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ABSTRACT Ischemic stroke subtypingwas not only highly valuable for effective intervention and treatment,
but also important to the prognosis of ischemic stroke. The manual adjudication of disease classification
was time-consuming, error-prone, and limits scaling to large datasets. In this study, an integrated machine
learning approach was used to classify the subtype of ischemic stroke on The International Stroke Trial (IST)
dataset. We considered the common problems of feature selection and prediction in medical datasets. Firstly,
the importances of features were ranked by the Shapiro-Wilk algorithm and Pearson correlations between
features were analyzed. Then, we used Recursive Feature Elimination with Cross-Validation (RFECV),
which incorporated linear SVC, Random-Forest-Classifier, Extra-Trees-Classifier, AdaBoost-Classifier,
and Multinomial-Naïve-Bayes-Classifier as estimator respectively, to select robust features important to
ischemic stroke subtyping. Furthermore, the importances of selected features were determined by Extra-
Trees-Classifier. Finally, the selected features were used by Extra-Trees-Classifier and a simple deep
learning model to classify the ischemic stroke subtype on IST dataset. It was suggested that the described
method could classify ischemic stroke subtype accurately. And the result showed that the machine learning
approaches outperformed human professionals.

INDEX TERMS Machine learning, ischemic stroke subtype, feature selection, IST.

I. INTRODUCTION
Stroke had become a major cause of disability worldwide. It
was predicted that by 2030, there could be almost 70 million
stroke survivors, and more than 200 million disability-
adjusted life-years (DALYs) lost from stroke each year [1].
Stroke burden in high-income countries was very serious,
and the burden of stroke increases rapidly in low-income
and middle-income countries in recent years with the rapid
development of social economy [2]. In ischemic stroke (IS),
subtype classification was critical for management and out-
come prediction. Numerous medical studies and data analy-
ses had been conducted to classify IS subtype. Classification
of ischemic stroke subtype required synthesis of historical,
examination, laboratory, electrocardiographic, and imaging
data to infer a mechanism and assign causal, etiologic, or
phenotypic classification. A few different subtype schemas
had been proposed including the Trial of Org10172 in Acute
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Stroke (TOAST) classification [3], Causative Classification
System (CCS) [4], Oxfordshire Community Stroke Project
(OCSP) [5], [6], and Atherosclerosis, Small-vessel disease,
Cardioembolism and Other causes (ASCO) system [7]. All
these classifications possessed their own advantages and
weaknesses. For an example, the TOAST system had become
the most widely used in recent literature, most often in stud-
ies that did not investigate the efficacy of new acute stroke
treatments, such as genetic association studies, evaluations of
new potential risk factors or causes of stroke, epidemiologic
studies, etc. It had the weaknesses of flawing the medical
decision-making process, causing major biases, etc. [8]. On
the other hand, the OCSP system had the apparent advan-
tages. Patients were easy to classify into groups based on
clinical grounds and CT scanning. The outcome of stroke was
driven strongly by the severity of the stroke, which was well
reflected in this classification. This system had been seldom
used in the 21st century to investigate potential risk factors
or causes of stroke. But compared to other systems, such as
ASCO, CCS, it was easy to control and can be reliably used
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TABLE 1. OCSP classification.

in emergent situation. The OCSP system provided a simple
assessment of stroke severity, with total anterior circulation
syndrome having the worst prognosis [5]. The classification
was based on clinical findings only. Computed tomography
(CT) scanning was the best investigational test performed,
but assessment of extra and intracranial arteries and precise
cardiac work-up were not available [8]. In TABLE 1, the
detailed OCSP classification was presented.

II. BACKGROUND AND DEVELOPMENT
A stroke subtype classification should be useful both in daily
clinical practice and in epidemiological and genetic studies,
randomized acute clinical trials, and prevention studies of
various types (e.g. including the hemorrhagic aspects). The
OCSP classification could be easily used to assess IS severity
and predict the prognosis [9]. But the manual IS subtype
classification was time-consuming, error-prone, professional
dependent, and limits scaling to large datasets. Now, machine
learning algorithms are capable of identifying features highly
related to stroke occurrence efficiently from the huge set of
features [10]; therefore, we believe machine learning can be
used to overcome these limitations. In this study, we tested the
hypothesis that an integrated machine learning method per-
formed on features identification of structured medical data
could identify OCSP subtype with high accuracy compared to
manually determined OCSP subtyping performed by board-
certified stroke neurologists.

Thus far, there had been a few studies on machine learning
methods in processing censored medical data that outper-
formed traditional statistical methods. Kattan [11] compared
Cox proportional hazards regression with several machine

learning methods (neural networks and tree-based methods)
based on three urological datasets. However, Kattan’s study
focused on datasets with only five features, while machine
learning algorithms were expected to effectively deal with a
large number of features. Recently, Stephen et al [12] and
JoonNyung et al [13] presented modern machine learning
based model for prediction of stroke risk and prognosis. In
their work, random forest, gradient boosting machines and
deep neural network were used and the accuracy of prediction
was significantly increased. Ravi et al [14] had tested that
advanced machine learning methods performed on unstruc-
tured textual data in the electronic health record (HER) can
identify TOAST subtype with high concordance and inter-
rater reliability.With the rapid development ofmachine learn-
ing method and theory in recent years, more powerful and
effective integrated methods were developed [15], [16], and
[17]. In this paper, Recursive Feature Elimination with Cross-
Validation (RFECV) was used to select features that can
automatically subtype IS.

III. MATERIAL
The dataset analyzed in this paper was downloaded from The
International Stroke Trial (IST) website. IST was conducted
between 1991 and 1996 (including the pilot phase between
1991 and 1993). It was a large, prospective, randomized con-
trolled trial, with 100% complete baseline data and over 99%
complete follow-up data. The aim of the trial was to estab-
lish whether early administration of aspirin, heparin, both
or neither influenced the clinical course of acute ischemic
stroke [18]. The patients in this trial were treated more than
20 years ago, and many have died. Patients and hospitals
were identified only by an anonymous code; there were no
identifying data such as name, address or social security
numbers; patient age has been rounded to the nearest whole
number. In our opinion, usage of the dataset clearly presented
no material risk to confidentiality of study participants.

The dataset included the following baseline data: age, gen-
der, time from onset to randomization, presence or absence of
atrial fibrillation (AF), aspirin administration within 3 days
prior to randomization, systolic blood pressure at random-
ization, level of consciousness and neurological deficit. The
IS subtypes were classified as one of the OCSP categories
(TABLE 1): TACS, PACS, POCS and LACS. Nineteen thou-
sand four hundred and thirty five patients from 467 hos-
pitals in 36 countries were randomized within 48 hours of
symptoms onset. In this dataset 984 patients were involved
in the pilot phase and 1815 patients in the regular phase were
finally not diagnosed as IS. The patients of pilot phase and not
diagnosed as IS were excluded in this study, and then 16636
entries were kept. The data of these 16636 patients were used
to select robust features for automatically IS subtyping.

IV. WORKFLOW
Given an external estimator that assigns weights to fea-
tures (e.g., the coefficients of a linear model), recursive fea-
ture elimination (RFE) was to select features by recursively
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considering smaller and smaller sets of features. First, the
estimator was trained on the initial set of features and the
importance of each feature was obtained either through a
coef_attribute or through a feature_importances_attribute.
Then, the least important features were pruned from cur-
rent set of features. That procedure was recursively repeated
on the pruned set until the desired number of features to
select was eventually reached. RFECV performed RFE in a
cross-validation loop to find the optimal number of features
[19]. The integrated machine learning approach of RFECV
used in the study adopted linear SVC, Random-Forest-
Classifier, Extra-Trees-Classifier, AdaBoost-Classifier, and
Multinomial-Naïve-Bayes-Classifier as its estimator respec-
tively. In this study, a Recursive Feature Elimination (RFE)
algorithm was carried out with automatic tuning of the num-
ber of features selected with cross-validation.

Firstly, features collected at the beginning of randomiza-
tion were selected. Some features, such as time, date infor-
mation and comments, were deleted manually (these features
apparently were not related to the IS subtyping). The feature
of OCSP deficit subtypes (STYPE) was kept as the target
of the dataset. Then, twenty-two features were kept. The
importances of these features were ranked by the Shapiro-
Wilk algorithm and Pearson correlations between features
were analyzed. The Shapiro-Wilk algorithm was utilized to
assess the normality of the distribution of instances with
respect to the feature, and was improved by Royston to
process large data [20], [21]. In order to overcome the time-
consuming problem of RFECV, advised by nerve physician
and considering the results of Shapiro-Wilk ranking, 8 fea-
tures which were related and important to IS subtyping were
selected firstly. Now, we wanted to know which features
would be more important to IS subtyping in the selected 8
features. Secondly, an integrated machine learning approach
of RFECV was constructed. Linear SVC, Random-Forest-
Classifier, Extra-Trees-Classifier, AdaBoost-Classifier, and
Multinomial-Naïve-Bayes-Classifier were given as external
estimators. Feature selections were carried out by RFECV
with its estimators respectively. After this, the selected fea-
tures were ranked by Extra-Trees-Classifier which performed
better than other estimators. Thirdly, the selected features
were used by Extra-Trees-classifier and a simple deep neu-
ral network to subtype IS. And these two classifiers were
comparedwith board-certified stroke neurologists to test their
effectiveness.

V. METHODS
Initially, according to Shapiro-Wilk ranking and Pearson Cor-
relation analysis, the features of continuous variables (Delay
between stroke and randomization in hours (RDELAY), age
(AGE), Systolic blood pressure at randomization (RSBP))
were closer to normal distribution than other features with
respect to STYPE (FIGURE 2). But this analysis could not
indicate which features were important to IS subtyping. In
order to track the clue of important feature to IS subtyping,
all the features of discrete variables were dummied. Then

FIGURE 1. Workflow of the method.

Shapiro-Wilk ranking and Pearson Correlation analysis were
carried out, the results showed that some dummied features
get the same rank between binary-state variable (FIGURE 3).
These features included sex (SEX), Symptoms noted on wak-
ing (RSLEEP), Atrial fibrillation (RATRIAL) and CT before
randomization (RCT) etc. (FIGURE 3 (a)). This indicated
that the binary-state variable of dummied feature (whether the
feature present or not) exerted same influence on the feature
of STYPE. It implied that these features were less important
to IS subtyping. And the other features except neurological
deficits features in the dataset were directly related to IS
severity [9].

According to above analyses and referred to TABLE 1,
it was suggested that the features of 8 neurological deficits
exerted the most influence on IS subtyping. In other words,
the OCSP IS subtype was based on these neurological deficits
(RDEF1, RDEF2. . .RDEF8. Readers can be referred to the
APPENDIX explaining IST_variables.). These 8 features
were used by different classifiers incorporated in RFECV
algorithm to subtype IS in the study. The results showed that
Random-Forest and Extra-Trees Classifiers outperformed
others and attained the highest accuracy 0.989 by selecting all
8 neurological deficits (FIGURE 4 and 5).When 5 features of
neurological deficit selected, both two classifiers could attain
accuracy above 0.95 (FIGURE 4 and 5). The shaded area in
FIGURE 4, 5, 6, 7 and 8 represented the variability of cross-
validation, one standard deviation above and below the mean
accuracy score drawn by the curve.

Because the Extra-Trees-classifier outperformed other
classifiers, the importances of 8 neurological deficits fea-
tures crucial to IS subtyping were ranked by it (FIGURE 9).
The feature importances were assessed by computing the
differences of out of bag errors in every decision tree of the
Extra-Trees-classifier. The importance of each feature was
determined by formula (1). In the formula, errOOB1 means
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FIGURE 2. Primary Shapiro-Wilk ranking (a) and Pearson Correlation
analysis (b) of initial 21 features (except STYPE).

error of out of bag data in ith decision tree and errOOB2
means error of out of bag data with noises in feature K. ‘n’ is
the number of decision trees in Extra-Trees-classifier.

Feature K importance=
∑n

i=1

(errOOB2−errOOB1)
n

(1)

VI. RESULTS
In FIGURE 9 the X-axis was the feature importance deter-
mined by formula (1), and the Y-axis was the name of
these 8 selected features. The results showed that RDEF5
(Hemianopia), RDEF7 (Brainstem/cerebellar signs), RDEF4
(Dysphasia), RDEF6 (Visuospatial disorder) and RDEF2
(Arm/hand deficit) were more important. When subtyping
IS in an emergent situation, less number of neurologi-
cal deficits was always needed. Considering the feature
correlations, importances and the analyzed results pre-
sented in FIGURE 2 (b), 9, 4 and 5, these deficits, including

FIGURE 3. Shapiro-Wilk ranking (a) and Pearson Correlation analysis (b)
of dummied 21 features (except STYPE).

RDEF2 (Arm/hand deficit), RDEF4 (Dysphasia), RDEF5
(Hemianopia), RDEF6 (Visuospatial disorder) and RDEF7
(Brainstem/cerebellar signs), were kept for IS subtyping
in next step. The features RDEF1 (Face deficit), RDEF3
(Leg/foot deficit, which was highly correlated to RDEF2 in
FIGURE 2 (b)) and RDEF8 (Other deficit) were eliminated.

According to previous results, Extra-Trees and Random-
Forest classifiers performed better than others. The Extra-
Trees-classifier was used to automatically subtype IS (The
Random-Forest-classifier worked in a similar way with it
[22], [23]). To avoid over-fitting, a 10-fold cross validation
was performed and the classifier attained a mean accuracy of
0.950within test dataset (FIGURE 10 and 11). Furthermore, a
fully connected neural network with 4 hidden layers was con-
structed. The structure and parameters of this neural network
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FIGURE 4. Performance of RFECV to select features important to IS
subtyping with Extra-Trees-Classifier.

FIGURE 5. Performance of RFECV to select features important to IS
subtyping with Random-Forest-Classifier.

FIGURE 6. Performance of RFECV to select features important to IS
subtyping with Linear SVC.

had been optimized by Gridsearch strategy with cross valida-
tion. This neural network was called deep learning because
its layers were more than 4. The simple deep learning model

FIGURE 7. Performance of RFECV to select features important to IS
subtyping with Multinomial-Naïve-Bayes-Classifier.

FIGURE 8. Performance of RFECV to select features important to IS
subtyping with AdaBoost-Classifier.

FIGURE 9. Feature importance of the 8 features selected by
Extra-Trees-Classifier.

consisted of 70, 40, 70, 40 nodes in each hidden layer with
‘tanh’ as its activation function (other parameters: alpha
= 1.0, random_state = 62). This model was performed to
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FIGURE 10. Cross validation result of Extra-Trees-Classifier.

FIGURE 11. Classification report of Extra-Trees-Classifier(The final test
dataset contain 4159 samples).

FIGURE 12. Cross validation result of neural network.

subtype IS with the 5 selected features. A 10-fold cross
validation was also carried out and a mean accuracy of
0.956 within test dataset was attained (FIGURE 12 and 13).
We randomly selected 400 patients from IST dataset, then
Extra-Trees-Classifier and the simple deep learning model
automatically subtype IS by attaining accuracy of 0.954 and
0.960 respectively. But four well-trained nerve physicians

FIGURE 13. Classification report of neural network (The final test dataset
contain 4159 samples).

subtyping these 400 patients with 5 selected features attained
the accuracy of 0.86 (Chi-square test was performed between
deep learning model and neurologists, resulted in χ2

=

10.249 and p = 0.017. The hypothesis test between Extra-
Trees-Classifier and neurologists resulted in χ2

= 9.984
and p= 0.019.). The performance evaluation indicators were
given by following formulas. In the formulas TP, TN, FP and
FN was for true positive, true negative, false positive and
false negative respectively. Support was the number of actual
occurrences of the class in the specified dataset.

accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

precision =
TP

TP+ FP
(3)

recall =
TP

TP+ FN
(4)

f 1 score =
2 ∗ precision ∗ recall
precision+ recall

(5)

VII. CONCLUSION
In this study, IST dataset was used. It was a large, prospective,
randomized controlled trial, with 100% complete baseline
data and over 99% complete follow-up data. When collect-
ing data, we just deleted entries with missing data without
imputing the missing data in the dataset. Because the dataset
mostly consisted of discrete value, data preprocessing was
not carried out. Even if data preprocessing was carried out
with standardization, normalization, and et al, the classifiers,
such as linear SVC,Multinomial-Naïve-Bayes and AdaBoost
didn’t perform better. The RFECV method worked well in
other fields, such as image processing, financial data ana-
lyzing, and was already used in medical research [24], [25].
The classifiers used in the study; except ExtraTrees, Random-
Forest and the simple deep learning model, didn’t work well
(with highest accuracy of 0.815) to subtype ischemic stroke
(IS) with 8 neurological deficits. But the simple deep learning
model and ExtraTrees could subtype IS accuratelywith only 5
selected neurological deficits. The first main reason was that
the OCSP subtype was based on these neurological deficits,
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and the OCSP was a primitive and simple classification sys-
tem. The two classifiers worked well in the study would fail
to subtype IS in other advanced classification system, such
as TOAST, CCS and ASCO. The second one was that the
newly developed machine learning methods (such as deep
learning) could process medical data better [26], [27], even
the features collected in 1990’s were not very mature. In the
study the dataset was firstly analyzed by Shapiro-Wilk algo-
rithm and Pearson Correlation. Compared to RFECV result,
5 neurological deficits were selected to subtype IS at last.
The last result showed that these 5 deficits could be used by
classifiers to subtype IS accurately. It was also suggested that
these 5 deficits can be used in emergent situation to subtype IS
according to OCSP system and assess IS severity. The result
also showed that machine learning approaches outperformed
human professionals by subtyping IS.

In this study OCSP IS subtype system was used. Today,
this system was seldom used to subtype and classify IS. But
the system had the advantages of easily to use and assessing
IS severity instantly in emergency. In the study we just used
features in early IST, next step some new features would
be collected to subtype IS according to other advanced IS
classification system. And more sophisticated machine learn-
ing approach would be used to investigate new potential risk
factors or causes of stroke.

APPENDIX
Appendix included IST variable (feature) names and
interpretations.
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