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ABSTRACT Recently, Siamese trackers have shown excellent performance in both accuracy and speed.
However, traditional trackers have poor robustness against similar objects due to the use of single deep
features and the limitation of cosine windows. In this paper, a novel Siamese network combining information
fusion with rectangular window filtering named SiamFF is introduced. First, a multilevel fusion network is
proposed. At feature-level, the shallow and deep features of the network are fused through a layer-hopping
connection to obtain complementary feature maps. Then, the score maps generated by the complementary
feature maps are further fused at the score-level to improve the robustness. In addition, based on the
continuity and stationarity of objects movement in reality, a score map filtering strategy is proposed. The
relative displacement of the target can be predicted by obtaining the interframe information, and the moving
direction is applied to filter the score map to further eliminate the analog interference. Experimental results
on OTB2015 and VOT2016 benchmarks indicate that SiamFF performs favorably against many state-of-the-
art trackers in terms of accuracy while maintaining real-time tracking speed.

INDEX TERMS Deep learning, visual tracking, Siamese network, multilevel fusion, rectangular window
filtering.

I. INTRODUCTION
Target tracking is one of the topical issues in the field of com-
puter vision. After the first frame of the video is initialized,
the target is surrounded by a bounding-box generated by the
tracker in subsequent frames [1]. Overcoming deformation,
occlusion andmovement of the target during the tracking pro-
cess makes visual tracking challenging [2]–[4]. Correlation
filters have demonstrated excellent tracking performance,
they utilize the characteristics of Fourier transform and cyclic
matrices to train the networks, and update the parameters
while tracking [5]. Recently, the role of convolutional neural
networks (CNN) in image classification has been verified [6].
CNN can be applied to extract deep features to improve
tracking accuracy, but online updating greatly reduces the
speed of trackers as networks become deeper. Under the
CNN framework, Siamese trackers have demonstrated their
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excellent performance in terms of accuracy and speed for
training the network end-to-end without online updating [7].
However, traditional Siamese trackers extract semantic fea-
tures from only the last layer of the network for similarity
matching and ignore the shallow features. Simultaneously,
the trackers use cosine windows to suppress the interference
points in scoremaps and have poor robustness against analogs
with large influence.

To solve the above problems, a novel Siamese network
named SiamFF is proposed in this paper, and the contribution
can be divided into two parts:

1). The shallow features of CNN have better robustness to
similar interference, and can be fused with deep features to
improve tracking performance. We introduced a multilevel
fusion network, first, the feature-level fusion is performed
where the shallow and deep features are fused to obtain
complementary feature maps. Then, the score-level fusion is
carried out where the complementary feature maps of two
branches are correlated to generate a pair of similarity score
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maps that are further fused to obtain the final score map.
According to experience, fusing layer-by-layer not only gen-
erates redundant information but also creates computational
complexity [8]; thus, we applied a layer-hopping connection
to avoid this issue.

2). Based on continuity and stationarity of object move-
ment between two adjacent frames, there is a mapping rela-
tionship between the target’s actual motion and the peak point
of the score map; therefore, we proposed a score map filtering
strategy. By obtaining the motion information between two
frames, the displacement direction of the target is predicted,
and the score map is filtered along this direction to further
eliminate the influence of analogs.

Extensive experimental results show that SiamFF achieves
state-of-the-art performance in recent benchmarks. The
remaining content of the paper is arranged as follows:

II) Related Work.
III) Our Approach.
IV) Experiments on Benchmarks.
V) Conclusion.

II. RELATED WORK
A. VISUAL TRACKING
Visual tracking can be divided into generative and discrimi-
native models according to the participation of the detection
process. The generative model estimates the optimal position
of the target by a certain tracking strategy after modeling,
and the representative methods include sparse representation
and the probability model. The discriminative models regard
tracking as a binary classification problem for seeking the
decision boundary between the target and the background
by incremental learning. Currently, the discriminative model
represented by correlation filters and Siamese networks has
become the mainstream in visual tracking.

Kernelized correlation filters (KCF) [5] lead the research
on correlation filters. Minimum output sum of squared error
filter (MOSSE) [9] uses an adaptive training strategy, and
pushes tracking speed to a high level. RDCF [10] introduces
a penalty factor for filter coefficients to resolve the boundary
effect caused by an inaccurate representation of image con-
tents. Multitask correlation particle filter (MCPF) [11] solves
the problem of large-scale changes in the target by jointly
learning different features.

B. SIAMESE NETWORK BASED TRACKING
The two branches of Siamese networks share weight param-
eters; their similarity is output after sending two inputs.
Siamese networks convert target tracking into a similarity
learning problem, which matches the essence of visual track-
ing well; that is, it finds the similarity between the template
and search images. GOTURN [12] uses the Siamese network
to extract features and trains a CNN to predict the position
of b-boxes relative to the target represented by the previous
frame. SiamFC [13], shown in Figure 1, introduces AlexNet
into the Siamese network to compare the similarity between

FIGURE 1. The structure of SiamFC.

two frames and predicts the target’s position by similarity
scores. SiamRPN [14] introduces a region generation net-
work to adapt to the scale change in the target. CA-Siam [15]
follows a classification network behind SiamFC to improve
tracking performance.

III. OUR APPROACH
A. MULTILEVEL FUSION NETWORK
Compared with traditional trackers, we studied the character-
istics of other shallower features while using deep features.
As shown in Figure 2, we visualized the feature maps of
input samples in each CNN layer. It can be observed that
as the number of layers increases and the network deepens,
the feature maps not only show a size change, but the reso-
lution gradually decreases. The fifth layer cannot recognize
the target appearance, and the shallow features can be easily
achieved. This confirms that deep features contain semantic
information with low resolution, and they are more robust the
target deformation and suitable for classification. However,
shallow features with high resolution can capture fine spatial
details better, and obtain more background information, and
they are suitable for positioning by virtue of the robustness
to interference from similar objects. These two types can be
fused to complement each other and improve performance.
We introduce a modified AlexNet which removes padding
layers and modifies the number of network channels. Then,
we carry out a multilevel fusion strategy to fuse the shallow
and deep features, thereby making full use of the target’s
spatial and semantic information.

FIGURE 2. The feature maps of CNN shift from delicate appearance
features to abstract semantic features, while the scale gradually
decreases.
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FIGURE 3. The template and search images enter the two branches of the network. The feature maps show the
feature-level fusion results, and the score maps show the score-level fusion results. The specific structure of the
adjustment modules is shown in the upper-right corner.

A multilevel fusion network is shown in Figure 3. First,
feature-level fusion is executed. Considering the layer-by-
layer change in the map information indicated in Figure 2 and
to avoid information redundancy and computing complexity,
we apply a layer-hopping connection in which conv2 is paired
with conv4, and conv3 is paired with conv5 to achieve a
better complementary effect. The feature maps need to be
uniform before fusing due to the pooling layers of the net-
work. Adjustment modules are introduced in this paper to
change the maps’ sizes and channels; we used adj_1 which
consists of max-pooling and a 1 × 1 convolution to fuse
conv2 and conv4 to obtain feature map24. The conv2 feature
map downsamples by max-pooling to reduce the image size,
then changes the number of channels by a 1× 1 convolution.
The adjustment modules can not only unify images but also
retain original spatial information. Similarly, the adjustment
module adj_2 is carried out to fuse conv3 and conv5 to
generate feature map35. The above operations are applied
in both template and search branches of the network, and
the corresponding feature maps are correlated to obtain score
map24 and scoremap35. Then, the second level fusion, which
is score-level, is performed to obtain the final score map for
target prediction. TABLE 1 shows the algorithmic summary
of the framework.

The search size and template images are set to 255 × 255
and 127 × 127 respectively, then the score map24 and score
map35 are output as 17×17×384 and 17×17×256. It can be
noticed that the channels of the two score maps are different;
we changed the channels of score map24 through conv_2 and
obtained the final score map with size 17 × 17× 256.

The multilevel fusion network filters out most analogs with a
small impact or long distance, and the peak points are more
convergent in score maps without scattered or subtle interfer-
ence, which improves the accuracy of the tracker. TABLE 2
shows the detailed network structure and parameters.

B. SCORE MAP FILTERING STRATEGY
Information fusion can improve tracking robustness favor-
ably in the case of simple backgrounds, few similarities or low
interference. However, we visualized the score maps shown
in Figure 4 in training, and indicated that the improvement
achieved by simply performing information fusion is limited.
It is hard to completely filter out interference for objects that
are highly similar to the target. Traditional Siamese trackers
utilize a cosine window to filter out similarities far away from
the center, but cannot deal with close-distance interference.
Simultaneously, the trackers apply the entire area of the score
map and directly select the maximum point as the target posi-
tion. This leads to poor robustness against similarity interfer-
ence in complex environments, which easily causes tracking
drift. Therefore, we propose a score map filtering strategy to
help trackers search and locate the target accurately in the
final prediction phase.

The motion of objects tends to be continuous and station-
ary in reality; that is the relative displacement of the target
between two adjacent frames in image sequences is small, and
there is no situation in which the instantaneous movement is
large. Siamese trackers crop the target position of the previous
frame as the center to generate the search image for the
current frame. Fully convolutional networks eliminate the
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TABLE 1. Algorithmic summary of the framework.

TABLE 2. Network structure and parameters.

need for image pairs to have the same size, and the score
map is obtained by a sliding window convolution on a dense
grid. Therefore, the video images and the score maps of the
network have a mapping relationship. As shown in Figure 5,
the relative displacement of the target between two adjacent
frames is not only shown on video images but also mapped
to the peak points of the score maps. Trackers can select the
peak point to obtain the current position of the target through
such a mapping relationship.

Based on the above theory, we obtain the motion infor-
mation of the target between two frames, and predict
its relative displacement in the next frame. Then, the

displacement direction is utilized to filter the score map, and
the target positioning is guided. In experiments, a number axis
coordinate system xOy with the same size was introduced to
cover the final scoremap to digitize the position of each point.
For score map t-1 of frame t − 1, the relative displacements
dx, dy of the target from the center was measured, and the
moving direction Dt−1 between two frames was obtained

Dt−1 = dy/dx, (1)

The image of frame t is sent to the network to generate score
map t, and we introduce a rectangular function rect(n) to
detect the peak point Vi (1 < i < m,m represents the number
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FIGURE 4. The green b-boxes indicate the target, and the yellow indicate similarities. (a) and (b) represent a
pair of score maps participating in fusion, (c) represents the fusion result. Group_1 and group_2 show that the
multilevel fusion network can obtain obvious improvement when there are few analogs with a small effect,
group_3 and group_4 show that the network cannot effectively eliminate interference in complex environments.

FIGURE 5. The left shows the displacement of the target in video images, and the right indicates the peak points in
the corresponding score maps. The motion information of the target in two spaces has a mapping relationship.

FIGURE 6. Score map t is filtered using the motion information of frame t − 1. The green dotted line
indicates the filtering direction, rect(n) is defined in a larger coordinate system in the same space as
the score map. The left figure shows the corresponding detection range of the tracker in the video.

of peak points) of score map t. As shown in Figure 6, rect(n)
obtains the filtered coordinate range according to Dt−1, and
the peak point Vi not in the range is filtered out. Through the
strategy, the search area is limited to a smaller range instead
of the entire score map.

rect(n) =

{
8, n ≤ 25
0, otherwise,

(2)

vi(xi, yi) =

{
vi, (xi, yi) ∈ rect(n)
0, otherwise,

(3)

As mentioned earlier, the improvement from information
fusion and the cosine window is limited. A score map fil-
tering strategy was utilized to eliminate the influence of
high-score analogs, and further improve the tracker’s accu-
racy. We applied sampling statistics, and the results indicated
the average size of the target points was 4. To adapt the size
of both target points and score maps, the width and length
of rect(n) were set to 8 and 25 respectively; a length greater
than 24 is acceptable. rect(n) rotates with the fixed size
along Dt−1, and covers the filtering area in the score map
during tracking.
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Finally, the situation of the contradiction between the mul-
tilevel network and score map filtering strategy was consid-
ered. Due to the continuity and stationarity of object motion,
the displacement of the target between frames was approx-
imately a continuous curve, which stabilized the score map
filtering. Based on the above, the tracker selected the maxi-
mum point in the range of rect(n), and experimental results
demonstrated the effectiveness.

C. TRAINING DETAILS
We used ILSVRC and GOT-10k to train the network. After
template-search image pairs were used to extract featuremaps
through the CNN, a correlation operation was carried out to
generate the score map. The formula can be expressed as

S(z, x) = f (φ(z), φ(x)), (4)

φ(·) is the feature representation of an image, f (·) repre-
sents the correlation operation, S(z, x) represents the similar-
ity of image pairs, and the goal of the network is to obtain the
maximum value of eq.4. The network was trained using logic
loss

L(y, v) =
1
|D|

∑
u∈D

log(1+ exp(−yv)), (5)

u represents a pixel point in the score map, v[u] represents
the similarity score of the point, and y[u] is its ground-
truth label. We adopted stochastic gradient descent (SGD) to
optimize the loss function to obtain the weight parameters
θ . y[u] is defined according to the distance from the target
center in the score map (k represents the stride of the network,
c represents the target center)

y[u] =

{
+1, k ‖u− c‖ ≤ R
−1, otherwise,

(6)

Image pairs are cropped centered on the target during train-
ing. Template and search images were cropped to 127× 127
and 255× 255 respectively. The range beyond cropping was
filled with the mean RGB value of the images.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
The hardware for the experiments in this paper was an
Intel Xeon E5 CPU and NVIDIA 2080ti GPU, the sys-
tem environment was Ubuntu 16.04LTS, and the experiment
tool was MATLAB 2018b. Experiments were performed on
OTB2015 and VOT2016. Hyper-parameters of the network
were set as follows: learning rate = 0.01, batch size = 16,
and epoch number = 80.

B. EXPERIMENTS ON OTB2015
OTB2015 uses precision and succession as evaluation indica-
tors and adopts OPE for robust evaluation.

1) PRECISION
Locate the center point of the b-box and calculate the distance
between it and the ground-truth, then count the percentage of
video frames whose distance is less than a given threshold.
A curve can be obtained with different thresholds, and better
trackers achieve higher curve values.

2) SUCCESSION
The overlap score (OS) is defined as

OS =
|a ∩ b|
|a ∪ b|

, (7)

‘‘a’’ represents the b-box generated by the tracker,
‘‘b’’ represents the ground-truth, and | · | represents the
number of pixels in an area. The frame whose OS is
greater than a set threshold is considered successful, and
the percentage of total successful frames in video is
succession.

3) ONE PASS EVALUATION (OPE)
OPE indicates that only the first frame of the video is be ini-
tialized with the ground-truth, and then running the algorithm
to obtain the results.

OTB2015 is an extension of OTB2013 [2]; it includes
one hundred videos for testing that cover eleven different
scenes, and each video contains a ground-truth. We executed
experiments with SiamFF and other state-of-the-art trackers,
including KCF [5], DSST [16], SAMF [17], SiamFC [13],
and SiamRPN [14]. Among them, KCF [5], DSST [16]
and SAMF [17] are trackers based on correlation filters,
SiamFC [13] and SiamRPN [14] are based on a Siamese
network. Figure 7 shows the experimental results of SiamFF
and others. The left figure is precision plot and the right is
succession plot. It can be observed that SiamFF outperforms
others on both indicators. TABLE 3 indicates the perfor-
mance differences in detail.

It is clear that SiamFF not only greatly improved over the
correlation filtering trackers but also had better performance
compared with the same type trackers. The promotion of two
indexes were 5.60% and 3.64% over SiamRPN (2nd) [14],
9.52% and 7.91% over SiamFC (3rd) [13]. Due to the mul-
tilevel fusion network and the score map filtering strategy,
SiamFF had a slower speed but also achieved 53FPS, which
ensures real-time tracking. To further test the robustness of
the trackers, we implemented experiments in eleven differ-
ent scenes (including ‘‘fast motion’’, ‘‘background clutter’’,
‘‘motion blur’’, ‘‘deformation’’, ‘‘illumination variation’’,
‘‘in-plane-rotation’’, ‘‘out-of-plane rotation’’, ‘‘low resolu-
tion’’, ‘‘occlusion’’, ‘‘out-of-view’’, ‘‘scale variation’’). The
precision plots are shown in Figure 8.

The score map filtering strategy applied by SiamFF can
effectively improve the accuracy of target positioning, and
greatly reduce the center error with the ground-truth after
mapping to video. We can observe from the plots that
SiamFF ranks first in nine scenes. It improves most in
‘‘fast motion’’ and ‘‘motion blur’’ with increases of 13.14%
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FIGURE 7. The precision and succession plots on OTB2015 with one pass evaluation(OPE).

TABLE 3. Precision and succession scores of trackers, ‘‘Improve’’ indicates our tracker’s improvement over the others, and ‘‘Speed’’ indicates the tracking
speed.

TABLE 4. Trackers’ scores of five indicators in VOT2016, the best of each indicator is marked in red.

and 11.22% over the second-place, respectively. In addi-
tion, SiamFF ranks second in ‘‘occlusion’’ and ‘‘out-of-
view’’ with a difference of 0.009 from SAMF [17] and
0.013 from SiamFC [13]. In trackers’ succession plots shown
in Figure 9; SiamFF ranks first in nine scenes except for
‘‘low resolution’’ or ‘‘out-of-view’’. The ascensions are
greatest in ‘‘fast motion’’ and ‘‘motion blur’’, which are
10.97% and 8.21% higher than the second-place, respec-
tively. Figure 10 shows the tracking record of six trackers
on OTB2015.

C. EXPERIMENTS ON VOT2016
VOT2016 uses expected average overlap (EAO), robust-
ness (failure numbers), overlap, and FPS as evaluation
indicators.

1) OVERLAP
Overlap is defined similarly to OS, and larger overlap values
indicate better tracking performance.

2) ROBUSTNESS
Robustness adopts failure numbers to quantify. The tracking
of frame t is considered failed if the overlap is less than a
given threshold (overlapt < th), and the total failed frames
are counted. Fewer failed frames indicate better tracking
performance.

3) EXPECTED AVERAGE OVERLAP (EAO)
EAO was applied to calculate the overlap and robustness
uniformly and obtain the comprehensive performance of the
tracker.
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FIGURE 8. Precision plots on OTB2015 over eleven tracking scenes of fast motion, background clutter, motion blur, deformation, illumination
variation, in-plane rotation, out-of-plane rotation, low resolution, occlusion, out-of-view, scale variation.

VOT2016 contains sixty test videos with the ground
truth. We compared SiamFF with nine trackers including
SiamFC [13], SiamRPN [14], SiamAN [4], ACT [4], Col-
orKCF [18], DSST [16], KCF [5], SAMF [17], TCNN [19].
The results are shown in TABLE 4 with indicators of over-
lap, robustness (failures), EAO, and FPS. It can be observed
that SiamFF performed best on overlap, robustness and
EAO. Overlap was 1.05% higher than SiamRPN (2nd) [14],

robustness was 11.97% higher than TCNN (2nd) [19],
and EAO was 14.22% higher than SiamRPN (2nd) [14].
Figure 11 exhibits the robustness-accuracy ranking of
trackers, the abscissa represents robustness and the ordi-
nate represents accuracy. The better tracker is posi-
tioned closer to the top-right corner of the figure, and
it can be seen that SiamFF has higher accuracy and
robustness.
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FIGURE 9. Succession plots on OTB2015 over eleven tracking scenes of fast motion, background clutter, motion blur, deformation,
illumination variation, in-plane rotation, out-of-plane rotation, low resolution, occlusion, out-of-view, scale variation.

D. ABLATION STUDY
1) DIFFERENT MODULES
To discuss the impact of each proposed module on track-
ing performance, we listed the experiment results of differ-
ent modules on benchmarks in TABLE 5. ‘‘+’’ indicates
the addition of related modules on the basis of SiamFC.

For the module of ‘‘feature-level fusion’’, we only uti-
lized score map35, and for the ‘‘score-level fusion’’ model,
we utilized conv2 and conv5 to build two score maps for
fusion. From the table, we can observe that the fusion
effect at the feature-level was better than that at the score-
level because the difference of features in different layers
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FIGURE 10. The tracking record of SiamFF, KCF, DSST, SAMF, SiamFC and SiamRPN on OTB2015. Five
challenging sequences from top to down are bolt, car, coke, deer and basketball.

TABLE 5. Experimental results of different modules on benchmarks.

disappears in score maps that position the target by the
score value. Furthermore, the table also confirms that the
score map filtering strategy improves the tracking perfor-
mance better than the multilevel fusion network. The object
motion attribute enables locating the target in a smaller search
range, which is more robust to the interference of analogs
than the information fusion. However, the information fusion
strategy adds more computations and results in a significant
loss in tracker speed. The benchmarks of OTB2015 and
VOT2016 show the same trend in indicators for each
modules.

2) HISTORICAL FRAMES
The last frame is utilized to predict the target’s motion
information. To discuss the influence of historical frames
on the filtering result, we listed the experimental results of
the tracker on benchmarks when using different numbers
of frames and shown in TABLE 6. We observe that the
tracking performance declines as more historical frames were
utilized. In addition, more frames reduced the tracking speed.
In the strategy, historical frames record the motion informa-
tion of the target in the past. Since the target keeps moving,
the increase in historical frames cannot accurately predict the
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FIGURE 11. The robustness-accuracy ranking of ten trackers; the better
tracker is positioned closer to the top-right corner of the figure.

TABLE 6. Experimental results of different historical frames on
benchmarks.

current motion information of the target, and the accumula-
tion of errors will lead to a decline in tracking performance.

V. CONCLUSION
Considering the problem of poor robustness to similar objects
caused by traditional trackers’ neglect of shallow features
and the limitation of cosine windows, first, a multilevel
fusion network was proposed. A layer-hopping connection
was utilized to fuse the shallow and deep features at feature-
level, and then the similarity information was further fused at
the score-level to filter out most analogs. Second, the score
map filtering strategy was carried out in the predict stage,
which uses the interframe motion information of the tar-
get to limit the detection area of the tracker, further fil-
ters out similar objects with strong influence and improves
tracking performance. In the experiments on OTB2015 and
VOT2016 compared with other state-of-the-art trackers, our
algorithm ranked at the forefront in accuracy and robustness
and showed excellent performance.
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