
Received May 25, 2020, accepted June 22, 2020, date of publication June 25, 2020, date of current version July 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004861

Semi-Online Computational Offloading by
Dueling Deep-Q Network for User
Behavior Prediction
SHINAN SONG 1, ZHIYI FANG1, ZHANYANG ZHANG 2, (Member, IEEE),
CHIN-LING CHEN 3,4,5, AND HONGYU SUN 6,7, (Member, IEEE)
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Computer Science Department, The City University of New York, New York, NY 10017, USA
3Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 413, Taiwan
4School of Information Engineering, Changchun Sci-Tech University, Changchun 130022, China
5School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
6Department of Computer Science, Jilin Normal University, Jilin 136000, China
7State Key Laboratory of Numerical Simulation, Jilin 130022, China

Corresponding authors: Chin-Ling Chen (clc@mail.cyut.edu.tw) and Hongyu Sun (hilda.hongyu@gmail.com)

This work was supported in part by the Department of Science and Technology of Jilin Province under Grant 20190701002GH, and in part
by the Cernet innovation Project under Grant NGII20180315.

ABSTRACT Task offloading could optimize computational resource utilization in edge computing environ-
ments. However, how to assign and offload tasks for different behavior users is an essential problem since the
systems dynamic, intelligent application diversity, and user personality. With user behavior prediction, this
paper proposes soCoM, a semi-online Computational Offloading Model. We explore the user behaviors in
sophisticated action space by reinforcement learning for catching unknown environment information. With
Dueling Deep-Q Network, both the prediction accuracy of users’ behaviors and the server load balance
are well-considered, while increasing the computational efficiency and decreasing the resource costing.
We propose a dynamic simulation environment of edge computing to demonstrate that user behavior is
the critical factor for impacting system utilization. As the action space increasing, Dueling DQN performs
better than state-of-art DQN and other improved strategies, and also load balance in multiple different server
scenario.

INDEX TERMS Edge computing, computational offloading, user behavior prediction, dueling deep-Q
network.

I. INTRODUCTION
The recent advancement of Internet of Things (IoT) has
motivated various applications with different requirements
(e.g. Automatic Speech Recognition (ASR), Nature Lan-
guage Processing (NLP), Computer Vision (CV) and accu-
rate human-computer interaction (HCI)) [1]–[3]. Most of
the applications require intensive computation resources to
guarantee the Quality-of-Experience (QoE) and Quality-of-
Service (QoS). At the same time, smart mobile devices
have limited computation capabilities and battery powers.
Therefore, computation offloading from edge users to servers
becomes an essential part of mobile edge computing (MEC)

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Magno .

systems to optimize resource utilization, energy consump-
tion, and network delay [4].

There are variety of computation offloading methods such
as [5]–[12] are proposed to offload task from edge users to
servers in edge computing environments. However, most of
the current computation offloading approaches assume that
the edge users share the same settings. For example, they are
homogeneous sensors or IoT devices, while edge users usu-
ally totally different in practical application scenarios since
different algorithms they applied [11], [12]. Furthermore,
human-driven intelligent applications would affect system
performance by their personality behaviors [8].

Therefore, considering the differentiation between user
equipment (UE) to optimize the performance of computa-
tion offloading further is an essential issue in MEC system.
But the diversity of edge users brings at least the following

118192 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-8879-8445
https://orcid.org/0000-0002-5311-973X
https://orcid.org/0000-0002-4958-2043
https://orcid.org/0000-0002-9182-4827
https://orcid.org/0000-0003-0368-8923

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

TABLE 1. Models and algorithms of state-of-the-art works.

challenges in computation offloading procedure: i) the state
space of the UE set would increase exponentially as the
growth of UE number (shown in FIGURE 1); ii) the UE
behavior observation is more difficult for server part since
the diversity between edge users. To offload the tasks between
different UE and servers with high performance, in this paper,
we introduce semi-online architectures and Dueling Deep-Q
Network (Dueling DQN) [13] to optimize resource utiliza-
tion, energy consumption, and network latency in computa-
tion offloading procedures.

FIGURE 1. Action space trend as UE number increasing.

To conclude, the main contributions of this paper are as
follows:

1) We propose soCoM, which offloads tasks reasonably
by predicting UE behavior differences without fur-
ther communications by guidelines or labeled data.
soCoM is a semi-online distributed offloading model
for an edge computing system. soCoM utilizes Markov
Decision Process and reinforcement learning to make
decisions and explore the unknown dynamic user infor-
mation. Compared to state-of-art works, soCoM is
more suitable for a diversity system with better com-
putational efficiency.

2) As far as we know, this is the first time to use Dueling
Deep-Q Network to explore the large UE action space
to optimize task scheduling procedures. We investi-
gated three popular variants of DQN and analyzed and
verified their characteristics in massive action space
exploration. Dueling Deep-Q Network could optimize
two aims in ample action space: user behavior predic-
tion and server load balance.

3) We propose a dynamic simulated environment for
edge computing containing different users and servers.
Experimental results demonstrate that user behavior
prediction is the critical factor for system resource
utilization. As the action space increasing, Dueling
DQN performs better than state-of-art DQN and other
improved strategies. For different multiple servers sce-
nario, UE behavior prediction guides the two-way
choice between UE and server. Dueling DQN balances
the load among servers with more benefits.

The rest of this paper is organized as follows. Section II
introduces related work about RL and computational offload-
ing. Section III describes the semi-online edge computing
system model. Section IV gives the model soCoM, which
consists of behavior prediction with DQN-based algorithms.
Section V presents the improvement of soCoM with Duel-
ing DQN. The simulation results are in Section VI. Finally,
Section VII summarizes our work.

II. RELATED WORK
Resource optimization and scheduling are essential works for
computational offloading in edge computing environments.
The design goals for computational offloading are to optimize
resource utilization, energy consumption and network delay.
Current works in TABLE 1 show that RL-basedmethod could
optimize the performances when multiple users share the
same parameters, while our work is to resolve the compu-
tational offloading problem when the users have different
settings in practical applications.

VOLUME 8, 2020 118193

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

The approach proposed in article [7] decomposes the
offloading process into several sub-problems to resolve the
NP-hard problem in computational offloading procedures.
The method proposed in paper [8] uses Control-Theoretic
further to decompose the sets of the sub-problems for per-
formance optimization. The approaches proposed in article
[9] and [14] introduces users’ behaviors to guide the com-
putational offloading procedures, in which [14] proposed a
heuristic method to resolve the NP-hard problems. Compared
with these works, soCoM considers the differences between
multiple-users, and try to optimize the resource utilization
between servers and different end systems by exploring
Dueling Deep-Q Network (Dueling DQN) under semi-online
architectures.

Current approaches such as [10], [15], [16], [20], [22]
also uses reinforcement learning (RL) methods to resolve the
computational offloading problems in edge computing envi-
ronments. Reference [10] uses Deep-Q Network (DQN) and
job shop scheduling problems for computational offloading.
Reference [15] assume that the servers have the knowl-
edge of the connected channels while do not know the
knowledge of the offline channels. Reference [16] pro-
poses Q-learning based and Deep Reinforcement Learn-
ing (DRL) based schemes for a multi-user mobile edge
computing (MEC) system. Reference [22] explores DQN
to handle the offloading request and resource allocation in
each sub-problem decomposed in computational offloading
procedures. Reference [20] uses multi-agent reinforcement
learning to meet the requirements of individual user such
as resource allocation, channel states, and quality of ser-
vice (QoS). As the typical RL method, Deep Reinforce-
ment Learning (DQN) has some limitations when the action
space is ample. It is challenging to get excellent train-
ing for complex scheduling in the dynamic edge comput-
ing environment [18]. Generally, to achieve better results,
other heuristic algorithms and pre-trained neural networks
are needed. In the work of Chen et al., the DQN-based
method should learn a policy by experience transitions with
a well-trained Deep Neural Network (DNN) [17]. In order to
optimize computational offloading under our settings with
high performances, we apply Dueling DQN, an improved
DQN method for resource resign and allocation in
MEC system.

Current approaches such as [21], [23] have other
assumptions that the offloading procedures are inde-
pendent processes without continuous impact between
users and servers. To solve changeable MEC conditions,
the approach proposed in article [24] uses directed acyclic
graph (DAG) to model the dependent tasks. It explores a
two-layered reinforcement learning (TLRL) algorithm for
resource-constrained UE in MEC, which optimizes the uti-
lization efficiency and offloading latency simultaneously by
introducing a weighted reward. Compared with the cur-
rent work, we propose a semi-online model to consider the
impact presented by the relationships between users and
servers.

III. SYSTEM MODEL
The design goals of SoCoM are to optimize the resource
allocation and energy consumption ofUE. To better define the
problem and potential resolutions, we explore a distributed
scheduling strategy for a semi-online system with binary
offloading, which contains three sub-models: i) a computing
model, ii) a communication model, and iii) an energy con-
sumption model, as shown in FIGURE 2. The symbols and
descriptions used in the remainder of this paper are listed in
TABLE 2.

FIGURE 2. Edge computing system model with UE, network and edge
server.

The basic structure of soCoM consists of one edge server
and several edge users. The UE set is u(k) ∈ U =

{u(1), u(2), . . . , u(n)}. For each UE u(k), there is a task data set
D(k)
= {d (k)1 , d (k)2 , . . .}. In which, d (k)i is the task generated

by the user equipment at time i. The arrival of each task cor-
responds to a new task t (k)i , and the resource allocation rate of
the task is θ (k)i . The total communication bandwidth provided
by the system isCmax , and the total number of resources (such
as the number of CPU cores or virtual machines) is Emax .

A. COMPUTATION MODEL
Computation model plays an important role in system per-
formance optimization in traditional cloud computing or
distributed computing systems. For example, the execution
time of programs with different instructions would affect the
energy consumption of CPUs. However, traditional compu-
tation model does not work well in edge computing since
the three main reasons: i) UEs are heterogeneous in practical
edge computing scenarios, ii) the configures of equipment
used by each edge user are unseen to server-side, and iii)
the algorithms (e.g. CNN/DQN/RNN) used for tasks also
impact the diversity of execution efficiency [25]. Therefore,

118194 VOLUME 8, 2020

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

TABLE 2. Symbol description.

we propose a time-based computation model to achieve better
abstraction in soCoM system.
In the computation model, the attributes of each task

include the generators, the generation time, the generated
frequency, the type of generated data, the amount of the
generated data, application type, the local execution time, and
the flag whether the task has been offloaded. Our offloading
model is a binary offloading [26]. Part of the necessary infor-
mation would be sent to the edge server for decision making
when the task is to be offloaded. Besides, this essential infor-
mation is also the criteria for prioritizing the task execution
of the user equipment, such as using Short Job First (SJF) or
First Come First Served (FCFS) strategy.

Computationmodels are consist of local computationmod-
els and remote computation models, which measure the
resource consumption of tasks during local or remote com-
puting. Let the ith task of user k be t (k)i . The task’s local
computation model is shown as Equation 1.

5L
k,i = [α(k)i , γ

(k)
i] (1)

When the remote server offloads a task, the computing state
of the task is related to the server’s computing resources. The
change of the server’s remaining computing resource Eleft (T)
is a function of time T . Then the task’s remote computing
model 5R

k,i(T) is shown as Equation 2.

5R
k,i(T) = [α(R)k,i , γ

(R)
k,i ,Eleft (T)] (2)

where, α(k)i is the local computing time of the task, γ (k)
i is the

local computing resource allocation rate of the task. α(R)k,i is

the remote computing time of the task, and γ (R)
k,i is the remote

computing resource allocation of the task.

B. COMMUNICATION MODEL
The communication model 5C

k,i(T) is consist of the total
bandwidth resource Cmax provided by the server, the remain-
ing bandwidth resourceCleft (T), the bandwidth resource allo-
cation strategy πC , and the amount of transmitted data d (k)i ,
the model is shown as Equation 3.

5C
k,i(T) = [Cmax ,Cleft (T), πC , d

(k)
i] (3)

In which the bandwidth allocation function πC determines
the number of channel bandwidth could assign to specific task
during computation offloading process.

In our simulation system, we improve the communication
model based on paper [27]. In their work, multiple edge
users share the same channel for computation offloading has
limitations. Unless one user has released the channel, another
user could not allocate the channel. Therefore, we define
our communication model for advancing performance opti-
mization. The remaining bandwidth of the current system
is ω = Cleft (T). The UE set in this round for offloading
decision making is Uoff (T). After offloading, the bandwidth
usage obtained by each user during the offloading procedure
is calculated by Equation 4.

c(k)i = ω log2(1+
q(k)g(k,s)

ω0 +
∑

u(i)∈Uoff (T) q
(i)g(i,s)

) (4)

where q(k) is the energy transmitted by the wireless net-
work base station between the user equipment and the edge
server. ω0 is the power of background noise. This model has
the following characteristics: users would interfere each other
significantly when many users choose to offload task at the
same time, and the transmission rate would reduce sharply
since the interference. Therefore, the resource allocation
introduce challenges as choosing combinations of equipment
of edge users. we assume d (k)i is the upstream data volume,
the relationship between data volume and transmission time
is calculated by Equation 5.

β
(k)
i =

d (k)i

c(k)i
(5)

C. ENERGY CONSUMPTION MODEL
The limited power of mobile devices is an essential obstacle
to handle big volume data in computing tasks. Therefore,
how to reduce the energy consumption in MEC system has
significant values in practical applications. The energy con-
sumption model applied in our system contains two parts:
local computation energy consumption sub-model and trans-
mission energy consumption sub-model between edge users
and server. The local computing energy consumption is stable
with the full load, which is generated by the UE continuously
in the computation offloading procedures. Besides, the time-
based abstraction of UE computing amount also applies to
those UE without regional computing ability.

VOLUME 8, 2020 118195

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

Therefore, we mainly design the communication energy

consumption in this paper, as shown in Equation 6, where d (k)i

is data amount and β(k)i is data transmission duration. πE is
the energy model for a specific application environment.

5E
k,i(T) = [d (k)i , β

(k)
i , πE] (6)

In our simulation, we choose the energy model used in
article [28]. The energy consumption of the data transmission
process based on WiFi or Long Term Evolution (LTE) wire-
less networks is the relationship between up-link throughput
tu (Mbps) and downlink throughput td (Mbps). The appropri-
ate power levelW for each equipment of edge users could be
calculated by Equation 7.

W = θutu + θd td + θi (7)

According to the research in article [28], the recommended
model parameters for WiFi networks are θu = 283.17, θd =
137.01, θi = 132.86, and for LTE networks is θu =
438.39, θd = 51.97, θi = 1288.04.

In addition, ε(k)i is the transmission energy consumption
during task offloading.w(k)

i is the average transmission power
level required for the task offloading in one time. The rela-
tionship between transmission energy consumption and com-
munication time calculated by Equation 8.

ε
(k)
i = w(k)

i β
(k)
i,j (8)

D. OPTIMIZATION GOALS
We represent the optimization goals of the system based
on cost-benefit analysis. In the computation offloading pro-
cess, energy consumption of data transmission is the cost of
UE, while the computing resource obtained from the server
is the benefit of UE. We formulate this problem to opti-
mize the resource utilization and energy consumption of UE
under the constraints of total server resources. For multi-user
MEC system, we take the above two optimization objectives
for all continuous offloading decisions, which is shown in
Equation 9.

OPT ∗ = max
π∈5

∑ α
(k)
i

ε
(k)
i

s.t.
∑

c(k)j < Cmax , s(k)j (T) = 0, ∀T∑
γ
(R)
k,l < Emax , s(k)l (T) = 1, ∀T (9)

where s(k)i (T) is the state of the task at time T . Tasks change
with user behaviors and system time. When s(k)i (T) = 0,
the state of the user is ‘‘transmitting’’, when s(k)i (T) = 1, the
state of the task is ‘‘remote waiting’’, when s(k)i (T) = 2
the state of the task is ‘‘executing remotely’’, and when
s(k)i (T) = 3, the state of the task is ‘‘completed remotely’’.
The optimization goal is to maximize the number of com-

puting resources obtained while minimizing energy con-
sumption per unit in all possible offloading strategies. π is
one offloading policy selected by the system, and5 is the set

FIGURE 3. Semi-online computational offloading process.

of all reasonable offloading policies. Besides, the optimiza-
tion goal also needs to meet two resource constraints: com-
puting resource constraints and communication resource con-
straints. They indicate that the computing resources allocated
by the server cannot exceed the upper limit Emax provided by
the server at any time. At the same time, the communication
resources allocated in the transmission channel must not
exceed the upper limit of the bandwidth Cmax provided by
the system.

IV. SEMI-ONLINE COMPUTATIONAL OFFLOADING
MODEL (soCoM)
Server needs to select appropriated UE for computation
offloading based on dynamic computing parameters includes
quality of transmission channel, the queue in server side,
and diversity user behaviors. The design goals are to opti-
mize the resource utilization and energy consumption by
using cost-benefit model. Especially for multi-user sys-
tems, the computational offloading in the edge environment
is a complex continuous action decision. One offloading
would affect the resource cost for all tasks within the dura-
tion. Reinforcement learning has a significant advantage in
solving such problems. In this chapter, we will propose
the semi-online Computational Offloading Model (soCoM)
based on reinforcement learning.

A. MARKOV DECISION MODEL
We use Markov Decision Process to explain the decision
process for computation offloading. Markov decision process
is described by a five-tuple (S,A,P,R, γ). ai = {Z } ∈ A.
It is a limited set of actions to decide for offloading. The set
element is a numeric tuple from 1 to 2n, including the UE ID
that needs to offload at the i-th decision. When the system
makes an offloading decision, first it select a value from the
action set. We convert the value to binary, and the number 0 is
filling in n digits from the high order to obtain a 0-1 sequence
of length n. Each bit in the sequence corresponds to one UE,
which is denoted as a(k)i . When a(k)i = 0, UE k executes

118196 VOLUME 8, 2020

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

locally. When a(k)i = 1, UE k offloads the task to the edge
server.
R is a reward function, which refers to the reward imme-

diately obtained from the environment after an action is
complete. For example, when to encourage users to offload,
the offloading action would get a positive immediate return.
For the entire system or the ultimate optimization goal,
we need to calculate the cumulative reward after performing
a series of decision actions.

Then, we could get a trajectory sequence τ =

{s0, a0, s1, a1, . . .} containing states and actions. The purpose
of reinforcement learning is to find the optimal strategy π ,
which can maximize the cumulative return expectation of τ .
In this paper, we need to find the optimal offloading strategy,
which is described by a series of offloading decisions to
maximize the expectation of calculation amount under the
unit transmission energy consumption, which is shown in
Equation 9.

B. REWARD DELAY
System state is changing over time, which is shown in
Figure 4. Assume at the moment of Tk , the core decision
algorithm DQN obtains the observation Observationk from
the server state and offloads the action Actionk according to
the observation. The offloading action would affect the states
of UE who received the offloading message, and then the
specific task states turns to offload. After the task enters the
offloading process, it would undergo state transitions such
as transmission, reaching the server cache, server process-
ing, and execution completion. During the entire conversion
process, server resources and status would be continuously
affected. When the task is completed, the reward Rewardk+1
obtained from this offloading returns to the decision algo-
rithm for learning. From the description, at the time of Tk ,
the decision algorithm DQN could not obtain the immediate
reward of this action, but only the reward of the previous
moment. Therefore, continuous decisionmaking in reinforce-
ment learning processes is critical.

FIGURE 4. soCoM with DQN based on user behavior prediction.

The system states set is a 5-tuple: S, including system
resource allocation rate, channel allocation rate, the num-
ber of tasks that have been transmitted but not reached,
the number of tasks that have been executed but not com-
pleted, and the remaining execution time of tasks. s(k)i (t) ∈
{LW ,RT ,RW ,RP,COM} is the state of task i at time t ,
including local waiting (LW), remote transmission (RT),
remotewaiting (RW), remote processing (RP), and completed
(COM).

The set of actions includes the set of all edge equipment to
be selected. Action set A = [ak], k = 1, 2, . . . ,N , ak ∈ 0, 1.
Reinforcement learning is rewarded by the return function
Rj at the time of t . For a semi-online system environment,
the remote server could only obtain task information that
has offloaded to the remote. Therefore, we consider the
saved running time with energy consumption of the task as
a reward for an offload behavior at time t , which is shown in
Equation 10.

Rewardt =
α
(k)
i

ε
(k)
i

s.t. s(k)i (t) = COM , ∀k, i

s(k)i (t − 1) = RP, ∀k, i (10)

Besides, the system would receive a punitive reward when
resources are overloaded. We set a punitive reward as the
negative value of the absolute value for the current system
reward. At the same time, it could ensure that the inten-
sity of punishment is consistent with the degree of reward
obtained during operation. The punitive reward is shown in
Equation 11:

Reward−t = −|Rewardt−1| (11)

The cumulative reward of reinforcement learning is the
lower limit of the system’s optimization goal OPT ∗, which
is shown in Equation 12.∑

t=T

(Rewardt + Reward−t) ≤ OPT
∗ (12)

A model-free reinforcement learning method: the time
difference method (TD) is applied to solve the optimization
problem. The time difference method in reinforcement learn-
ing combines Monte Carlo sampling and bootstrapping in
dynamic programming methods, which could bring better
learning results and efficiency. For specific reinforcement
learningmethods, due to the successful application of channel
selection calculation offloading [15], we use Deep Q Learn-
ing to solve this problem. In the structure of neural network,
we use the L2 Mean Squared Error (MSE) loss function [29],
which is shown in Equation 13.

MSE(y, y′) =

∑n
i=1(yi − y

′
i)
2

n
(13)

The semi-online reinforcement learning algorithm running
on the remote server is in Algorithm 1. The GetReward()
method obtains the instant system reward.

VOLUME 8, 2020 118197

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

Algorithm 1 Semi-Online Computational Offloading Model
With DQN
1: At the beginning of time 0: Initialize Q(s, a),∀s ∈
S,∀a ∈ A(s), γ

2: for episode in 1,2,. . . ,n do
3: Get s from environment
4: Begin remote server processing:
5: while True do
6: Get aj from A(sj)
7: Get a(j) from A(s(j))
8: Refresh Q(s(j), a(j))
9: R(j) = GetReward()
10: Offloading tasks from UE in a(j)
11: s(j) = s(j+1), a(j) = a(j+1)
12: if task t (k)i is finished: then

13: reward(t (k)i) =
α
(k)
i

ε
(k)
i

14: end if
15: R(j+1) = GetReward()
16: Training processing
17: end while
18: end for

V. IMPROVING soCoM WITH DUELING DQN
Our motivation is that, because of behavioral differences,
UE selection leads to large action space. First, we discuss how
to take advantage of user behavior prediction for a complex
multiple server system. Then, we explore the principles of
several improved methods based on DQN and give reasons
for choosing Dueling DQN as the target algorithm.

We divide our optimization goal, OPT ∗, into two sub-
goals:

1) Improve choices probability for well-behavior UE.
In the case of the same throughput, the more
well-behavior UE the system select, the higher profit
it would gain.

2) Improve offloading throughput avoiding resource bot-
tleneck. With equal rewards for single offloading,
the more offloading the UE complete, the more benefit
it would get.

Reinforcement learning starts with random exploration.
When the action space is enormous, covering all situations
is challenging. We hope that RL methods could consider
both of sub-goals. However, bootstrapping in DQN explores
each action equally. When the action space is too large,
DQN wastes unnecessary energy on studying those actions
with lower rewards. Smart RL methods could obtain approx-
imately optimal decisions through limited exploration.

A. COMPLEX AND LARGE SCALE ACTION SPACE
In this article, the large-scale action space is not equivalent
to large-scale edge computing systems. Indeed, large-scale
system scheduling involving thousands of UE and dozens of
servers is a challenging problem. However, there is usually

no noticeable difference in behavior between those UE in
large-scale systems.

Let us illustrate this problem with examples. In the issue of
channel selection, we assume that there are m channels with
different conditions and n UE with the same behaviors. Each
offload selection only needs to select one of the m channels.
The possible offloading action space is Cm

n × m!.
But suppose there are n UE with completely different

behaviors. During the process of allowing several UE to
offload each round, the possible offloading action combina-
tions is shown in Equation 14.

n∑
i=0

C i
n = 2n (14)

If the order of offloading UE in each roundwould affect the
resources allocation for others, for example, in FCFS, the UE
task who arrives first would occupy the resource first. The
possible offloading action space may be

∑n
i=0 A

i
n.

Besides, the number of UE is usually much larger than
the number of channels. Therefore, the behavior difference
between users would significantly increase the scheduled
action space in the learning process, which makes optimiza-
tion difficult.

B. TWO-WAY CHOICE BASED ON BEHAVIOR PREDICTION
When the edge system consists of multiple UE and servers,
UE could choose one of the servers to obtain services, and
the server would accept various offloading requests at the
same time. Therefore, there is a two-way choice problem
between UE and servers: i) UE can choose a server that
provide services better and faster, and ii) when resources are
limited, servers choose to serve which UE first.

We define a two-way priority descriptor pk,j(t) betweenUE
k and server j, which describes the priority of UE k and server
j to establish the offload service at time t .
Therefore, when selecting a server, the UE choose prefer-

entially those servers with a high probability of QoS accord-
ing to pk,j(t). When the server selects UE, it would give
priority to UE with better resource utilization. According to
the analysis, the two-way priority descriptor pk,j(t) equals to
the behavior prediction of UE.

The multiple server system with soCoM is in FIGURE 5.
The core idea of DQN is guiding the action through reward
functions based on observation of system state. In soCoM,
we use reward as the UE’s behavior prediction, which brings
two benefits: i) The reward value measures the pros and cons
of UE behavior and assists the server and UE in making a
two-way choice. ii) As the RL algorithm gradually learn-
ing the right actions and corresponding rewards during the
training process, the performance of the entire system could
improve.

C. DOUBLE DQN
We first focus on Double DQN [30]. Compared with DQN,
Double DQN uses an empirical playback strategy to solve

118198 VOLUME 8, 2020

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

FIGURE 5. soCoM for multiple servers system.

the problem of DQN overestimation, which reflects in the
different goals of TD in Equation 15 and 16.

YQt = Rt+1 + γmaxaQ(St+1, a; θt) (15)

YDoublet = Rt+1 + γQ(St+1,

argmaxaQ(St+1, a; θ−t); θt) (16)

Double DQN improves DQN’s decision-making effect on
a large action space to a certain extent. Because of the
over-fitting problem, DQN could not estimate every point
of the value function during the training process. That is,
the estimator is not uniform. The overestimation of DQN
median function affects the final decision. Therefore, Double
DQN selects and evaluates actions through different value
functions, which reduces the over-fitting problem of DQN.
Since reinforcement learning is a process of learning while
exploring, good action choices would lead to better explo-
ration paths.

D. PRIORITIZED REPLAY
Prioritized Replay optimizes DQN for improving the learning
efficiency of DQN [31]. By enhancing the max operation in
DQN, Double DQN still adopts a uniform distribution during
empirical playback. The Prioritized Replay strategy considers
that, for agents, not all historical data is equally meaningful
for learning. By breaking the uniform sampling and assigning
sampling weight to the state, Prioritized Replay improves the
learning efficiency.

The principle of Prioritized Replay is by sorting δ of TD-
error. The larger the TD-error, the more significant the gap
between the state value function and the target. The more
considerable the update amount of the agent, the higher the
learning efficiency. We let the TD-error at sample i be δi,
and the ranking result of all δi is rank(i), then the importance
sampling coefficient at this place is shown in Equation 17.

pi =
1

rank(i)
(17)

P(i) =
pαi∑
k p

α
k

(18)

ωi = (
1
N

1
P(i)

) (19)

However, Prioritized Replay does not solve the problem of
insufficient exploration as the action space increases. Sorting
historical data would cause the agent to concentrate actions
in a smaller range, which is not conducive for exploring new
action sequences.

E. DUELING DQN
Dueling DQN considers that not all actions are essential [13].
Especially when some individual states appear, some key
actions are beneficial. Dueling DQN focuses on the relation-
ship between critical states and actions. Dueling DQN would
solve the problem of too much action space caused by UE
differences.

Dueling DQN changes the structure of DQN network,
as shown in Figure 6. The top one is basic DQN model,
and Dueling DQN is structurally consistent with the original
DQN in the first half. At the output, Dueling DQN does
not directly connect a fully connected layer after the con-
volutional layer but maps the output to two fully connected
layers. These two fully connected layers would evaluate the
value and advantages of actions and states, respectively. They
are also called value function V π (s) and potential function
Aπ (s, a). Finally, Dueling DQN obtains the final Q value
output by merging the two fully connected layers, which is
shown in Equation 20.

Qπ (s, a) = V π (s)+ Aπ (s, a) (20)

FIGURE 6. Deep Q network(top) and Dueling Deep Q network(bottom).

Expanding the above formula we can get Equation 21.:

Q(s, a; θ, α, β) = V (s; θ, β)+ A(s, a; aθ, α) (21)

Among them, θ, α, β are neural network parameters.
According to analysis, Q(s, a; θ, α, β) is the true Q func-
tion estimate. So the value functions V (s; θ, β) and potential
functions A(s, a; θ, α) do not provide an accurate estimate
of the value of the action. To solve this problem, Dueling

VOLUME 8, 2020 118199

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

DQNmodified the potential function to forcefully reduce the
proportion of the potential function in action selection, which
is shown in Equation 22.

Q(s, a; θ, α, β) = V (s; θ, β)+ (A(s, a; θ, α)

−
1
|A|

∑
a′
A(s, a′; θ, α)) (22)

VI. SIMULATION RESULT
In this section, we demonstrate the performance of soCoM
through simulation. In the following simulations, we use time
units to simulate the amount of calculations performed by
different UE and servers. We use TensorFlow 1.0 to imple-
ment our RL algorithm in Python and use SimPy to complete
the simulation experiment [32]. The configuration of the
experiment is in TABLE 3.

TABLE 3. Single server experiment parameter.

The tasks generated by applications have randomness in
the number of instructions and the size of the input/output
files. Based on the real measurement data offloaded from the
image recognition calculation in [33], we generate simulation
data by adding uniform noise.

In the single-server simulation experiment, we set up
5 to 20 user equipment and one edge server. The minimum
computing time unit is 25ms. Different hardware platforms,
algorithm platforms, and input data sizes result in different
task execution times. Changes in the system environment
(such as user-side or network congestion) would affect task
execution and communication time. In the simulations, as UE
ID k increases, the amount of calculations for user tasks is
increasing. ξ is random noise from 1 to 5:

α
(k)
i = (k + 1)× 25× ξ (23)

The minimum data volume unit is 64KB. As UE ID k
increases, the amount of transmission data size is decreasing,
which simulates user status with different tasks and data
volumes. n is the total number of UE:

d (k)i = (n− k)× 64 (24)

A communication channel connects UE and the server. The
total network bandwidth in the non-blocking state is 50Mbps.
The offloading algorithm would determine which UE can get
the offloading opportunity in this round, and the requesting
user could complete the offloading task selection based on the
message. The simulation time is 150s. In the process, when
UE has successfully offloaded, a new taskwould be generated
to ensure the continuous generation of the task flow.

For experiments with non-RL methods, we first select an
online algorithm, a semi-online algorithm, and an offline
algorithm:

1) Online algorithm. The resource selection process ini-
tiated by the user terminal is online scheduling.
Users need to complete decision optimization through
online information exchange [27]. In our simulation,
the online algorithm could not obtain any UE informa-
tion, so the server selects the target UE set for offload-
ing randomly.

2) Semi-online algorithm. SPaC is a semi-online algo-
rithm based on communication time [14]. In the
decision-making process, SPaC makes the offloading
decision by selecting the UE combined with the short-
est communication time.

3) Offline algorithm. In principle, the offline algorithm
could obtain an optimal global solution. Due to such
complex scheduling is NP-hard [7], we could not get
a continuous optimal offline schedule within a pro-
ductive calculation time. In our simulation, the offline
algorithm assumes that the calculation amount of the
task and the transmission data size are known. In each
one round of decision-making, the offline algorithm
selects the UE set that maximizes the optimization
target only in one round and does not consider the
continual impact.

For experiments with RL, we select the basic DQN algo-
rithm, Dueling DQN,Double DQN algorithm, and Prioritized
Replay. For the neural network implementation, we use a
fully connected neural network (DNN) consisting of one
input layer, two hidden layers, and one output layer. The
number of neurons in the hidden layer is 20. Adam’s opti-
mized learning rate is 0.01, the training batch size is 32,
and the memory size is 512. The source code is available at
https://github.com/snsong/soCoM.

We analyze the algorithm’s adaptation to different action
spaces and its response to changes in the dynamic system
environment. This experimental design has the following
considerations:

1) UE cost and benefit: Each UE has different behav-
iors. As the UE number grows, the spatial range
of algorithm actions increases exponentially. The
experimental indicators include offloading through-
put, optimization goals, saved computing time, and
communication energy consumption. Here we have
not considered the user’s local energy consumption
of calculation. As UE is heterogeneous, UE com-
puting energy saving is usually proportional to the
amount of calculation and time required to complete the
offload.

2) Server load and profit: When the server resources
are constant, the UE number increasing would bring
challenges to the server load. The flexible scheduling
could balance system resources to avoid congestion and
idleness. Besides, in practical applications, the server

118200 VOLUME 8, 2020

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

obtains profits by providing computing resources.
By comparing the utilization of network bandwidth,
computing resources, and optimization goals, it is pos-
sible to measure the benefit received by the server from
an offload algorithm.

3) UE behavior prediction: Furthermore, what makes
the algorithm give proper scheduling under limited
resources? We analyzed the selection of UE during
the execution of different RL algorithms. The result
explains that the prediction of user behavior would
affect the efficiency of offloading.

A. PARAMETER ANALYSIS
We first focus on two essential parameters in RL: e-greedy
and reward delay, see in FIGURE 7. We use e-greedy method
for reinforcement learning exploration [34]. The parameter
ε determines when the decision is exploring. The behavior
that e-greedy chooses to execute each time is the most con-
siderable estimated value. In the case of a small probability,
the algorithm selects other actions randomly. For example,
when ε = 0.1, RL would choose the given solution with a
probability of 0.9 and conduct a random exploration with a
probability of 0.1.

FIGURE 7. RL parameters of e-greedy(left) and reward delay(right).

Reward decay is the parameter γ in Equation 15 and 16.
Reinforcement learning depends on the reward hypothe-
sis, and all goals are to maximize the estimated cumula-
tive rewards. However, the probability of getting rewards
decreases as the algorithm goes further. Because of the dif-
ficulty increases, the discount rate γ increase, either, which
is between 0 and 1. The larger the γ value, the less the dis-
count, the learning agent pays more attention to the long-term
reward. If γ is smaller, the agent pays more attention to the
short-term reward.

We examined the setting of the two key parameters from
the perspective of model optimization reward with a penalty,
see in Equation 11 and 12. According to the results, when the
value of ε is small, a better learning effect can be obtained.
And γ needs to be larger to obtain a better learning effect.
Therefore, soCoM pays more attention to the impact of
short-term benefits on the system. In the following experi-
ments, the values of these two parameters are: ε = 0.1 and
γ = 0.9.

B. UE COST AND BENEFIT
We compare the experimental results obtained by the non-RL
methods and the RL methods in simulation. From the exper-
imental results, the RL-based methods achieve good prelimi-
nary results in most cases. The offline algorithm and SPaC is
an optimal solution based on the one-round decision, but not
the globally optimal solution for continuous actions. As the
action space increasing, the single optimal of the offline
algorithm gradually leads to a better global solution. But
considering the computational complexity, it is not suitable
for the real world.

From the analysis of the optimization goal OPT, when the
number of UE is increasing, Dueling DQN still maintains
good results, see in FIGURE 8. Moreover, Dueling DQN
adopts to select UEwith lower transmission energy consump-
tion and a higher calculation amount to achieve the opti-
mization goal. In the same simulation for 10 UE, the energy
consumption of Dueling DQN is 58.1% and 32.1% of DQN
and Double DQN, and saved computation capability for the
user equipment is 1.28 times and 1.15 times.

FIGURE 8. UE cost and benefit as UE number increasing.

Besides, as the UE number increases, the results obtained
by Dueling DQN are always stable. The shortcoming of
the exploration is the cause of unstable results. Since the
RL method starts with random exploration, DQN algorithms
would get good results, luckily, if they randomly choose a
more favorable exploration direction. In the next section,
we would analyze the reasons for the differences with more
details.

C. SERVER LOAD AND PROFIT
As the UE number increases, the results obtained by Duel-
ing DQN are always stable in FIGURE 9. Dueling DQN
still occupies lower bandwidth during the decision-making

VOLUME 8, 2020 118201

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

FIGURE 9. Bandwidth usage(left) and computing resource usage(right) as
UE number increasing.

process to avoid bottlenecks in network transmission. For
example, when the number of users is 18 and 19, both
Dueling DQN and Double DQN spend the same comput-
ing resources, but Dueling DQN obtains better profit in
FIGURE 8.

D. UE BEHAVIOR PREDICTION
In this section, we analyze the behavior prediction of UEwith
four RL methods. We focus on the choice of UE and their
benefit. The consequences for offloading decisions are in the
case of 5 and 20 UE is shown in Figure 10 and FIGURE 11.
Among them, the horizontal axis is the UE ID, and the vertical
axis is the optimization goal OPT.

FIGURE 10. UE selection for different RL algorithms of 5 UE(left) and
20 UE(right).

According to the experimental design, the UE with a more
significant ID number has a smaller amount of transmit-
ted data size and a more amount of calculation performed.
Intuitively, giving those UE more opportunities to offload
would conducive to obtaining a better OPT. When there are
5 UE, all the algorithms show a UE selection tendency that is
conducive to system optimization. Among them, the choice of
Double DQN is more visible, while DQN tends to choose to
improve the overall throughput. As the number of UE increas-
ing to 20, Double DQN, Prioritized Replay, and DQN all
make inevitable mistakes in UE selection. Therefore, Dueling
DQN predicts UE behavior more accurately and improves
offload throughput in both cases.

FIGURE 11. UE benefit for different UE selection.

FIGURE 12. Server benefit and balance in multiple server system.

E. MULTIPLE SERVERS SCENARIO
In the final simulation, we set up 100 UE and four edge
servers, see in TABLE 4. As server ID increasing, the compu-
tation rate is rising from 2 to 8 times. As UE ID k increasing,
the amount of calculations for UE tasks is increasing as
α
(k)
i = (k + 1) × 10, and the amount of transmission data

size is decreasing as d (k)i = (n− k)× 8.

TABLE 4. Multiple servers experiment parameter.

118202 VOLUME 8, 2020

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

In this simulation process, there are some common points
from the extreme case of system resource exhaustion. For all
RL algorithms, the average bandwidth occupancy rate of the
four servers is close to 98.6%. The computing resource uti-
lization rate is about 55.9%. The average number of offload-
ing tasks completed is about 10547.

The difference is that under the same throughput and
resource usage, the improved method of DQN achieves better
optimization results OPT than DQN. Judging from the aver-
age of four servers (as shown in the final column), Dueling
DQN is slightly better. Dueling DQN can better balance the
load between servers. Under such an exhausting resource
configuration, the bottleneck of edge services appears in
the network transmission process. Therefore, balancing the
utilization of resources is the key to optimizing complex
systems.

Besides, for larger-scale edge computing systems, increas-
ing server computing ability and network bandwidth are
essential to ensure service quality. At the same time, increas-
ing the number of neurons and network layers would improve
the intelligence of the RL algorithm and require longer train-
ing time.

VII. CONCLUSION
We propose soCoM model in this paper to overcome the
disadvantage of current works under the assumption that
the end-users in the MEC system are diverse. soCoM uses
a semi-online model and reinforcement learning to offload
computation tasks according to the dynamic environments
and loosely composed of the MEC systems. Experimental
results show that Dueling DQN performs better for mass
action space exploration in the computation offloading pro-
cedure. The methods also could be used to resolve large-scale
computation offloading works in our future work.

REFERENCES
[1] X. Jiang, H. Shokri-Ghadikolaei, G. Fodor, E. Modiano, Z. Pang, M. Zorzi,

and C. Fischione, ‘‘Low-latency networking: Where latency lurks and how
to tame it,’’ Proc. IEEE, vol. 107, no. 2, pp. 280–306, Feb. 2019.

[2] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collabora-
tive mobile edge computing in 5G networks: New paradigms, scenar-
ios, and challenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61,
Apr. 2017.

[3] J. Tang, Build 10+ Artificial Intelligence Apps Using TensorFlow Mobile
and Lite for iOS, Android, and Raspberry Pi. Birmingham, U.K.: Packt
Publishing Ltd, 2018.

[4] M. Motamedi, D. Fong, and S. Ghiasi, ‘‘Machine intelligence on resource-
constrained iot devices: The case of thread granularity optimization for
CNN inference,’’ ACM Trans. Embedded Comput. Syst., vol. 16, no. 5,
p. 151, 2017.

[5] H. Tang, J. Wang, L. Song, and J. Song, ‘‘Minimizing age of information
with power constraints: Multi-user opportunistic scheduling in multi-state
time-varying channels,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 854–868, May 2020.

[6] R. Xie, X. Jia, and K. Wu, ‘‘Adaptive online decision method for initial
congestion window in 5G mobile edge computing using deep reinforce-
ment learning,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 2, pp. 389–403,
Feb. 2020.

[7] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[8] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
‘‘Adaptive resource allocation for computation offloading: A control-
theoretic approach,’’ACMTrans. Internet Technol., vol. 19, no. 2, pp. 1–20,
Apr. 2019.

[9] L. Tang and S. He, ‘‘Multi-user computation offloading in mobile edge
computing: A behavioral perspective,’’ IEEE Netw., vol. 32, no. 1,
pp. 48–53, Jan. 2018.

[10] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, ‘‘Smart manufacturing
scheduling with edge computing using multiclass deep Q network,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[12] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio, ‘‘Drawing
and recognizing chinese characters with recurrent neural network,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 849–862, Apr. 2018.

[13] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de
Freitas, ‘‘Dueling network architectures for deep reinforcement learn-
ing,’’ 2015, arXiv:1511.06581. [Online]. Available: http://arxiv.org/abs/
1511.06581

[14] J. P. Champati and B. Liang, ‘‘Semi-online algorithms for computational
task offloading with communication delay,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 4, pp. 1189–1201, Apr. 2017.

[15] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, ‘‘Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,’’
IEEE Trans. Cognit. Commun. Netw., vol. 4, no. 2, pp. 257–265, Jun. 2018.

[16] J. Li, H. Gao, T. Lv, and Y. Lu, ‘‘Deep reinforcement learning based
computation offloading and resource allocation for MEC,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[17] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, ‘‘IRAF: A deep
reinforcement learning approach for collaborative mobile edge computing
IoT networks,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 7011–7024,
Aug. 2019.

[18] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, ‘‘Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050–8062, Aug. 2019.

[19] M. Yan, G. Feng, J. Zhou, and S. Qin, ‘‘Smart multi-RAT access based on
multiagent reinforcement learning,’’ IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 4539–4551, May 2018.

[20] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

[21] L. Huang, S. Bi, and Y. J. Zhang, ‘‘Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing net-
works,’’ IEEE Trans. Mobile Comput., early access, Jul. 24, 2019, doi: 10.
1109/TMC.2019.2928811.

[22] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, ‘‘Deep rein-
forcement learning for vehicular edge computing: An intelligent offloading
system,’’ ACM Trans. Intell. Syst. Technol., vol. 10, no. 6, p. 60, 2019.

[23] Y. Liu, H. Yu, S. Xie, and Y. Zhang, ‘‘Deep reinforcement learning for
offloading and resource allocation in vehicle edge computing and net-
works,’’ IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[24] J. Wang, L. Zhao, J. Liu, and N. Kato, ‘‘Smart resource allocation
for mobile edge computing: A deep reinforcement learning approach,’’
IEEE Trans. Emerg. Topics Comput., early access, Mar. 4, 2019, doi: 10.
1109/TETC.2019.2902661.

[25] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, ‘‘Learning
driven computation offloading for asymmetrically informed edge comput-
ing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1802–1815,
Aug. 2019.

[26] F. Wang, J. Xu, X. Wang, and S. Cui, ‘‘Joint offloading and com-
puting optimization in wireless powered mobile-edge computing sys-
tems,’’ IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797,
Mar. 2018.

[27] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

VOLUME 8, 2020 118203

http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TETC.2019.2902661
http://dx.doi.org/10.1109/TETC.2019.2902661

S. Song et al.: Semi-Online Computational Offloading by Dueling DQN for User Behavior Prediction

[28] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
‘‘A close examination of performance and power characteristics of 4G LTE
networks,’’ inProc. 10th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
2012, pp. 225–238.

[29] S. Ohno, T. Shiraki, M. R. Tariq, and M. Nagahara, ‘‘Mean squared error
analysis of quantizers with error feedback,’’ IEEE Trans. Signal Process.,
vol. 65, no. 22, pp. 5970–5981, Nov. 2017.

[30] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experi-
ence replay,’’ 2015, arXiv:1511.05952. [Online]. Available: http://arxiv.
org/abs/1511.05952

[32] N. Matloff, ‘‘Introduction to discrete-event simulation and the simpy lan-
guage,’’ Dept. Comput. Sci., Univ. California Davis, Davis, CA, USA,
Tech. Rep., Jan. 2008, vol. 2.

[33] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T.Mudge, J.Mars, and L. Tang,
‘‘Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge,’’ ACM SIGARCH Comput. Archit. News, vol. 45, no. 1, pp. 615–629,
May 2017.

[34] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
in Proc. Neural Inf. Process. Syst., 1999.

SHINAN SONG received the B.E. and M.S.
degrees in computer science and technology from
Jilin University, Changchun, China, in 2012 and
2015, respectively, where she is currently pursuing
the Ph.D. degree. Her research interests include
edge computing and deep neural networks.

ZHIYI FANG received the Ph.D. degree in com-
puter science from Jilin University, Changchun,
China, in 1998. He was a Senior Visiting Scholar
with The University of Queensland, Brisbane,
QLD, Australia, from 1995 to 1996, and with the
University of California at Santa Barbara, Santa
Barbara, CA, USA, from 2000 to 2001. He is
currently a Professor of computer science with
Jilin University, and a member of the China Soft-
ware Industry Association and the Open System

Committee of China Computer Federation. His research interests include
distributed/parallel computing systems, mobile communication, andwireless
networks.

ZHANYANG ZHANG (Member, IEEE) received
the Ph.D. degree in computer science from The
City University of New York (CUNY). He is
currently a Tenured Professor with the Depart-
ment of Computer Science, The City Univer-
sity of New York and a Doctoral Tutor. His
main research areas involve wireless communi-
cation networks, underwater wireless sensor net-
works, network system simulation, and parallel/
distributed computing.

CHIN-LING CHEN received the Ph.D. degree
from National Chung Hsing University, Taiwan,
in 2005. From 1979 to 2005, he was a Senior Engi-
neer with Chunghwa Telecom Company, Limited.
He is currently a Professor. His research inter-
ests include cryptography, network security, and
electronic commerce. He has published more than
90 articles in SCI/SSCI international journals.

HONGYU SUN (Member, IEEE) received the
Ph.D. degree from Jilin University, Changchun,
China, in 2017. From January 2015 to Septem-
ber 2016, she was a Visiting Scholar with the
University of Maryland, Baltimore County. She is
currently an Assistant Professor with Jilin Normal
University. She has published more than 20 arti-
cles in SCI/EI international conference proceed-
ings and journals. Her research interests include
wireless communication and mobile computing,

RF-based sensing, privacy and security, and the Internet of Things (IoT).

118204 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	COMPUTATION MODEL
	COMMUNICATION MODEL
	ENERGY CONSUMPTION MODEL
	OPTIMIZATION GOALS

	SEMI-ONLINE COMPUTATIONAL OFFLOADING MODEL (soCoM)
	MARKOV DECISION MODEL
	REWARD DELAY

	IMPROVING soCoM WITH DUELING DQN
	COMPLEX AND LARGE SCALE ACTION SPACE
	TWO-WAY CHOICE BASED ON BEHAVIOR PREDICTION
	DOUBLE DQN
	PRIORITIZED REPLAY
	DUELING DQN

	SIMULATION RESULT
	PARAMETER ANALYSIS
	UE COST AND BENEFIT
	SERVER LOAD AND PROFIT
	UE BEHAVIOR PREDICTION
	MULTIPLE SERVERS SCENARIO

	CONCLUSION
	REFERENCES
	Biographies
	SHINAN SONG
	ZHIYI FANG
	ZHANYANG ZHANG
	CHIN-LING CHEN
	HONGYU SUN

