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ABSTRACT Artificial neural network surrogate models are often used in the design optimization of
the automotive semi-active suspension system. To realize the desired damping force, a surrogate model
needs to be constructed to approximate the regulating mechanism of the hydraulic adjustable damper.
However, very few of the existing studies discuss how to guarantee the modeling accuracy. To this end,
this work constructs a novel surrogate model by using radial basis function neural network. Meanwhile,
an adaptive modeling method based on modified hyperband and trust-region-based mode pursuing sampling
is presented. Concretely, modified hyperband is used to fast select a seed model by early-stopping and
dynamic resource allocation. Mode pursuing sampling is then performed in the neighborhood of the seed
model, to systematically generate more sample points while statistically covering the entire neighborhood
(i.e., trust region). In particular, in the mode pursuing sampling procedure, quadratic regression is performed
around the current optimum as the second detection. Moreover, as the position or size of the trust region
changes, the sampling and detection process iterate until the accuracy of the model is no longer improved.
To avoid falling into the local optimum, the seed model selection andmode pursuing sampling process iterate
until the termination criterion is met. The experimental results show that compared with the benchmarks,
the modeling accuracy of hydraulic adjustable damper can be improved by up to 48%, and the iteration
resources can be reduced by up to 84%.

INDEX TERMS Semi-active suspension systems, hydraulic adjustable damper, artificial neural network,
hyperparameter optimization.

I. INTRODUCTION
The performance of the vehicle is affected by its suspension
system [1], [2], such as ride comfort and handling stability.
There are three main types of suspension systems [3]–[6]:
passive suspension, semi-active suspension (SAS), and active
suspension (AS). In general, the passive suspension is
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difficult to meet high performance requirements in actual
use, because its spring stiffness and damping coefficient
are not adjustable. Therefore, the use of controllable sus-
pension systems (i.e., SAS and AS) is an inevitable choice
for high-performance vehicles [7]–[12]. Compared with the
active type, the spring stiffness and damping coefficient of
SAS are adjusted according to the optimized parameters of
springs and shock absorbers under various conditions stored
inside the computer, resulting in low energy consumption,
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reliable performance, and low cost [13]–[15]. Hence, this
research focuses on the SAS system.

The controllable SAS system usually means that the
damper is adjustable. Among them, the monotube hydraulic
adjustable damper (HAD) using the hydraulic flow reg-
ulation method is the most popular in the automotive
industry [16]–[18]. To facilitate the practical application
of the monotube HAD, its regulating mechanism should
be modeled accurately, which means that the characteristic
of the monotube HAD should be available in the design
stage. With regards to this, the analytical model and thermal
effect equations of the monotube HAD were established in
Ref. [19], and their feasibility were verified by the inte-
gral shock absorber testing (ISAT) system. On this basis,
HAD data was further collected from the ISAT system to
construct a gray neural network (GNN) surrogate model of
the unknown regulating mechanism. To ensure the accuracy
and decrease the computational cost, a further research using
fuzzy neural network (FNN) has been conducted in Ref. [6],
and performance improvement in modeling was obtained.

In theory, artificial neural network (ANN) has the capa-
bility of approximating any complex and non-linear function
arbitrarily well, and can be applied in many fields as a pre-
diction model or surrogate model, such as performance pre-
diction and decision optimization [19]–[22], fault diagnosis
and fault tolerant control [23]–[25], and image recognition
and classification [26]–[28]. However, the approximation
performance of different ANNs in engineering applications
varies [6], [22]. In the existing researches, only a few ANNs
are used to solve the HADproblem [6], [19]. Therefore, a new
neural network should be investigated in order to accurately
realize the desired damping force. To this end, this work
constructs a novel surrogate model by using radial basis
function neural network (RBFNN) [21], [22]. RBFNN is
employed as it has fast convergence speed and powerful
anti-noise and repair capabilities, which is more in line with
the requirements of SAS systems.

For the practical application of ANN surrogates, the hyper-
parameters need to be intentionally tuned to accurately
approximate the training data. Hyperparameter optimization
is a time-consuming task. To reduce the computational cost,
in the existing HAD researches [6], [12], only a few of
hyperparameters have been optimized, which may lead to
the failure of obtaining a high-precision model. To solve
this problem, an adaptive modeling method based on hyper-
parameter optimization algorithm is presented in this work.
The ‘‘adaptive’’ refers to automatic selection, relative to
manual [6] and semi-adaptive [12] methods.

Hyperparameter optimization algorithm has been widely
used in the field of deep learning, such as random search
(RS) [28], [29], Bayesian optimization (BO) [30]–[35]
and hyperband [36]. However, RS cannot guarantee the
global optimum, and is inefficient in high-dimensional prob-
lems; BO that based on probabilistic model requires calcula-
tion of complex statistics. As the number of evaluated points
increases, the calculation cost increases sharply, resulting in

low efficiency; hyperband that integrates resource dynamic
allocation and early stopping strategies into RS to quickly
eliminate the hyperparameter configurations with early poor
performance, which has been proved to obtain better results
than BO. However, its performance is limited by the
RS part. Therefore, to achieve efficient adaptive modeling,
a new hyperparameter method which combines modified
hyperband (MH) with mode pursuing sampling (MPS) [37]
through a trust region (TR) strategy is proposed, and is
referred to as MH-TRMPS.

In MH-TRMPS, TR indicates a region around the current
optimum, and within which MPS is performed to obtain
minimizer of this region. Different from existing gradient
driven trust-region-based optimization methods [38]–[41],
MPS search is independent in MH-TRMPS, and there is
no need to calculate the step size or direction. Concretely,
MH is used to fast select the current optimum. Meanwhile,
a hypercube around the optimum is constructed and defined
as TR. MPS is then performed in the TR to pursue a more
accurate model. According to the performance of the MPS
search during previous iterations, the size of TR is either
remained the same or reduced by a preset ratio, but its center
always falls on the optimum. If the candidate solution does
not produce a sufficient increase in the modeling accuracy
after multiple reduction of the size of TR, MH search will be
conducted again to determine whether a new TR needs to be
reconstructed.

The contributions of this work can be summarized
as follows:

(1) An efficient adaptive ANN surrogate modeling
method based on MH-TRMPS is presented for the
HAD problem. Numerical examples confirm that the pro-
posed approach can obtain better performance than manual
method, semi-adaptive method, and other adaptive methods.
To the best of our knowledge, this is the first investigation of
the adaptive ANN-surrogate for HAD problem.

(2) A novel surrogate model is constructed for the
HAD problem by using RBFNN. Through the application
on the simulation data of HAD, the modeling accuracy of
RBFNN is better than those of MLP and FNN. Specifically,
the application of RBFNN has not been used for HAD prob-
lem in the past.

The rest of this paper is organized as follows.
Section 2 shows the relatedmaterials of HAD. Section 3 intro-
duces theMLP, FNN, and RBFNNmodels of nonlinear HAD.
In Section 4, MH-TRMPS method is presented in detail.
Section 5 introduces the numerical experiments. The conclu-
sion is given in Section 6.

II. REGULATION MECHANISM OF THE NONLINEAR HAD
Fig.1 shows a commercial SAS system with HAD. (a) is the
basic setup of a SAS system [42], and (b) is the structural
diagram of a nonlinear HAD. In Fig. 1(b), the outermost
side is the damper cylinder block, and the upper side is
the damper end cap. Above and below the piston are oil
reservoirs, respectively referred to as the upper hydraulic oil
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FIGURE 1. SAS system with the nonlinear HAD.

FIGURE 2. The process of data collection.

chamber and the lower hydraulic oil chamber. At the bottom
of the damper is a gas chamber, and between the gas chamber
and the lower hydraulic oil chamber is a floating piston.

The working principle of nonlinear HAD consists of two
parts: the compression stroke and the rebound stroke. For
the compression stroke, as the piston moves downward,
the hydraulic oil in the lower hydraulic oil chamber flows
into the upper hydraulic oil chamber through the adjustable
valve inside the piston, while pushing the floating piston
downward to compress the gas in the gas chamber. For the
rebound stroke, as the piston moves upward, the hydraulic
oil in the upper hydraulic oil chamber flows into the lower
hydraulic oil chamber through the rebound valve in the piston
assembly and the adjustable valve inside the piston. In order

to compensate for the volume difference caused by the piston
leaving the cylinder, the floating piston moves upward.

The process of HAD data collection is shown in Fig. 2.
From the ISAT, each group of data contains five variables:
piston displacement x (m), cylinder surface temperature T
(◦C), motor angle θ (degree), damping forceF (N), and piston
speed v (m/s). The first four variables are taken directly from
the tester, and the piston speed v is obtained in the LabView
program by the differential of the piston displacement versus
time. In this work, the hydraulic oil temperature is replaced
by the cylinder surface temperature T , because the hydraulic
oil is sealed in the cylinder and it is difficult to measure
its temperature. Then, the regulating mechanism of damping
force for nonlinear HAD can be expressed as a function of
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the variables as follows:

F = f (v, x, θ,T ) , (1)

The values of the data collected directly from the ISAT dif-
fer widely, for example, the force range from−1000 to 3500,
and the displacement range from −45 to 45. Consequently,
the method in Ref. [6] is used to normalize the data and is
defined as follows:

xi =
2(xi − xi_min)
xi_max − xi_min

− 1, (2)

where xi_min and xi_max represent the maximum and mini-
mum values of xi, respectively, and xi are the variables after
normalization.

III. ANN MODELS OF THE NONLINEAR HAD
In this section, three ANN surrogate models, i.e., MLP,
FNN, and RBFNN, are designed for the nonlinear HAD.
Besides, the learning algorithm for training the models is also
introduced.

A. MODEL DESIGN
1) MULTILAYER PERCEPTRON (MLP) MODEL
MLP is a fully connected network, which has been widely
used due to its low prior knowledge dependency. As shown
in Fig. 3, the general structure of the MLP model usually
includes an input layer, an output layer, and n hidden layers.
Obviously, to construct theMLPmodel, the number of hidden
layers n and the number of neurons ml in the hidden layers
need to be determined first, where 1 ≤ l ≤ n. n and ml are
the so-called structure hyperparameters ofMLP,wlij, b

l are the
parameters of MLP. Generally, the larger the training data set
is, the larger n and ml should be chosen to ensure an accurate
model.

FIGURE 3. General structure of MLP model.

In the MLP model, the same activation function is usually
used in hidden neurons to map the feature of the training
data. In this work, the generally rectified linear unit
(ReLU) [43] is chosen as activation function, because it does
not have the problem of gradient vanishing when the input is
positive. Moreover, its calculation speed is much faster than
Sigmod and Tanh. The ReLU function is defined as:

f
(
ylj
)
= max

(
0, ylj

)
, (3)

and ylj is calculated by

ylj =
ml−1∑
i=1

wljix
l−1
i + bl, (4)

where x l−1i is the ith output of the (l − 1)th layer, ylj is the
jth output of the lth layer, wlji is the weight connecting the
jth neuron of the lth layer and ith neuron of the (l−1)th layer,
and bl is the bias of the lth layer.

2) FNN MODEL
FNN is a fixed four-layer neural network that combines
the advances of fuzzy theory and neural network method.
As shown in Fig. 4, FNN consists of input layer, output layer,
and two hidden layers called fuzzy layer and rule layer. The
output of fuzzy layer is defined as:

gij= exp

[
−

(
xi − uij

)2
σ 2

]
, (5)

FIGURE 4. General structure of FNN model.

where xi are the input variables, 1 ≤ i ≤ n, uij is the clustered
center of the jth neuron of the ith input, which obtained
by k-means method, 1 ≤ j ≤ m, σ is the center width
or standard deviation, m and n are the numbers of neurons
and inputs respectively. As for FNN, σ and m are structure
hyperparameters of the model given by the user.

The output of rule layer is then calculated by the equation
as follow:

πj = g1j g
2
j · · · g

n
j =

n∏
i=1

gij, 1 ≤ j ≤ m. (6)

Finally, the output of the model is calculated by

y =
m∑
j=1

wjπj, (7)

where wj are the weights of the output layer.
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3) RBFNN MODEL
The basic form of RBFNN is shown in Fig. 5. The input
layer consists of a number of source nodes (sensing units) that
connect the network to the external environment. The second
layer is the only hidden layer in the network, also known as
the radial base layer. It is used for nonlinear transformation
from the input space to the hidden space. The output layer is
a linear layer.

FIGURE 5. General structure of RBFNN model.

In the radial base layer, the Gaussian function is used as the
activation function of neurons for nonlinear transformation,
which is defined as:

gj (xi) = exp

{
−||xi − µj||2

2σ 2

}
, (8)

where xi are the input variables, i = 1, . . . , n, µj is the
center of the jth node of the radial base layer and is usually
calculated by k-means method, j = 1, . . . ,m; σ is the width
parameter. σ and m are the user-defined parameters. In this
article, m is set to the size of the training data by default.
Therefore, only σ needs to be determined in RBFNN model.

Finally, the output of the model is calculated by

y =
m∑
j=1

wjgj (xi), (9)

where wj are the weights of the output layer.

B. MODEL TRAINING
The parameters of the ANN surrogate model need to be tuned
by gradient-based optimization algorithm to fit the training
data accurately, such as the weight w, the bias b, the center µ,
and the width σ . This study used adaptive moment (Adam)
estimation algorithm [44] to optimize the parameter matri-
ces of the designed models, due to its advantages of high
computing efficiency, little memory required, and constant
rescaling of the diagonal of the gradient. The code steps of
Adam algorithm are summarized as follows:

(1) At the beginning of the algorithm, the following
parameters need to be initialized: the objective function f (θ )
(θ is the parameter matrices of the designed models), the ini-
tial learning rate η, the initial parameter vector θ0, and the

other initialized parameters, such as exponential decay rates
β1, β2 ∈ [0, 1), timestep t = 0, first moment vector
m0 = 0, second moment vector v0 = 0, and ε = 10−8.
(2) Get gradients with respect to the objective function at

timestep t:

gt = ∇θ ft (θt−1) . (10)

(3) Update the biased first moment and second raw
moment:

mt = β1 · mt−1 + (1− β1) · gt , (11)

vt = β2 · vt−1 + (1− β2) · g2t , (12)

where g2t indicates the elementwise square gt � gt .
(4) Compute the bias-corrected first moment and second

raw moment:

m̂t = mt/(1− β t1), (13)

v̂t = vt/(1− β t2). (14)

(5) Update the parameters:

θt = θt−1 − η · m̂t/(
√
v̂t + ε). (15)

(6) If the convergence conditions are satisfied, the resulting
parameters θt are returned; otherwise, go to step (2).
The process of tuning parameters by gradient-based algo-

rithm is also called error back propagation, that is, the dotted
path of e in Figs. 3, 4 and 5. In order to fine-train the
model, the training data is usually divided into small batches.
The batch size is a user-defined parameter. In this paper,
the parameters of the Adam algorithm, as well as the batch
size, are collectively referred to as the learning algorithm
hyperparameters.

IV. ADAPTIVE MODELING OF ANN
In this section, the proposed MH-TRMPS hyperparameter
optimization method and the adaptive ANN surrogate mod-
eling process based on MH-TRMPS will be introduced in
detail.

A. MH-TRMPS METHOD
1) MH ALGORITHM
Hyperband [36] is a general-purpose algorithm to draw a ran-
dom sample from large-scale validation sets. This algorithm
only requires knowledge of R and η. R represents the maxi-
mum amount of resources that can be allocated to any given
hyperparameter configuration, and η is the down-sampling
rate depending on R to yield ≈ 5 brackets with a minimum
of 3 brackets by smax = logη R. The so-called bracket s
(0 ≤ s ≤ smax) is also the number of global sampling. Con-
cretely, for any s, n = (smax + 1)× ηs

(s+1) points are sampled
randomly, and each of points is allocated r = Rη−s resources
to evaluate its function value. Then, a down-sampling process
is performed. For each down-sampling, the best 1

/
η part will

be retained from the n points after the running round.
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FIGURE 6. The process of MH-TRMPS algorithm.

Hyperband was designed with multiple down-sampling in
each bracket to gradually eliminate the early poor perfor-
mance configurations. However, configurations with early
poor performance may not necessarily result in final poor
performance. In this situation, multiple down-sampling is
futile, as many promising configurations may be randomly
dropped at the first down-sampling. Moreover, multiple
down-sampling means that black box function needs to be
called frequently, which is time-consuming. Consequently,
a modified hyperband is proposed.

Similar to hyperband, MH cannot guarantee to find the
global optimum. In this situation, more ‘intelligence’ needs
to be built in. A natural method is to construct a small
region which centered on the current optimum searched by
MH, and then to search the region and find the global opti-
mum by using a model-based method, e.g., MPS. In pre-
vious studies, such a small region is often referred to as
the trust region [40], [41]. Since a certain number of initial
starting points are required in MPS to construct a response
surface, and the evaluation of these points is expensive.
Therefore, in MH, each bracket is designed to have only
one down-sampling. And after down-sampling, the s best
configurations in each bracket will be retained, instead
of one.

As shown in Fig. 6, the maximal bracket smax and resource
burden B are initialized at the beginning of theMH algorithm.

Then, uniform design (UD) [45], [46] is executed in the
hyperparameter definition domain to obtain n configurations.
Note that this is a global random sampling process. UD is
used because it has better uniformity than other sampling
methods. After obtaining early performance by the function
run_then_return_obj_val (x, r), the best s configurations are
selected by using top_k(X ,L,

⌊
ni
η

⌋
) and retain in XR. At last,

the final performance of each configuration x in XR is evalu-
ated in run_then_return_obj_val (x,R).

2) MH-TRMPS
Before the start of MH-TRMPS, some parameters need to be
defined. Let hypercubeH corresponds to the hyperparameter
definition space 3, and hypercube S corresponds to the trust
region which is a subregion of H. The region between S and
H corresponds to hypercube T, where T = H − S. The initial
size of S is set to Rs,inintial= 0.5, and the size of H is set to
RH = 1. To avoid overexploitation, the minimal size of S is
set to Rs,min= 0.01, and the reduction factor is defined as α ∈
[0.5, 0.9] (defaultα = 0.7). The details of the MH-TRMPS
algorithm are as follows:

Step 1. Initial trust region construction
As shown in Fig. 6, generate x# and [XR,FR] by MH in

the definition spaceH and construct the initial trust region S
with current optimum x# as the center. Append [XR,FR]
to [X ,F].
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Step 2. MPS optimization
Step 2.1. UD sampling. If x ∈ X within S, place x in X0.

Suppose that n0 is the number of points in X0, if n0 < 10,
10 − n0 expensive points are sampled from S by UD, evalu-
ated, and appended to [X0,F0].
Step 2.2. Global model construction. The linear spline

function is used to fit [X0,F0] to obtained a global model
which is defined as:

f̂ (x) =
m∑
i=1

αi ‖x − xi‖ , (16)

where f̂ (xi) = f (xi) , i= 1, 2, . . . ,m, ‖·‖ is the Euclidean
norm, m is the number of expensive points xi, and αi are the
weights.

Step 2.3. Mode pursue sampling. Define g (x) = c0 −
f̂ (x) as the mode function, where c0 is any constant that
ensures g (x) ≥ 0. Based on the mode function, the random-
discretization-based Monte Carlo sampling method [47] is
performed to systematically generate more sample points in
the neighborhood of the function mode while statistically
covering the entire search space. In one iteration, nmc =
dnv/2e expensive points will be selected from n1 (usually a
large number) cheap points and added to [X0,F0], where nv is
the number of variables. After each iteration, a speed control
factor r is used to control the sampling process to balance
exploration and exploitation.

Step 2.4. Local model construction. Construct the
quadratic regression (QR) model using the

[
Xq,Fq

]
from

[X0,F0], where
[
Xq,Fq

]
is the neighborhood closest to

the current optimum. The mathematical expression of an
n-dimensional generic quadratic model is defined as:

y = β0 +
n∑
i=1

βixi +
n∑
i=1

βiix2i +
∑
i<j

n∑
j=1

βijxixj, (17)

where βi, βii, and βij are regression coefficients, xi represents
the expensive points in Xq.

To assess the performance of model fitting, a coefficient of
determination R2 is used. R2 is defined as:

R2 =

∑n
i=1

(
ŷi − y

)2∑n
i=1 (yi − y)

2 , (18)

where ŷi represents the QR function values, yi represents the
back-box function values, and y is the mean of yi.
Step 2.5. Locally sampling and local model reconstruction.

If R2 ≈ 1, nnb = dnv/3e expensive points are sampled
randomly in the neighborhood and evaluated, and added
to
[
Xq,Fq

]
and [X0,F0]. Reconstruct the QR model using[

Xq,Fq
]
and recalculate R2. Calculate Diff by the follow

equation

Diff = max
{∣∣∣f (i)fit − f (i)∣∣∣} , (19)

where f (i)fit represents the QR function values, and f (i) rep-
resents the actual function values. i= 1, . . . ,j and j =
(nv+1)(nv+2)

2 +1+ nv
2 .

Step 2.6. Optimization based on the local model. If R2 ≈ 1
and Diff < εd , perform local optimization based on the
QR model to generate a global optimal candidate x0, and
evaluate its black box function value. Add (x0, f0) to [X0,F0].
Step 2.7. Return hyperparameter configuration x∧ with the

minimum function value, [X0,F0].
Step 3. Adaptive trust region strategy
Step 3.1. Let fmin = min(F). If x∈X0 and x /∈ X , place

(x, f ) in [X ,F]. If x∧ < fmin, the center of S moves to the
current optimum, and go to Step 2.

Step 3.2. If theMPS search does not improve for nuimp = 2
consecutive iterations, reduce Rs to αRs, and go to Step 2.

Step 3.3. If the radius of S is continuously reduced by
nreduce = 2 times, and the MPS search no improvement,
search the T using MH to generate x# and [XR,FR]. If x∈XR
and x /∈ X , place (x, f ) in [X ,F]. If x# < fmin, fmin = x#.
A new trust region S is then reconstructed with x# as the
center, and go to Step 2. Else, reduce Rs to αRs, and go
to Step 2.

Step 3.4. If Rs reaches the preset minimum radius Rs,min or
the maximal number of function evaluations is met, stop iter-
ation and return to the current optimum x∗ with the smallest
intermediate loss seen so far. Else, go to step 2.

Simply put, if the MPS search is consistently reliable,
move the location of TRi so that its center always falls on
the current optimum, and try again; if the MPS search failed
continuously, reduce the size of TRi and try again; if the
candidate solution does not produce a sufficient increase in
the modeling accuracy after multiple reduction of the size of
TRi, j = j+1. Meanwhile, MH j search is conducted in the
untrusted region; ifMH j search is reliable, i = i+1; where i is
the number of times the initial trust region is constructed, and
j is the number of times MH is implemented. In the theory,
the global optimum can be obtained through the iteration
process of MH and MPS, because MH has global sampling
characteristics while MPS has global convergence [37].

B. ADAPTIVE MODELING USING MH-TRMPS
Fig. 7 shows the simplified diagram of ANN surrogate adap-
tive modeling based on MH-TRMPS. There are three parts:
input data, hyperparameter selection and model training, and
output of the optimal model. To put it another way, the adap-
tive modeling is essentially a nested optimization process that
involves: (1) for each given hyperparameter configuration,
using Gradient descent algorithm (e.g., Adam) to optimize
the parameters of the ANN to obtained a well-trained sur-
rogate model (inner optimization), (2) using hyperparameter
optimization algorithm (e.g., MH-TRMPS) to optimize the
hyperparameters to generate a new configuration (outer opti-
mization), and (3) iterating steps (1) and (2). The hyperpa-
rameter optimization mathematical expression is defined as:

Aλ∗ ≈
agrmin
λ∈3 L

(
Xvalid

;Aλ

(
X train

))
. (20)

where Aλ is ANN surrogate with the given hyperparameter
configuration λ,3 is hyperparameter definition domain, L is
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FIGURE 7. The flow diagram of adaptive modeling.

validation error, X train is training data, and Xvalid is validation
data.

Obviously, the evaluation of hyperparameter configuration
is time-consuming, because a well-trained model requires
multiple iterations to converge. It can also be seen from
Fig. 7 that in this work, the structural hyperparameters (λ1)
of the ANN surrogate model need to be determined first,
and then the hyperparameters (λ2) of the learning algo-
rithm are selected to train the model. Moreover, the diffi-
culties of selecting the optimal configuration may increase
exponentially as the number of hyperparameters increases.
Take MLP as an example. During the cross-validation
process, if the termination condition is satisfied, multiple
‘‘λ → L′′ are obtained. And then, the current optimal
hyperparameter configuration λ∗ with network parameters w
and b will be output as the best model Aλ∗ .

V. NUMERICAL EXPERIMENTS
In this section, all the compared methods will be used to
model the unknown regulating mechanism of the nonlinear
HAD for the SAS system, and the modeling performance will
be given and discussed.

A. EXPERIMENT SETTINGS
The historical collected data from data collection system is
designed into three data sets. Each data set is split into a
training and validation set: (1) case-1 has 1400 and 87 groups,

(2) case-2 has 5000 and 200 groups, and (3) case-3 has
20000 and 3000 groups. Concretely, for case-1, expert
method (EXP) [6] is used as the benchmark; for case-2, grid
search (GS) [12] is used for comparison; for case-3, RS [28],
GP-EI [30], and hyperband [36] are used as the benchmarks.
The RS and hyperband are direct stochastic optimization
methods, while GP-EI is one of the well-known model-based
Bayesian optimization methods.

The down-sampling rate η is set to 3 for hyperband and
MH, and the initial start points for model-basedmethods is set
to 10. In this work, 50R are used as the total iteration resources
to constrain the comparison method, where R is set to 250.
The root mean squared error (RMSE) is used to assess the
generalization capabilities of the ANN surrogate model and
is defined as:

RMSE =

√
1
n

∑n

k=1
E2=

√
1
n

∑n

k=1

(
y(k)p − ya(k)

)2
, (21)

where y(k)p are the actual outputs and ya(k) are the normalized
expected outputs at the kth test point, and n is the number of
test points.

All experiments are repeated 10 times. Concretely, a search
space is defined for each hyperparameter, from which the
configuration is generated one by one to construct ANN
surrogate model for cross-validation. Under the constraints
of total iteration resources, only 50 hyperparameter configu-
rations are verified in one experiment, and the best result will
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TABLE 1. Modeling settings using EXP and GS methods.

TABLE 2. The settings for adaptive modeling.

be retained. When all 10 experiments have been performed,
the average value will be calculated and compared.

To ensure that the experiment settings are consistent with
those of the original literatures: (1) For EXP, the learning rate
and the number of hidden layer neurons are set as adjustable
hyperparameters; (2) For GS, learning rate, batch size and
number of hidden layer neurons are set as adjustable hyper-
parameters. More detailed experiment settings are shown
in Table 1.

The setting of MH-TRMPS is listed in Table 2 (two
columns on the right of Table 2) because it is an adaptive
method. Note that the learning algorithm hyperparameters
are the same because Adam is used to train all three models.
But for different models, the structure hyperparameters are
usually different, as shown in Table 2. Generally, the defini-
tion of hyperparameter search space affects the optimization
efficiency, so it still relies on expert experience to avoid too
large a definition domain.

Codes for all compared algorithms can be obtained
from shared resources: MPS from the Product Design and

Optimization Laboratory (PDOL)1; GP-EI2 and hyperband3

from an open source project hosting platform GitHub. For
random search and grid search, they are very easy to
achieve. To ensure the independence of MPS and hyperband,
MH-TRMPS is implemented by MATLAB and Python lan-
guage together, but the compiler environment is python.

B. EXPERIMENT RESULTS
1) THE MODELING RESULTS OF CASE-1
The average damping forces predicted by MLP and
FNN surrogate models of the nonlinear HAD are plotted
in Figs. 8 and 9. The results of EXP and MH-TRMPS meth-
ods are shown in green and red, respectively. Blue represents
the expected value. The results show that the model con-
structed by MH-TRMPS has higher accuracy than the model
constructed by EXP method. The reason may be that in the

1 http://www.sfu.ca/∼gwa5/software.html
2 https://github.com/Mikhail-Naumov/Bayesian_Opt_Testing
3https://github.com/zygmuntz/hyperband
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FIGURE 8. Average prediction results from MLP model using EXP and MH-TRMPS.

FIGURE 9. Average prediction results from FNN model using EXP and MH-TRMPS.

TABLE 3. Comparison results of EXP and MH-TRMPS on case-1.

adaptive modeling, more hyperparameters are optimized so
that the model can accurately approximate the training data.

Apart from the prediction results, the comparison results of
modeling using EXP and MH-TRMPS are listed in Table 3.
Moreover, the errors between the command signal and the
average predicted value are also plotted in Fig. 10. With the
offset between positive error and negative error considered,
the average value of error is calculated by using absolute
value of the predicted results.

Compared with the EXP method, MH-TRMPS algorithm
is much better in terms of implementation accuracy of the
desired damping force, and the average RMSE is reduced by
at least 36.6%. Moreover, the average RMSE of MLP model
using MH-TRMPS method is about 42N , which is even
less than that of FNN model using EXP method. As shown

TABLE 4. Comparison results of GS and MH-TRMPS on case-2.

in Fig. 10, the average prediction error of the model using
MH-TRMPS is closer to the 0 axis than that of EXP method.
Therefore, it is confident of integrating the adaptive ANN
surrogate model with any SAS control algorithms to optimize
the performance of the vehicle.

2) THE MODELING RESULTS OF CASE-2
Fig. 11 shows the average prediction damping force by MLP
model of the nonlinear HAD. The comparison results are
presented in Table 4 and shown in Fig. 12 to respectively
describe average RMSE and the error between the command
signal and the average predicted value. It can be seen from
the results that compared with the GS algorithm, the accu-
racy of HAD modeling using the MH-TRMPS algorithm
is higher, and the RMSE is reduced by 14.5%. The main
reason is that the GS needs to divide the search space of
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FIGURE 10. Error between average prediction result and command signal on case-1.

FIGURE 11. Average prediction results from MLP model using GS and MH-TRMPS.

FIGURE 12. Error between average prediction result and command signal on case-2.

each hyperparameter, and then evaluate the combination
of the divisions. With limited resources, fine division and
exhaustive evaluation are difficult to achieve, especially for
high-dimensional problems. In this case, five variables with
five divisions are used for testing, which lead to a coarse
assessment.

3) THE MODELING RESULTS OF CASE-3
The mean best value of prediction metrics of adaptive mod-
eling found so far as the multiple of R varies are plotted
in Fig. 13. It shows that compared with the benchmarks,
MH-TRMPS can obtain better modeling performance. For
example, the average RMSE of RBFNN model is under 8N ,
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FIGURE 13. Average accuracy of different methods for adaptive modeling.

TABLE 5. The average best results of adaptive modeling using different algorithms.

while those of the MLP model and the FNN model are about
43N and 38N respectively. This means that in this case,
RBFNN is more suitable to model the regulation mechanism
of the nonlinear HAD with a high accuracy.

From the multiple of R marked on the horizontal axis of
Fig. 13, it also can be seen that after 12R, 8R, and 12R,
the mean minimum RMSE of MH-TRMPS is less than those
of all the benchmarks that exhausted 50R. This means that the
total number of iteration resources for function evaluations
of MH-TRMPS is reduced by 76% ( 50−1250 × 100%), 84%,
and 76% compared to the best benchmark. The best results of
adaptive modeling byMH-TRMPS and compared algorithms
are listed in Table 5. It can be seen that the average RMSEs of
MLP, FNN and RBFNNmodels constructed by MH-TRMPS
are about 43, 38 and 7.8, while the best benchmarks are about
46, 40 and 9.1, which are reduced by about 6% ( 46−4346 ×

100%), 5%, and 14.6%, respectively.
The experiment also shows that because RBFNN has only

one hidden layer, the training speed is very fast. For FNN,
its training speed is affected by the number of neurons of the
rule layer. Therefore, a trade-off between speed and accuracy
is necessary. MLP is a deep neural network. Its training speed
is also fast because the activation function is ReLU, which is
very simple. However, the modeling accuracy of MLP is not
stable enough because a large number of weights and biases
need to be initialized randomly.

C. DISCUSSION
As shown in Table 1, the adaptivemethod can greatly improve
the accuracy of the ANN surrogate model of HAD. The main
reason may be that in the process of adaptive modeling, more
hyperparameters are adaptively adjusted, so that the model
can be fine-tuned to accurately approximate the training data.
For example, the learning rate is carefully selected in Ref. [6],
but the batch size is not given. Furthermore, Table 1 also
shows that the prediction error reduction of the MLP model
is 48%, which is bigger than that of the FNN model. This is
because the number of layers in the FNNmodel is fixed, while
the number of layers in the MLP model can be adaptively
selected.

For the case-2 of testing, compared with the semi-
adaptive modeling using GS, the adaptive modeling using
MH-TRMPS has higher accuracy. The reason may be:
In Ref. [12], (1) the number of hidden layers is set to a fixed
value, which is 3, and (2) each hyperparameter is searched
separately to avoid dimensional disaster. All of these settings
are not adaptive enough.

Case 3 is a test of adaptive modeling using different
methods and MH-TRMPS obtains the state-of-the-art perfor-
mance. Results among the methods are slightly different in
accuracy, but dramatically different in the iteration resource
consuming. For example, under the same validation answer,
compared with the best benchmark, the average reduction of

118684 VOLUME 8, 2020



J. Lin et al.: Adaptive Artificial Neural Network Surrogate Model of Nonlinear Hydraulic Adjustable Damper

the iteration resources for function evaluation ofMH-TRMPS
is about 78.7%. But for final accuracy, only an average 8.4%
improvement is obtained. This is because in this case, only
about six hyperparameters need to be tuned, which is a low-
dimensional optimization problem. Therefore, a good set of
hyperparameters can be found after each compared algorithm
exhausted 50R resources.

VI. CONCLUSION
This work presents an adaptive ANN surrogate modeling
method based on MH-TRMPS for the HAD problem. Three
ANN algorithms are used for testing on three data sets.
Among them, the RBFNN is used for the first time to model
the nonlinear HAD of SAS system. According to the experi-
mental results, the following conclusions can be drawn:

(1) RBFNN algorithm can be used to model the regulating
mechanism of HAD, which has a much higher accuracy when
compared with MLP and FNN.

(2) The accuracy of the adaptive method for modeling
the nonlinear HAD is higher than manual and semi-adaptive
methods in the previous literatures.

(3) Compared with other adaptive methods, MH-TRMPS
not only achieves higher modeling accuracy, but also con-
sumes less iteration resources.

Adaptive ANN surrogate modeling based on MH-TRMPS
can be found to have excellent performance through many
experiments. However, if the early stopping strategy is inef-
fective for practical issues, the MH will degenerate into
random search, which will reduce the optimization effi-
ciency. Future work will parallelize MH-TRMPS for poten-
tial expansion related to distributed computing, because:
(1) MH has the potential to be parallelized since the
global sampling is independent. The most straightforward
parallelization scheme is to distribute individual brackets
to different machines, which can be done asynchronously.
As machines free up, new brackets can be launched with a
different set of samples; (2) The processes of MH and MPS
are independent, and are suitable for parallelization as well.
Moreover, the adaptive model will be applied to the real
vehicles in the future work.
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