtual control variable. The derivative of
error z1 is

ż1 = x2 − ẏr − r2 + Ck1r1 (16)

Considering the Lyapunov function V1 as

V1 =
1
2
z21 (17)

Then the derivative of V1 is

V̇1 = z1ż1
= z1(z2 + α1 + ẏr + r2 − ẏr − r2 + Ck1r1)

= z1(z2 + α1 + Ck1r1) (18)

We choose the virtual control law α1 as

α1 = −C1z1 − Ck1r1 (19)

where C1 is a positive constant. Then we have

V̇1 = z1z2 − C1z21 (20)

Step 2: From (13)-(15) the derivative of z2 is

ż2 = ẋ2 − α̇1 − ˙̇yr − ṙ2 (21)

= d1x1(t)+ d2x2(t)+ η(t, x)

+b0v− α̇1 − ÿr + Ck2r2 (22)

Then

z2ż2 = z2(d1x1(t)+ d2x2(t)

+b0v− α̇1 − ÿr + Ck2r2)+ z2η(t, x) (23)

≤ z2(d1x1(t)+ d2x2(t)+ b0v− α̇1
−ÿr + Ck2r2)+ |z2|D+ |z2δ(t, x)| (24)

The control law and update laws are designed as follows:
control law

v = ᾱ (25)

and

ᾱ = −z1 − C2z2 − d̂1x1 − d̂2x2 + ÿr − sign(z2)D̂

−Ck2r2 + α̇1 − δ(x, t)ψsgn(
z2δ(x, t)

ε
) (26)
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where C2 and ε are positive constants. ψsgn(·) is a smooth
function and constructed as

ψsgn(ξ ) =


ξ

|ξ |
, |ξ | ≥ δ0

ξ(
δ20 − ξ

2
)2
+ |ξ |

, |ξ | < δ0
(27)

where δ0 is a positive design parameter.
update law

˙̂d1 = z2ηd1x1 − ηd1ld1(d̂1 − d10)
˙̂d2 = z2ηd2x2 − ηd2ld2(d̂2 − d20)
˙̂D = ηD|z2| − ηDlD(D̂− D0) (28)

where ηd1 , ηd2 , ηD, ld1, ld2, lD, d10, d20,D0 are positive
design parameters.
Remark 3: To guarantee the system stability, design param-

eters ld1, ld2, lD, d10, d20,D0 are introduced in the proposed
adaptive control scheme. Especially, terms ηd1ld1(d̂1 − d10),
ηd2ld2(d̂2 − d20), ηDlD(D̂ − D0) in update laws of unknown
parameters can guarantee the exponential convergence of the
Laypunov function which will be shown in the next section.

IV. STABILITY ANALYSIS
We now establish the boundedness of all signals in the closed
loop system. The following theorem about adaptive control
of pneumatic muscle joint system with saturation input can
be achieved.
Theorem 1: Considering pneumatic muscle joint system

shown in (6), with saturation input (12), an adaptive controller
with control law (25)-(26) and the update laws (28), and
under Assumption 1, all signals of the closed-loop system are
bounded.

Proof: Firstly, the Lemma 1 is introduced as follows:
Lemma 1 [29]: For any ε > 0, ψsgn(ξ ) satisfies

|ξ | − ξψsgn(
ξ

ε
) ≤ εδ0, ∀ε > 0 (29)

Clearly, when |ξ |
ε
≥ δ0, we can easily get |ξ | − ξψsgn(

ξ
ε
) = 0.

Then the above inequality is achieved. When |ξ |
ε

< δ0,
we have

|ξ | − ξψsgn(
ξ

ε
) =

|ξ |(δ20 − ξ
2)2

(δ20 − ξ
2)2 + |ξ |

≤
|ξ |(δ20 − ξ

2)2

(δ20 − ξ
2)2

≤ εδ0 (30)

We chose the Lyapunov function V2 as

V2 = V1 +
1
2
z22 +

1
2ηd1

d̃21 +
1

2ηd2
d̃22 +

1
2ηD

D̃2 (31)

The derivative of the Lyapunov function V2 satisfies

V̇2 = z1z2 − C1z21 + z2ż2

−
1
ηd1

d̃1
˙̂d1 −

1
ηd2

d̃2
˙̂d2 −

1
ηD

D̃ ˙̂D

≤ z1z2 − C1z21 + z2(d1x1(t)+ d2x2(t)+ b0v

−α̇1 − ÿr + Ck2r2)+ |z2|D+ |z2δ(t, x)|

−
1
ηd1

d̃1
˙̂d1 −

1
ηd2

d̃2
˙̂d2 −

1
ηD

D̃ ˙̂D (32)

From (25), the V̇2 is

V̇2 ≤ −C1z21 − C2z22 + z2d̃1x1 + z2d̃2x2 − |z2|D̃

−
1
ηd1

d̃1
˙̂d1 −

1
ηd2

d̃2
˙̂d2 −

1
ηD

D̃ ˙̂D+ |z2δ(x, t)|

−z2δ(x, t)ψsgn(
z2δ(x, t)

ε
)

= −C1z21 − C2z22 +
d̃1
ηd1

(z2ηd1x1 −
˙̂d1)

+
d̃2
ηd2

(z2ηd2x2 −
˙̂d2)+

D̃
ηD

(ηD|z2| −
˙̂D)

+|z2δ(x, t)| − z2δ(x, t)ψsgn(
z2δ(x, t)

ε
) (33)

Then with Lemma 1, we have

|z2δ(x, t)| − z2δ(x, t)ψsgn(
z2δ(x, t)

ε
) ≤ εδ0 (34)

So the derivative of V2 is

V̇2 ≤ −C1z21 − C2z22 +
d̃1
ηd1

(z2ηd1x1 −
˙̂d1)

+
d̃2
ηd2

(z2ηd2x2 −
˙̂d2)+

D̃
ηD

(ηD|z2| −
˙̂D)

+εδ0 (35)

With update laws (28), we can get

V̇ ≤ −
2∑
i=1

ciz2i + d̃1ld1(d̂1 − d10)+ d̃2ld2(d̂2 − d20)

+D̃lD(D̂− D0)+ εδ0 (36)

With the following inequalities

ld1d̃1(d̂1 − d10) ≤ −
1
2
ld1d̃21 +

1
2
ld1(d1 − d10)2

ld2d̃2(d̂2 − d20) ≤ −
1
2
ld2d̃22 +

1
2
ld2(d2 − d20)2 (37)

and

lDD̃(D̂− D0) ≤ −
1
2
lDD̃2

+
1
2
lD(D− D0)2 (38)

We have

V̇2 ≤ −C1z21 − C2z22 −
1
2
ld1d̃21 −

1
2
ld2d̃22 −

1
2
lDD̃2

−
1
2
lρ ρ̃2 +

1
2
ld1(d1 − d10)2 +

1
2
ld2(d2 − d20)2

+
1
2
lD(D− D0)2 + εδ0 (39)

Namely

V̇2≤−C1z21 − C2z22−
1
2
ld1d̃21 −

1
2
ld2d̃22−

1
2
lDD̃2
+4 (40)
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where

4 =
1
2
ld1(d1 − d10)2 +

1
2
ld2(d2 − d20)2

+
1
2
lD(D− D0)2 + εδ0 (41)

So we can confirm z1, z2, d̃1, d̃2, D̃ are all bounded. Then
all signals of the closed-loop system are bounded under the
proposed control law (25)-(26) and update laws (28).

Let

V = z21 + z
2
2 + d̃

2
1 + d̃

2
2 + D̃

2 (42)

and

h+ = max{
1
2
,

1
2ηd1

,
1

2ηd2
,

1
2ηD
}

h− = min{C1,C2,
1

2ld1
,

1
2ld2

,
1
2lD
}

From (40), we can get

V̇2 ≤ −h−V +4 (43)

Then from (31), we have

V2 ≤ h+V (44)

So we can get

V̇2 ≤ −h−(
1
h+

)V2 +4 = −(
h−

h+
)V2 +4

With (43), we have

V2 ≤ V2(0)e−h
∗t
+
4

h∗
(1− e−h

∗t ) (45)

Namely

V2 ≤ V2(0)+
4

h∗
(46)

where h∗ = h−
h+ .

Remark 4: From (46), we can find that the size of the bound
V2 depends on the initial value V2(0) and 4

h∗ . Considering that

||y− yr − λ1||2 = ||z1||2 ≤ 2(V2(0)+
4

h∗
) (47)

The bound of ||z1||2 which is related to tracking error can be
adjusted by the following roads.
• The value of 4

h∗ depends on the design parame-
ters C1,C2, ld1, ld2, lD, δ0, ε, ηd1 , ηd2 , ηD, d10, d20,D0.
By choosing the values of these design parameters 4

h∗ ,
the bound of ||z1||2 can be reduced.

• V2(0) represents the initial value of V2 which includes
z1(0), z2(0), d̃1(0), d̃2(0), D̃(0). The bound of ||z1||2 can
be also reduced by setting up the initial values of
z1(0), z2(0), d̃1(0), d̃2(0), D̃(0).

• Note that signal λ1 exists in z1, so the bound of tracking
error |y− yr | depends on the bound of λ1. If1u→ 0 as
t → ∞, we have λ1 → 0. Then the bound of tracking
error depends only on the design parameters and initial
values.

FIGURE 1. Tracking (Case 1).

V. SIMULATION STUDIES
We now apply the proposed control scheme to the following
2nd-order system described as

ẋ1 = x2
ẋ2 = d1x1 + d2x2 + b0u(v)+ η(x, t)

y = x1 (48)

where x1, x2 are system states, y is the output signal. u is
the output of the saturation actuator while v is the input
signal. d1, d2 are unknown parameter. η(x, t) is an unknown
nonlinear function. The following two cases are considered.
Case 1: In this case, we take d1 = 0.1, d2 = 0.65,

b0 = 2, uM = 0.75. The reference signal is yr = sint and
unknown function η(t) is taken as

η(x, t) = 0.2sin(x1 + x2)cost (49)

In simulation, the design parameters can be chosen as:
c1 = c2 = 1, ck1 = ck2 = 1, ηd1 = 1, ηd2 = 1, ηD = 0.01,
ηρ = 1, ld1 = 0.1, ld2 = 0.1, lD = 0.01, lρ = 0.1, δ0 =
0.1, ε = 0.1, d10 = 0.2, d20 = 0.5,D0 = 0.01, ρ0 = 0.3.
The initial values are taken as: x1(0) = 2.5, x2(0) = 0,
θ̂ (0) = 1 and D̂(0) = 0.
Fig.1 represents tracking error and the state x2 is shown

in Fig.2. Fig.3 shows the signal v which is designed by the
proposed control law (25). After the change of saturation,
the signal u(t) is given in Fig.4. Fig.5 shows the auxiliary
signals r1 and r2. Clearly, we can get that all signals of the
systems are bounded under the controlling of the proposed
control scheme.

To verify the effectiveness of the proposed control scheme
to different reference signals, the following simulation is
made. In this simulation, the reference signal is taken as
yr = 0.5e−t . Design parameters is ck1 = ck2 = 5 and the
other parameters, the initial values are the same as the above
simulation. Fig.6 and Fig.7 represent tracking error and input
signals, respectively. Clearly, we can get that the stability of
the closed-loop systems can be guaranteed by the proposed
control scheme with yr = 0.5e−t .

117702 VOLUME 8, 2020
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FIGURE 2. State x2 (Case 1).

FIGURE 3. Signal v (Case 1).

FIGURE 4. Input u (Case 1).

Case 2: In this case, the mathematical model is chosen the
same as model of simulation 1 shown in (48). The parameters
are taken as d1 = 0.88, d2 = 0.3, b0 = 3 and η(x, t) =
0.1sin(x2). Others parameters, reference signal and initial
values are taken the same as simulation 1. Fig.8 represents

FIGURE 5. r1 and r2 (Case 1).

FIGURE 6. Tracking (Case 1, yr = 0.5e−t ).

FIGURE 7. u and v (Case 1, yr = 0.5e−t ).

tracking error and the signal u and v are shown in Fig.9.
Clearly, the stability can be guaranteed in this simulation.

Furthermore, to reference signal yr = 0.5e−t , the sim-
ulation results including tracking errors and input u and v
are shown in Fig.10 and Fig.11, respectively. All design
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FIGURE 8. Tracking (Case 2).

FIGURE 9. u and v (Case 2).

FIGURE 10. Tracking (Case 2, yr = 0.5e−t ).

parameters and initial values are the same as case 2 except
for ck1 = ck2 = 5. The stability is also guaranteed by the
proposed control law.

Based on the simulation results including simulation 1 and
simulation 2 shown in Fig1.-Fig.7 and Fig.8-Fig.11, respec-
tively, we can obtain that the adaptive control scheme does
not depend on the unknown system parameters d1 and d2.

FIGURE 11. u and v (Case 2, yr = 0.5e−t ).

Furthermore, the adaptive controller is robust to different
parameter d1, d2, b0, and external disturbance η(t, x).
From Fig.4, Fig.7, Fig.9 and Fig.11, we can see that the

denser phenomenon of the controller signal exists in our
simulations. Such phenomenon may be caused by the discon-
tinuous control signal u due to the estimation term sign(z2)D̂.

VI. CONCLUSION
In this paper, The control problem is investigated for pneu-
matic muscle joint system with unknown input saturation,
external disturbance, and modeling errors. The uncertainties
caused by unknown input saturation, external disturbance,
modeling errors and unknown parameters have been compen-
sated by the proposed adaptive control law and update laws of
parameters. Finally, simulation studies are used to verify the
effectiveness of the proposed control scheme. In our future
work, we will consider to extend this result to a class of
nonlinear systems and establish the estimation of unknown
gain parameter b0. Then we will also consider how to use
more system information to obtain the better system perfor-
mance. Because the actuator failures and sensor failures are
inevitable during the operation of the pneumatic muscle joint
systems, the design of control scheme under unknown faults
is also another important future work.
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