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ABSTRACT The technique of binary code similarity detection (BCSD) has been applied inmany fields, such
as malware detection, plagiarism detection and vulnerability search, etc. Existing solutions for the BCSD
problem usually compare specific features between binaries based on the control flow graphs of functions
from binaries or compute the embedding vector of binary functions and solve the problem based on deep
learning algorithms. In this paper, from another research perspective, we propose a new and lightweight
method to solve cross-version BCSD problem based on multiple features. It transforms binary functions
into vectors and signals and computes the similarity coefficient value and correlation coefficient value for
solving cross-version BCSD problem. Without relying on the CFG of functions, deep learning algorithms
and other related attributes, our method works directly on the raw bytes of each binary and it can be used
as an alternative method to coping with various complex situations that exist in the real-world environment.
We implement the method and evaluate it on a custom dataset with about 423,282 samples. The result shows
that the method could perform well in cross-version BCSD field, and the recall of our method could reach
96.63%, which is almost the same as the state-of-the-art static solution.

INDEX TERMS Binary code similarity detection, cross-version binary, malware detection, similarity
coefficient, correlation coefficient.

I. INTRODUCTION
Evaluating whether two binary functions are similar or
not is known as binary code similarity detection (BCSD),
which has been applied in many fields, such as malware
detection [1], [2], malware family analysis [3] and plagiarism
detection [4], [5]. The technology of BCSD could also
be used to analyze vulnerabilities [6], [7] and search
bugs [8]–[10], when applying it on known vulnerabilities
and target applications. However, the problem of BCSD
faces many challenges, such as cross-compiler BCSD prob-
lem, cross-architecture BCSD problem and cross-version
BCSD problem. First, the source code compiled with
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different algorithms yields cross-compiler binaries. Then,
the source code compiled on different platforms generates
cross-architecture binaries. Last, the source code may be
patched and evolve over time, generating cross-version
binaries. The cross-compiler and cross-architecture binaries
are semantic-equivalent, but they have different syntactic
structures, whereas the cross-version binaries are similar to
each other by nature, because they are compiled in the same
environment, and they have a same root. But the cross-version
binaries still have different syntactic structures and slightly
different semantic features.

Most existing solutions for BCSD problems rely on
the control flow graphs (CFGs) of functions in binary
and graph-isomorphism algorithms. The widely used tool
Bindiff [11] compares functions’ CFGs and their attributes
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to solve the BCSD problem. BinHunt [12] and iBinHunt [13]
utilize taint analysis and symbolic execution to handle
these challenges. CABS [14], BinGo [15] and Esh [16]
divide the CFG into different parts, and improve their
robustness to CFG changes by computing the overall CFG
and CFG fragments similarities. To minimize the cost of the
computation, DiscovRE [8], Genius [9], Gemini [10] and
VulSeeker [17] extract some numeric features from CFGs
or basic blocks. DiscovRE [8] employs these features as a
pre-filter on CFGs and uses the KNN algorithm to identify
a small set of candidate functions. Genius [9] uses the basic
block features to obtain the Attributed CFGs (ACFGs) and
provides more robustness to code variation. Gemini [10] uses
a neural network to compute the embedding of ACFGs and
get better performance. VulSeeker [17] uses the CFG and
DFG (data flow graph) to construct the labeled semantic
flow graph (LSFG) and captures more function semantics and
acquires a higher accuracy and efficiency.

A. NEED FOR THIS STUDY
These solutions rely on the CFG of functions, which was
derived from expertise to construct semantic features of
binaries. These methods have achieved good research results
in multiple code similarity detection fields and have many
important applications. However, sometimes the CFG of
binaries could change dramatically while there may be only a
little change in binary codes. And in some special cases, when
we cannot extract effective CFGs and their related features,
or the CFG features of the binaries are intentionally modified,
how can we solve cross-version BCSD problems? So the first
problem addressed in this paper is:

P1: How to solve cross-version BCSD problems without
relying on the CFGs and their related attributes?

Asm2Vec [18], INNEREYE [19] and SAFE [20] explore
many new methods to compute the embedding vector of
binary functions. Asm2Vec [18] employs representation
learning to construct a feature vector for assembly code
and provides more robustness to code obfuscation and
compiler optimizations. INNEREYE [19] utilizes word
embedding and LSTM to automatically capture the semantics
and dependencies of instructions and solves the BCSD
problem among basic blocks. SAFE [20] proposes a new
architecture for computing binary function embeddings
from disassembled binaries and get better performance.
Besides, Alpha-Diff [21], which is one of the state-of-the-art
solutions to solve cross-version BCSD problems, represents
the raw bytes of functions as images and uses the Siamese
convolutional neural network to compute the similarity of
functions.

Solutions based on deep learning and natural language
processing algorithms are the current research hotspots in the
BCSD field. They can automatically learn what is important
from the assembly code and raw bytes, and provide better
performance. But the deep learning algorithms still have
some limitations, such as the problem of deep learning
adversarial examples. In the field of malware detection

and plagiarism detection, hackers may intentionally modify
samples to evade the detection of deep learningmodels. Thus,
in some special cases, we still need other methods to solve
cross-version BCSD problems.Moreover, a new and different
method can enable users to better cope with the complex
real-world environment. So the second problem addressed in
this paper is:

P2: How to solve cross-version BCSD problems without
deep learning algorithms?

Binary Code similarity detection technology is currently
mainly used in the fields of vulnerability mining, malware
detection, and plagiarism detection. Among them, in the
field of vulnerability mining, researchers mostly work on
high-performance servers or hosts, and lightweight devices
are generally not used; In the field of malware variant
detection, high-performance servers can achieve better detec-
tion results. However, when the new malware variant is
transmitted to the terminal device (i.e. PC and IoT devices),
if the suspicious code can be first screened by the detection
technology deployed on the terminal device before uploaded
to the cloud, we can save some resources and improve
efficiency. It is of significance to solve BCSD problems with
these lightweight devices.

The main features that the above solutions rely on are CFG
of function, assembly code and raw bytes. However, in some
lightweight devices, the CFG of function and assembly code
may not be easily extracted. Therefore, the solutions based
on raw bytes are more suitable for solving problems in this
field. There are many pure syntactic solutions based on raw
bytes, such as similarity detection based on opcodes. And
they can be performed by Yara search or other tools. But most
of them need to manually analyze some unique attributes
of the application target, such as some signatures or other
characteristics, and the application is not for all cross-version
binaries. So the third problem addressed in this paper is:

P3: How to extract valuable features from the raw bytes of
functions?

B. MAJOR CONTRIBUTIONS OF THE STUDY
Aiming at these problems, we propose a method for
cross-version binary code similarity detection. In short,
it extracts some proper features from binaries and uses them
to detect the similarity of binaries. In the method, each
function in binaries would be transformed into vectors and
signals. It would compute the similarity coefficient value and
the correlation coefficient value of them.

First, we do not use the CFG of functions and related
features but focus on the raw bytes of binaries to extract the
related features. Second, each byte of the binary could be
converted into a vector. And we also represent the raw bytes
as signals. Third, instead of using deep learning methods
and convolutional neural networks, our method detects the
similarity of binaries based on the similarity coefficient
methods and correlation coefficientmethods. These two types
of methods are relatively easy to deploy on lightweight
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devices and do not need to collect numerous samples for
training.

Thus, given a pair of cross-version binaries, we could
represent them as vectors and signals and compute the sim-
ilarity coefficient values and correlation coefficient values.
Finally, we would take these values into account to solve the
cross-version BCSD problem.

We have evaluated the method on a custom dataset
consisting of 423,282 pairs of cross-version functions,
which are collected from GitHub, Debian and other public
repositories. The result shows that the recall of the method
could still reach 96.63%. It proves that from another research
perspective, our method could perform well in the field of
cross-version binary code similarity detection without relying
on CFG, deep learning algorithm and other related attributes.
Together with various solutions such as Bindiff, Gemini,
Alpha-diff, etc., our method can be used as an alternative
solution to cope with various complex situations that exist in
the real-world environment.

Overall, we make the following contributions:

1) Without relying on the CFG of functions, deep learning
algorithms and other related attributes, we propose a
new and light-weight method to extract features from
the raw bytes of functions and solve cross-version
BCSD problems, which could solve some limitations
that may exist in the existing research.

2) Our method extracts the function features from the
raw bytes of binaries. Together with the signal pro-
cessing technique, the method could perform well on
cross-version BCSD problems. The method would be
proof that the signal processing technique is a viable
approach to solving the BCSD problem.

3) We evaluate the method on a custom dataset, which
consists of 12,000 pairs of binaries and 423,282 pairs
of functions. The result shows that the method could
perform well on the dataset, and the recall of the
method could reach 96.63%.

The rest of the paper is organized as follows. In Section II,
we introduce some definitions related to the BCSD problems.
In Section III, we show how to represent the functions
as signal waves and detect the binary code similarity. The
experiment is detailed in Section IV. Section V provides
some discussion related to our method. Section VI describes
the limitation and future work of the study. In Section VII,
we introduce the related works about the solutions for BCSD
problems. Section VIII provides the conclusion of the study.

II. PROBLEM DEFINITION
In this section, we will introduce some definitions related
to the cross-version binary code similarity detection (BCSD)
problem.

A. NOTATIONS AND ASSUMPTIONS
A binary Xi includes a set of functions fi1, fi2, . . . , fin.
We assume each function fi can be identified correctly

by existing technology solutions. And to be practical,
we introduce the following three assumptions:

1) All the binaries we used in the research are compiled in
high-level languages;

2) All the binaries are not generated with any obfuscated
skills (e.g. packer);

3) The debug symbols in binaries are stripped.
A core task of binary code similarity detection is to find the

matching functions in the target binary based on the giving
functions. Two functions fi and fj are considered as matching
if their source codes are identical or have the same name,
same namespace, same class, and they are used in similar
contexts (i.e. same functions from a same source code project
in different versions).

B. CROSS-VERSION BCSD PROBLEM
Cross-version binary code similarity detection is related to
three problems:

1) Function matching problem: for each function f1i in
binary X1, find its matching function f2j in the binary
X2.

2) Similarity score computing problem: for each pair
of matching functions, compute the similarity degree
between them and give a score ranging from 0 to 1.

FIGURE 1. An example of a pair of functions in cross-version binary code.
Fig 1(a) and Fig 1(b) show the signals of a pair of cross-version functions.
Fig 1(c) shows the combination of the cross-version functions
and Fig 1(d) shows a part of the combination.

C. CROSS-VERSION BINARY SAMPLE
Fig.1 shows an example of a pair of matching func-
tions from cross-version binaries, which is included in
the Alpha-Diff [21]. The Fig.1(a) and Fig.1(b) show the
signals of the matching functions. The Fig.1(c) shows the
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FIGURE 2. Overview of the method for cross-version binary code similarity detection.

combination of these two functions. We can see that the
signals of the two functions have some similarity to each
other, and there may be some connections between the two
signals. Especially from Fig.1(d), we can see that although
the values in signals are different, the trend (upward and
downward) of the signals are similar with each other. And
it may be another feature between cross-version functions.

III. APPROACH
A. OVERVIEW
As shown in Fig.2, our solution first extracts each byte value
from the binary functions, and represents the functions as
vectors and signals respectively, then computes the similarity
coefficient value of vectors and the correlation coefficient
value of the signals, and finally detects the matching
functions based on these two values.

Unlike the Alpha-Diff solution which applies CNN to
solve the cross-version BCSD problem, we use the vector’s
similarity methods to directly extract features from function’s
raw bytes and generate the similarity coefficient value to
characterize the intra-function’s semantic feature. Moreover,
we use the correlation coefficient method to extract the
function’s linear correlation and characterize the function’s
linear semantic feature.

B. TRANSFORMATION
A given binary which includes functions can be represented
as a string of zeros and ones. It could be read as a vector
of 8-bit unsigned integers and reshaped into an array. This
array can be viewed as a signal value in the range [0, 255].
Each function in the binary could also be represented as
a vector and transformed into a signal. The length of
vectors and signals depends on the size of binaries. The
transformation process is shown in Fig.3.

FIGURE 3. Represent binary code as vectors and signal waves.

FIGURE 4. Byte plots of the different functions in cross-version binary
code. Fig. 4(a) shows a pair of matching functions. Fig. 4(b) shows
another pair of matching functions.

Fig.4 shows examples of two pairs of different functions
from cross-version binaries, which are included in the
dataset [21]. One notable observation is that the signals of
the matching functions appear visually similar to each other
while the others are distinct. The similarity of the signal also
motivates us to find the matching functions by using the
techniques from signal processing field.

C. MATCHING FUNCTION DETECTION
Algorithm 1 shows our process of solving the BCSDproblem.
As input, the algorithm takes a function fi1 in binary X1,
a binary X2 including all the functions f21, f22, . . . , f2n,
a minimum length γ of the function parts and the number
D of the function partition. If exists, it returns the matching
function f2j in binary X2 and proceeds in three basic steps:
(1) generate the function candidate set X ′2 based on the length
of the function f1i and divide the raw bytes of the function f1i
into D parts, (2) construct the similarity wave array S based
on f1i function parts and binary X ′2, and (3) find the matching
function f2j based on the similarity wave array S. The details
of three steps are as follows.
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1) GENERATING FUNCTION CANDIDATE AND DIVIDING
INPUT FUNCTIONS
The matching functions are compiled from functions with the
same namespace, class and used in a similar context. And
even the functions have the same raw bytes. Inspired by these
characteristics of the matching functions in cross-version
binaries, we can assume that the matching functions possess
several similar attributes, Among which the length of a
function is rather intuitive and important.

So we add a length limit to the functions in X2 based
on the function f1i. The first step of the process is to
generate the function candidate code X ′2. We set a length
limit [l1i, l ′1i ] based on the length l of the function f1i,
e.g. [0.5l, 2l]. For each function in binary X2, if the
length of functions adherence to the length limit, we add
the function into function candidate set. And we use this
function set to generate function candidate code X ′2, as this
allows us to find the matching function more precisely and
quickly.

After generating function candidate code X ′2, we would
evenly divide the function f1i into D parts. The initial value
of D is one, which means at the beginning of the process,
we compute the similarity of binary codes based on overall
raw bytes of function f1i. If the change is relatively noticeable
in the functions, causing the similarity of overall matching
functions not higher than the others, we would divide the
functions into several parts (i.e. we would increase the value
of D). Some function parts mainly consist of the unchanged
parts of functions. The similarity of these parts would bemore
apparent than that of the others. As a consequence, we divide
the function f1i into several parts to detect the similarity of the
binary codes.

Algorithm 1 Similar Functions Detection
f1i is a function in binary X1, X2 is the binary code including
all the functions f21, f22, . . . , f2n, D is the number of the
function partition.

Input: f1i, X2, D

1: x∗← 0, X ′2 = ∅, l =
len(f1i)
D

2: Generate the length limit[l1i, l ′1i] based on l
3: for each function f2j do
4: if len(f2j) ∈ [l1i, l ′1i] then
5: X ′2 = [X ′2, f2j]
6: end if
7: end for
8: Divide f1i into D parts
9: for each part f1i_m do
10: S[m] = Similarity_wave(f1i_m,X ′2)
11: end for
12: if x∗ == 0 then
13: get max(S[m][x]) and x∗← x
14: end if
15: find f2j in X ′2 by the byte index x∗

16: return f2j

2) GENERATING THE SIMILARITY WAVE ARRAY
The similarity wave array indicates which parts of the two
binaries have high similarity and are therefore a visualization
tool that allows us to find the match f2j in binary X2.
The similarity wave array is calculated based on similarity
coefficients method (e.g. Jaccard coefficient), as this gives
users the information needed to find the matching function.
More precisely, the user wants to find the matching function
f2j in binary X2 based on the function f1i. To this end,
the similarity value of the matching function f2j in binary
X2 given by the similarity wave array should be high while
the similarity of other parts should be low. The user can
accomplish this by using similarity wave array S. The
process for the similarity wave array generation is given
in algorithm 2.

Algorithm 2 Similarity Waves Generation
f1i m is a function’s part of function f1i in binary X1, and X ′2
is the binary code including the matching function.

Input: f1i m, X ′2
1: l ← len(f1i m)
2: Generate candidate set B in X ′2 based on f1i m using slide
window method
3: for each part b ∈ B do
4: Compute similarity coefficient S(f1i m, b)
5: S[j] = S(f1i m, b) j is the byte index of b in X ′2
6: end for
7: return S

As input, algorithm 2 takes a part f1i m of the function f1i,
the binary X2 and proceeds in the following steps. (1) From
the first byte to the end of X ′2, generate several candidate parts
inX ′2 based on slidewindowmethod (thewindow size is equal
to the length of the part f1i m and the slide size is equal to
one byte). These parts constitute the set B according to their
first-byte index in X ′2. A binary code usually includes a set
of functions and the matching function is only a part of the
binary. Based on the slide window method, we can find the
matching function in binary code. Fig.5 shows the process of
the slide window method.

FIGURE 5. The implementation process of detecting the matching
function based on slide window method.

As shown in Fig.5, the window size is equal to the length
of the input functions in binary X1, and the slide size is equal
to one byte. From the first byte to the end of binary X2,
we generate several parts which are shown as the number of
the windows from 0 to n in Fig.5. And we take each part b
in binary X2 to compute the similarity value with the input
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functions. By using this method, any byte of X2 would not
be left out. If the binary X2 includes a matching part with the
input functions, we could find it. Moreover, we could also
get the position of the matching part in X2, which is of great
significance in some applications.

In the next step, we would compute the similarity
coefficient values based on each part b ∈ B and f1i m. In the
method, we firstly represent the raw bytes of functions as
vectors and signals, then takes each part b to compute the
similarity coefficient value with the part f1i m and uses these
values to constitute similarity wave S by the position index of
b’s first byte in X ′2.

a: VECTORS
The similarity coefficient method is used to compute the
distance and similarity value between the vectors. The vectors
with the smallest distance would be the matching function’s
vector. Thus, we compute the similarity coefficient value to
find the matching function. Because of the characteristics of
the cross-version binaries, we select two similarity coefficient
methods (i.e. cosine similarity, Jaccard similarity coefficient).
Cosine similarity is defined as:

Cos (A,B) =

∑n
i=1 (Ai × Bi)√∑n

i=1 (Ai)
2
×

√∑n
i=1 (Bi)

2
(1)

where Ai and Bi represent the components of the vector A and
B. And n isthe number of the components of A and B. Cosine
similarity measures the similarity between two vectors by
measuring the cosine of the angle between them and the
values range from −1 to 1. When the value is a positive
number, it indicates that the two variables are similar to each
other. Jaccard similarity coefficient J is defined as:

J (A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

A+ B− |A ∩ B|
(2)

Jaccard similarity coefficient also called the Jaccard index,
is used to compare the similarity and difference between finite
sample sets. It is defined as the ratio of the intersection size
of A and B to the union size and the values range from 0 to 1.
When the value is equal to 1, it indicates A and B are the
same set. When the value is equal to 0, it indicates A and B
are different.

b: SIGNALS
We represent each byte as the instantaneous value of a signal
and connect these instantaneous values to transform binaries
into a discrete signal. We compute the correlation coefficient
value of signal waves to find the matching functions. In the
signal processing field, cross-correlation is used to measure
the similarity of two signal waves between two different
times in the time domain. The signal wave can be either a
continuous signal or a discrete signal. The cross-correlation
function is defined as:

R (s, t) = E(X (s) ∗ Y (t)), (3)

where s and t are two different times and the R(s, t) measure
the degree of correlation of two signal X (t) and Y (t) between
any two different times s and t . For two signal waves,
the cross-correlation function is usually the complex function
of time and is defined as:

R( (X ∗ Y )(τ )) =
∫
+∞

−∞

X (t) ∗ Y (t + τ)dt, (4)

where τ is a time moment, but the function’s signal wave
is a discrete signal, the cross-correlation function of discrete
signal wave is usually defined as:

R( (X ∗ Y)(n)) =
∑+∞

−∞
X (m) ∗Y (m+ n), (5)

where n is a time moment and m changes from negative
infinity to positive infinity. Pearson Correlation Coefficient
is one of the most popular cross-correlation methods and it
could measure the linear relation between two signal waves,
which is suitable for solving cross-version BCSD problem.
The Pearson Correlation Coefficient P is defined as:

P (A,B) =
cov(A,B)
σAσB

=
E((A−µA)(B−µB))

σAσB
(6)

where σA and σB are the standard deviations of A and B
respectively. cov(A,B) is the covariance of A and B. µA and
µB are themeans ofA andB respectively. Pearson Correlation
Coefficient describes the degree of linear correlation between
two variables and the values range from −1 to 1. When the
value is a positive number, it indicates that the two variables
are positively linear correlated.

3) FINDING THE MATCHING FUNCTION
If the binary code X2 includes the matching function of f1i,
there should be a part b ∈ X ′2 that would have a high
similarity coefficient value with the part f1i_m, which means
the similarity wave S would include a fairly high value.
In summary, the high value of S[i] corresponds to the function
that is the matching function f2j in X ′2. By using the similarity
wave S, we eventually find the matching function f2j in X ′2.
Similarity wave array samples are shown in Fig.6.

FIGURE 6. Similarity wave array samples.

Once a similarity wave array has been identified, it needs
to be used to help the users to find the matching function.
This is the last step in each iteration. If users get a wave
array which is similar to the one shown as Fig.6, in which
the value of the matching function part is higher than other
functions, users could easily find the matching function in X2.
Nevertheless, if there does not exist a high value in similarity
wave array, it means we can not get the matching function in
X2 for input part f1i_m, for the reason that the functions or parts
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have changed a lot, which decreases the similarity coefficient
value of them. However, the smaller part of the function may
mainly consist of unchanged parts, and they would have a
good similarity correlationwith each other. Sowe couldmake
D plus one and repeat the process, which means to divide the
function into smaller parts. And we could find the matching
function in X2 based on the maximum value of similarity
wave array. As Fig.6 shows, we could detect the matching
function based on each coefficient method, but each method
has its drawbacks. The cross-version function’s vectors may
be similar to each other, but its signal wave may not be linear
correlated and vice versa. Thus, we take all these multiple
results into account to detect the matching function in our
method.

IV. EVALUATION
A. IMPLEMENTATION AND SETUP
We obtain the dataset from Alpha-Diff [21] and evaluate
the proposed method concerning its search accuracy. First,
we can make sure that the binaries’ functions we used in
the dataset1 are identified correctly, which means all the
functions f1i and f2j in binaries X1 and X2 can be determined.
We implement the proposed method in MATLAB [22]. Our
experiments are conducted on a PC with 3.6 GHz Intel CPU
i7-4790 and 10 GB RAM.
Dataset: We get the large dataset used in the paper [21].

The dataset is a set of 2,489,793 positive samples (i.e., pairs
of matching functions) from 66,823 pairs of cross-version
binaries in the x86 Linux platform. There are two sources
for the dataset. The first source is the Github repository.
The dataset includes the source code from 31 projects
with 9,419 releases. Each release is compiled with the
compiler GCC with the default optimization options and
each project’s two successive releases of binaries were put
into one pair. The second source is the Debian package
repository, 895 packages with 1,842 versions were collected
from the Ubuntu 12.04, 14.04 and 16.04 platform. Each
version of binary with its closest version was grouped as a
pair. For each pair of cross-version binaries, pairs of matching
functions were retrieved to make sure they have the same
name but are not identical. And to increase the diversity,
some pairs of functions which are identical in cross-version
binaries were extracted and added to the dataset. About
1.52 percents of pairs of cross-version functions in the
dataset are identical. The test dataset in Alpha-Diff [21] is
a disjoint subset of the whole dataset, including 9,308 pairs
of binaries. And the author of the Alpha-Diff [21] split
the testing set into a big subset and small subset. Each
binary pair in the big subset contains more than 300 function
pairs. However, they do not provide the test dataset.To
truly and objectively test the effectiveness of the method,
in the construction of the experimental test data set, we did
not perform any manual sample selection operation but
used the random selection method in the batch command

1https://twelveand0.github.io/AlphaDiff-ASE2018-Appendix

in the Windows system. And the test data set contains
423,282 functions of cross-version matching functions, from
12,000 pairs of cross-version binaries. We also split the
testing dataset into a big subset and a small subset. The small
subset consists of 11,797 pairs of cross-version binaries,
including 289,165 pairs of cross-version matching functions.
The big subset consists of 203 pairs of cross-version binaries,
including 134,117 pairs of matching functions.

B. EVALUATION METRIC
The goal of the method is to identify the matching function
accurately. In the binary code similarity detection problem,
TP(True positive) should be samples that are judged to be
a correct matching function, FP(False positive) refers to
samples that are not matching functions but are judged to
be matching functions, and FN(False negative) are samples
that should be detected as a matching function, but it is
not correctly detected. In the experiments, every query has
only one correct answer (matched function). Therefore,
the number of FP and FN is the same, resulting in the value
precision is the same as of the recall. And Inspired by the
Alpha-Diff, we also evaluate the method by the evaluation
metric Recall@K . The Recall@K is defined as follows.

Recall@K (X1,X2) =

∑T
i=1 hit@K (f1i)

T
(7)

where X1 is a binary including the functions f11, f12,
f13, . . . , f1n. X2 is a binary including the functions f21, f22,
f23, . . . , f2m. We assume they have T pairs of matching
functions, i.e.(f11, f21), (f12, f22), . . ., and (f1T , f2T ).We denote
the top K similar functions calculated by each algorithm
and each part of functions as topK (f1i) function set. And we
denote hit@K (f1i) as whether the matching functions of f1i is
in topK (f1i). hit@K (f1i) is defined as follows.

hit@K (f1i) =

{
1, f2i ∈ topK (f1i) and i ≤ T
0, otherwise

(8)

C. PARAMETERS IN THE METHOD
Besides, the method involves some parameters and design
decisions, e.g. the similarity coefficient method, the length
limit, different function partition number and the minimum
byte size. The choices of these parameters could affect the
performance of the method.

We have conducted a series of experiments to select
proper parameters. Due to the time and resources limitation,
we evaluate each model’s performance on a subset of the
testing set, including 29,168 function pairs.

1) SIMILARITY COEFFICIENT METHOD
We have evaluated the performance of the method with
different similarity coefficient methods, as shown in Fig.7(a).
(In Fig.7 abbreviated the Jaccard coefficient method, Cosine
similarity and Pearson correlation coefficient as J, C and P)
We can see that the method performance is affected by the
similarity coefficient method. The method based on different
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FIGURE 7. Evaluation of design parameters in the method.

similarity coefficient algorithms is complementary to some
extent. And the method with multiple similarity coefficient
algorithms performs better than any single one.

2) LENGTH LIMIT
We have evaluated the performance of the method with
different function length limit, i.e., the proper length ratio of
candidate functions in binary X2 based on the length of the
function f1i, as shown in Fig.7(b). It is shown that if the length
limit is set to [0.5l, 2l], the method, in general, performs best.
And in the experiment, the number of missing function pairs
is only eighteen, which means the method still almost covers
all the test samples. Thus, in the later test, we set the length
limit to [0.5l, 2l].

3) DIFFERENT FUNCTION PARTITION NUMBER
We have evaluated the performance of the method with
different function partition number, as shown in Fig.7(c).
The J7 + P means when the function partition number of
Jaccard similarity coefficient is seven, the performance of
the method with different function partition number of the
Pearson correlation coefficient. The partial zoom-in of the
Fig.7(c) is shown in Fig.7(d). It is shown that when the
function partition number of the Jaccard similarity coefficient
is seven, the function partition number of Cosine similarity is
four and the function partition number of Pearson correlation
coefficient is five, the method performs best. And the recall
of our method is about 96.7%.

4) MINIMUM FUNCTION SIZE
Many similarity coefficient methods usually cannot get a
good performance on small arrays–even minor changes of the
array may cause a large influence on the similarity coefficient
values. And too small bytes size might always cause the
input part to have a high value of similarity coefficient with
any other parts in X2, which makes the matching functions
difficult to be identified. So in the last, we have evaluated
the performance of the method on different datasets, in which
the length of the functions is large than different binary sizes,
as shown in Fig.7(e). It is shown that the method performs
better in the subset of the big functions. But the proportion
of the small functions in the test dataset is shown as Fig.7(f).
As we can see that many functions are short in length and we
should not set the minimum function size too high. According
to Fig.7(e) and Fig.7(f), the best value of the minimum
functions size is 30 bytes. The method could cover almost
85 percent of the dataset and the recall could reach 97.3%.

D. ACCURACY ON TESTING SET
In the last, we evaluate the proposed method on the whole test
dataset consisting of 12,000 pairs of cross-version binaries,
including 423,282 positive samples and calculate the metric
Recall@1 and Recall@5 for each function. Table 1 shows the
average recall results.

TABLE 1. The recall accuracy of the proposed method on test dataset.

The Alpha-Diff solution [21] and our method are based
on raw bytes of binaries for cross-version similar code
detection. In almost the same test environment, the Recall@1
of Alpha-Diff is 0.953 on their test dataset and 0.885 on the
big subset. And our method could reach 0.9663 on the test
dataset and 0.8828 on the big subset. We successfully detect
397,746 samples on the test dataset in total, among which
279,422 samples on the small subset and 118,324 samples
on big subset. The big subset consists of 134,117 pairs of
matching functions from 203 pairs of binaries. The binary
size in the big subset is between a few hundred Kilobytes and
several Megabytes. And the performance of the solution on
the large size binaries could be shown by testing the method
on the big subset to some extent.

Although we do not compare our method with the
alpha-diff solution in completely consistent conditions,
the experimental results show that our method could also
have a good effect in the field of cross-version binary code
similarity detection. When there is a special situation that the
problem cannot be solved by deep learningmethods, it proves
that the results detected by the method in this paper are also
credible.
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However, our method still cannot detect some function
pairs in the dataset. After analyzing the wrong function pairs,
we find three features of functions in the dataset that reduce
accuracy.

(1) In some binaries, the length and raw bytes of some
different functions are similar which would cause a decrease
in the accuracy.

(2) Some functions in the dataset have changed dra-
matically, causing a huge difference between the matching
functions. And our method cannot detect these matching
functions.

(3) Some instructions may have similar raw bytes while
their semantic meanings are not similar. Besides, the raw
bytes contain some ‘‘noises’’ like specific register values.
These problems would decrease the accuracy of our method
in the experiment.

E. EFFICIENCY
We also evaluate the efficiency of our method in solving the
BCSD problem. For each binary, the length of the functions
could range from dozens to thousands of bytes. So we test
functions of different lengths to get the experiment time of
the different similarity coefficient algorithm. Fig.8(a) shows
the experiment time of different function size when the binary
size is equal to 18,519 bytes. Fig.8(b) shows the experiment
time of different binary sizes. In this experiment, the length
of the functions we select for each binary is all range in [100,
200] bytes.

FIGURE 8. Efficiency evaluation on test dataset.

From Fig.8, we can observe that the experiment time in
general increases along with the binary size and function size.
The method based on the Jaccard similarity coefficient is
the most efficient of all. In the dataset, the length of most
binaries is shorter than 20,000 bytes and the length of most
functions is shorter than 1,000 bytes, which means in the
experiment, our method could detect the matching function
within 4 seconds of most samples. In the experiment on
the big subset, after we set the function length limit, many
functions that do not meet the requirements are excluded. The
length of the sliding window experiment generally does not
exceed 100,000 bytes and the time required for the method
to run is about a few seconds. But in practice, if the sliding
window experiment needs to be tested on a large file (more
than 1MB), the running time of the sliding window algorithm
would take about tens of seconds, which is inefficient.
However, we could split the binary into multiple smaller

sub-files and use a distributed algorithm to improve efficiency
in future work. This can greatly improve the efficiency of the
method.

V. DISCUSSION
Many advanced similarity detection solutions such as Bindiff,
Gemini, Alpha-diff, etc are still the most important and best
solutions currently. And to some extent, these solutions are
better than the methods proposed in this paper in terms of
overall performance(They could solve more difficult prob-
lems such as cross-platform and cross-compiler problem).
However, one of the values of ourmethod is that, from another
research perspective, without relying on CFG, deep learning
algorithm and other related attributes, we propose a new
method that can solve the cross-version binary code similarity
detection problem. Our method is not proposed to beat and
replace various methods such as Bindiff, Gemini, Alpha-diff.
Instead, it is used as one of the different methods to cope
with various complex situations that exist in the real-world
environment.

The technology of cross-version BCSD can be used to
detect malicious code, (e.g. for some specific viruses). And
this technology can also be used for vulnerability mining
and plagiarism detection. Hackers can obtain adversarial
samples by modifying few pixels in the image, making the
deep learning model ineffective, but most of these methods
do not affect the structural characteristics of the binaries,
so they have less impact on themethod proposed in this paper.
There are many good pure syntactic solutions based on raw
bytes, such as similarity detection based on opcodes. And
they can be performed by Yara search or other tools. But in
general, these methods and our proposed methods still have
some different characteristics. 1) Relying on methods such as
Yara and other search tools, most of them need to manually
analyze some unique attributes of the application target, such
as some signatures or other characteristics and then use these
characteristics to perform the matching search. However, our
method does not require manual analysis to extract features,
but maps the code into vectors and signals, and searches
in the binaries based on its linear correlation and other
related attributes. The application is for all cross-version
binaries in the same environment, and there is no need to
extract different features for different binaries; 2) The features
directly displayed in the opcode have some difference with
the attribute characteristics that the code maps into vectors
and signals. Whether using opcode or our method, we all
could solve the cross-version similarity problem to some
extent. But one of the key points and innovation of the
method proposed in this paper is to solve the problem through
the attribute characteristics of another code expression and
provides a new idea for research in the fields of vulnerability
mining, malware variant detection, plagiarism detection, etc.
In practical applications, these methods are combined with
each other, and the comprehensive application of various
methods could often get better practical results.

VOLUME 8, 2020 120509



H. Guo et al.: Lightweight Cross-Version BCSD Based on Similarity and Correlation Coefficient Features

VI. LIMITATIONS AND FUTURE WORK
Some instructions have the same semantic meaning while
their raw bytes are significantly different. And this is very
common among different compilers, different optimization
options, and different platforms. The method proposed in
this paper is still inadequate in many aspects, and in many
ways is not better than most current solutions that rely on
the CFG of binaries. How to deal with the difference of the
raw bytes in cross-compilers and cross-platforms binaries is
one of the shortages of our method and it is the focus of our
future research. Similarly, some instructionsmay have similar
raw bytes while their semantic meanings are not similar.
In future work, we will conduct in-depth research based on
this problem.

The signal processing based method is a novel method to
detect the similarity of binary code, this approach does not
work well when the length of the function is too short or
the change of the functions is too big. And it also does not
work well on small binary files with small functions. For
small binaries, because the workload of analyzing binary is
relatively small, we recommend using other methods, such
as opcodes search or manual analysis to solve the problem.
Besides, when we divide the functions into several parts,
we can get a small range of functions which include the
matching functions. But how to select the matching functions
in the small range of functions to improve the effectiveness
of the method still need more research. And future work
possibly involves using a more advanced method to solve
these problems.

The problem of the noises in raw bytes is an important
issue that needs to be considered when doing binary code
similarity detection. Due to the influence of this factor,
the use of some simple features (such as directly extracting a
certain part of the feature code, calculating the hash, average,
partial average, etc.) for detection cannot get good results.
Compared to more complex issues such as cross-architecture,
cross-compiler and cross-compilation-option problems, there
are relatively few noises in cross-version binary code. The
method proposed in this paper is less affected by the
noise in detecting similarity. However, for more complex
code such as cross-architecture, cross-compiler and cross-
compilation-option binary, the method proposed in this paper
does not work very well for the time being. In further
research, we will explore whether preprocessing methods
such as intermediate languages can be used to solve the
problems in the binary code.

VII. RELATED WORK
Most Previous works on binary code similarity detection are
based on the control flow graphs (CFG) of functions and
graph-isomorphism theory. Eschweiler et al. [8] proposed an
approach to find similar functions in binary code, and they
use the method to identify bugs in binaries. They propose a
set of numeric features and employed a pre-filter based on the
features to fast identify the candidate functions. Feng et al. [9]
proposed a method to covert the CFGs into high-level feature

vectors instead of directly using the raw features of binary
code. They could search the vulnerability in a large set of
the firmware images. These solutions are based on the graph
comparing, which lacks the polynomial-time method and
does not consider the semantics of assembly-level features.

Gao et al. [12] extend the graph isomorphism with sym-
bolic execution to find semantic differences. Ming et al. [13]
extend the GI theory with deep taint and input generation
techniques to find semantic differences in CFGs. Chandramo-
han et al. [15] use an inline technique to capture the complete
semantics features of functions and generate the candidate
functions by using OS neutral function filtering. They extract
the variants traces from the functions and detect the similarity
of functions by machine learning methods. David et al. [16]
divide the functions into smaller comparable fragments and
detect the similarity of functions by the similarity between
fragments.

Inspired by Feng et al. [9], Xu et al. [10] represent the
functions as a control-flow graph with attributes (ACFG).
They firstly use a neural network to generating embedding
for functions. They used the Siamese network [23], which
is adapted from Structure2vec network [24], to convert
the ACFG into an embedding. However, the solution
heavily relies on CFG features and block-level attributes.
Gao et al. [17] present VulSeeker, a semantic learning-based
vulnerability seeker for cross-platform binary. By integrating
the CFG and the DFG of the binary function, they capture
more function semantics and acquires a higher accuracy and
efficiency.

Without relying on the CFG of function, Asm2Vec [18],
INNEREYE [19] and SAFE [20] explore many new methods
to compute the embedding vector of binary functions.
Ding et al. [18] employ representation learning to construct
a feature vector for assembly code. They only need assembly
code as input and do not require any prior knowledge such as
the correct mapping between assembly functions and provide
more robustness to code obfuscation and compiler optimiza-
tions. Zuo et al. [19] regard instructions as words and basic
blocks as sentences, and propose a novel cross-(assembly)-
lingual deep learning approach to solve cross-architecture
BCSD problem. They utilize word embedding and LSTM
to automatically capture the semantics and dependencies
of instructions and solve the BCSD problem among basic
blocks. Liu et al. [21] also propose a method to use the
neural network to extract the features from the functions.
They extract the features directly from the raw bytes of
functions, without any human bias. They use intra-function
features, inter-function features and inter-module features
to train a CNN network through the Siamese network,
providing better accuracy. Massarelli et al. [20] propose
SAFE, a novel architecture for the embedding of functions
based on a self-attentive neural network. It works directly
on disassembled binary functions, does not require manual
feature extraction. And it is computationally more efficient
and is more general as it works on stripped binaries and
multiple architectures.
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There is a good deal of related research on the detection of
similarity between signals in the field of signal processing.
Hu et al. [25] propose a new method to detect the correlated
alarms. They quantify the correlation level based on the
Pearson correlation coefficient and show their method per-
form better in detection correlated alarms and uncorrelated
ones than existing methods. Bertin et al. [26] also use the
Pearson correlation coefficient to predict the wave energy
resources development. They calculate the PCC between
the North Atlantic Oscillation and North Atlantic significant
wave height and show that the North Atlantic Oscillation
partially controls the interannual variability of significant
wave height.

Cheng and Zhang [27] propose a Jaccard Coefficient-based
Bi-clustering and Fusion method for recommender systems.
They use the density peak clustering method to cluster the
user-item rating matrix and estimate the missing values for
sparsity data to cope with the sparsity problem in cold-start
settings. The experiment shows that their approach can
improve the performance of user recommendations at the
extreme levels of sparsity in the user-item rating matrix.
Dharavath and Singh [28] propose an efficient integrated
solution to the entity resolution problem based on the
Jaccard similarity coefficient. From the experiments on three
citation databases evaluate the contributions of the Jaccard
similarity coefficient and Markov logic, we can see that
a few rules in Markov logic and Jaccard similarity give
more efficient results. Plansangket and Gan [29] proposes
a query suggestion method combining two ranked retrieval
methods: TF-IDF and Jaccard coefficient. They evaluate
the method using several performance criteria and users’
judgment as well in terms of the quality of the generated
query suggestions and the result shows that their method
could improve the relevance of the returned documents in
interactive web search. The above researches show that the
Pearson correlation coefficient and Jaccard coefficient are
well metric to quantify the similarity and correlation between
signals.

VIII. CONCLUSION
In this paper, we propose a novel and lightweight method for
solving the cross-version BCSD problem. The method does
not need much recourse and could be easily deployed on PCs
and other lightweight devices. Without relying on CFG and
deep learning algorithms, the method extracts the function
features directly from the raw bytes of binaries. And together
with the signal processing technique, the method performs
well on the cross-version BCSD problem. To the best of our
knowledge, there exist no previous works which apply signal
processing techniques to cross-version BCSD problems. The
method would be proof that the signal processing technique
is suitable for solving the BCSD problem. However, there are
still a lot of problems in the research of detecting similarity
in cross-version binaries. We hope that this work could serve
as an inspiration for more research.
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