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ABSTRACT When the design of a vibration system requires a broad bandwidth, the numbers and the ratios
of energy peaks become major design factors. In particular, within a specific range of frequency, an increase
in the number of peaks can widen the valid working bandwidth by decreasing the distances between peaks.
In this paper, a planar symmetric dual-body vibration system is used to implement desired work ratios at
six target frequencies. The geometrical relation between vibration modes and energy peaks is investigated
to develop the design method and introduces geometrical representation of vibration modes of a symmetric
dual-body system together. Six vibrationmodes of a symmetric dual-body system are divided into two groups
with three vibration modes that represent the centers of vibration. It is shown that the orthocenters of two
modal triangles of each of two rigid bodies coincide with its center of mass. The frequency responses to
both direct and base excitations are derived in terms of vibration centers and target frequencies, and thus
work ratios are obtained. Finally, the derived equation of work ratios is used to determine the modal matrix
composed of the vibrationmodes when the desiredmass, specificwork ratios, and target resonant frequencies
are given. Consequently, the corresponding stiffness matrix is found and realized. Numerical examples of
four cases with different work ratios are presented to illustrate the proposed design method.

INDEX TERMS Broad bandwidth, symmetric dual-body vibration system, resonant frequency, vibration
mode, work ratio.

I. INTRODUCTION
When designs of vibration systems related to bandwidth such
as vibration-based energy harvesters and vibration absorbers,
the ratio of the energy peaks at the resonant frequencies has
been emphasized as an important design factor because the
bandwidth of a vibration system is affected by themagnitudes
of the peaks [1]. Accordingly, various design methods and
systems have been developed to regulate the peaks of multi-
modal systems.

One approach uses a multiple mass array composed of
independent one-degree-of-freedom (1-DOF) systems. Since
all the vibration modes of the system are decoupled, the
peaks can be tuned independently [2], [3]. However, when
a pure force (or a pure moment) is applied to the system,
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unexcited modes such as pure rotational (or pure transla-
tional) modes exist, and it can cause unexpected decrease of
the effective bandwidth. Thus, Tang and Yang have explained
the coupling effect between stacked masses with 1-DOF
and developed a multimodal piezoelectric energy harvesting
model [4]. A beam system with multiple proof masses was
presented for the design of piezoelectric (or electromagnetic)
harvesters with widened effective bandwidth [5]. Although
these systems improved their performance by extending the
effective bandwidth, adjusting to specific energy peaks at the
target frequencies was difficult because the relation among
coupled vibration modes was uncertain.

For these reasons, the geometrical relation among vibration
modes has been investigated and used to design vibration
systems. First, Blanchet introduced a geometrical character-
istic of vibration modes in a planar single-body vibration sys-
tem [6]. He showed that the triangle formed by three vibration
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centers has a specific configuration in which the orthocenter
of the triangle coincides with the center of mass. Dan and
Choi interpreted the vibrationmodes in the three-dimensional
space as the axes of vibration and introduced the analytical
expressions of the axes of vibration satisfying the geometrical
conditions of the planes of symmetry [7]. They have also
demonstrated a method on how to eliminate the undesired
peaks in the spatial optical pick-up for a spatial system with
one plane-of-symmetry [8]. Several design methods for a
vibration energy harvester that utilized the above geomet-
rical properties were presented. Kim and Choi developed a
design method for a planar single-body vibration system that
satisfies the requirement for the prespecified ratio of energy
peaks at three target frequencies [1]. This design method was
applied to the development of the serial linkage type vibration
energy harvesters using polyvinylidene fluoride films and
electromagnets [9], [10].

The previous design methods using geometrical properties
of the vibration modes have focused on a single-body vibra-
tion system in 2D or 3D space. Clearly, the number of peaks
of a planar single-body system is limited to three. To increase
the number of peaks in this paper, we use a planar vibration
system that consists of two rigid bodies connected to each
other and supported by a symmetrical spring system. Each of
two rigid bodies has six vibration modes, which is used to
widen the effective bandwidth of a system within a specific
range of frequency. A new design method of a symmetric
dual-body system for any prespecified work ratios at the six
target frequencies is presented, and numerical examples are
illustrated with figures.

This paper is organized as follows: Section II explains the
theoretical preliminaries of a symmetric dual-body vibration
system. In Section III, the design method of a dual-body sys-
tem is developed by deriving the stiffness matrix that satisfies
the desired parameters, such as target resonant frequencies,
desired mass properties, and work ratios. Numerical exam-
ples are illustrated in Section IV. Finally, the comparison and
discussion of the results are given in Section V.

II. THEORETICAL PRELIMINARIES TO A PLANAR
SYMMETRIC DUAL-BODY VIBRATION SYSTEM
A. EQUATION OF MOTION OF A SINGLE-BODY SYSTEM
For undamped free vibration, the equation of motion (EOM)
of a single rigid body supported by n line springs (Fig. 1) is
given by

M ¨̂X + KX̂ = 0, (1)

where M and K are the real 3 × 3 inertia and stiffness
matrices, respectively. The general displacement X̂ of the
rigid body can be written in terms of a line (bound) vector
as

X̂ = D̂eiωt , (2)

where ω denotes the natural frequency of the system. D̂ is the
time-independent displacement of the rigid body and can be

FIGURE 1. General displacements, normal modes and modal triangle of a
single-body system.

expressed by

D̂ =
[
δx δy δϕ

]T
, (3)

where δx and δy are the x- and y-components of small trans-
lational displacement of a point on the rigid body coincident
with the origin as shown in Fig. 1. δϕ is the small angular
displacement. Dividing D̂ by δϕ gives the unit line vector
Ŝ that represents the line parallel to the Z -axis and passing
through the instant center of motion at (x, y):

Ŝ =
[
y −x 1

]T
. (4)

By substituting (2) and (4) into (1), the solutions of (1)
are given by three normal modes of vibration and can be
expressed in the same form as (4)

ŜP =
[
yP −xP 1

]T (P = 1, 2, 3). (5)

A modal triangle is defined as a triangle constructed by
three points through which the three line vectors ŜP’s pass.
It was shown in [6] that the orthogonality of normal modes
with respect to the inertia matrix can be geometrically inter-
preted such that the center of mass coincides with the ortho-
center of themodal triangle as shown in Fig. 1. (xP, yP) are the
coordinates of the vibration center of the Pth normal mode.
Normal modes of vibration are orthogonal to each other with
respect to the inertia and stiffness matrices, and they can be
written as

STMS =

 m̃1 0 0
0 m̃2 0
0 0 m̃3

 and

STKS =

 k̃1 0 0
0 k̃2 0
0 0 k̃3

 , (6)

where S =
[
Ŝ1 Ŝ2 Ŝ3

]
.
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FIGURE 2. (a) Vibration system composed of two rigid bodies and (b) free
body diagrams.

B. EQUATION OF MOTION OF A DUAL-BODY SYSTEM
We consider two rigid bodies (M1 andM2) that are elastically
suspended and connected each other in a plane (Fig. 2(a)) and
let X̂n denote a general displacement of the nth rigid body
expressed in terms of a line (bound) vector. The EOMs of
two rigid bodies can be written as

M1
¨̂X1 = −F̂R1 − F̂R12 and M2

¨̂X2 = −F̂R2 + F̂R12 , (7)

whereMn is the inertia matrix of the nth rigid body.
F̂Rn and F̂R12 are the ground reaction force and the reaction

force between two rigid bodies, respectively, as shown in
Fig. 2(b). The reaction forces are given by

F̂R1=K1X̂1, F̂R2=K2X̂2 and F̂R12= K12

(
X̂1 − X̂2

)
,

(8)

whereKn(∈ R3×3) andK12(∈ R3×3) are the stiffness matrices
corresponding to the springs of the nth rigid body and those
connected between two rigid bodies, respectively. Substitut-
ing (8) into (7) yields

M1
¨̂X1 + (K1 + K12) X̂1 − K12X̂2 = 0 and

M2
¨̂X2 + (K2 + K12) X̂2 − K12X̂1 = 0. (9)

From (9), the EOM for undamped free vibration of a dual-
body system can be obtained as

M ¨̃X + KX̃ = 0, (10)

where M =
[

M1 0(∈ R3×3)
0( ∈ R3×3) M2

]
∈ R6×6 and K =[

K1 + K12 −K12
−K12 K2 + K12

]
∈ R6×6. X̃

(
=

[
X̂
T
1 X̂

T
2

]T
∈R6×1

)
is composed of two line vectors X̂1 and X̂2 and referred here

as a line vector chain. The general form of X̃ for free vibration
given by (10) is written as

X̃ =

[
X̂1

X̂2

]
= D̃eiωt =

[
D̂1

D̂2

]
eiωt . (11)

In (11), D̃ is expressed by

D̃ =
[
D̂
T
1 D̂

T
2

]T
=
[
δx1 δy1 δϕ1 δx2 δy2 δϕ2

]T
. (12)

The general displacements D̃ of a dual-body system are
depicted in Fig. 3.

FIGURE 3. General displacements of a planar dual-body system.

(12) can be rewritten in a normalized form as

D̃ =
[
δϕ1Ŝ

T
1 δϕ2Ŝ

T
2

]T
, (13)

where the line vector chain D̃ represents the rotational
motions of two rigid bodies about the instantaneous centers
with the ratio between two small angular displacements (δϕ1 :
δϕ2). The signs of δϕ1 and δϕ2 mean the phase difference
in motions (Fig. 3). If the signs are identical, the motions of
two rigid bodies are in phase. Otherwise, the two motions are
180 ◦ out of phase.
By substituting (11) into (10), we obtain the time invariant

form of (10) as (
K − ω2M

)
D̃ = 0. (14)

For a non-trivial solution of D̃, ω2
j and D̃j

(
=

[
D̂
T
1,j D̂

T
2,j

]T)
can be viewed as the eigenvalue (natural frequency) and the
corresponding eigenvector (mode shape) ofM−1K

(
∈ R6×6

)
,

respectively. In general, the number of natural frequencies j
is decided by the rank of M−1K . If the matrix M−1K of a
dual-body system has full rank, the system has six natural
frequencies. It can be expressed by j = 3n for the number
of rigid bodies n. The line vector D̂n,j of D̃ is the vibration
mode of the nth rigid body corresponding to ωj. Thus, a dual-
body system has a total of 12 vibration modes and they exist
in pairs, i.e., D̂1,j and D̂2,j at ωj, because motions of two rigid
bodies interact with each other through the connected springs.
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C. VIBRATION MODES OF A SYMMETRIC DUAL-BODY
SYSTEM
The jth vibration mode of a dual-body system of (13) can be
written as

D̃j =
[
D̂
T
1,j D̂

T
2,j

]T
=

[
δϕ1,j Ŝ

T
1,j δϕ2,jŜ

T
2,j

]T
. (15)

The twelve normal modes of a dual-body system are illus-
trated in Fig. 4(a).

FIGURE 4. Normal modes Ŝn,j of (a) general dual-body system and
(b) symmetric dual-body system.

If two rigid bodies of a dual-body system have identi-
cal stiffnesses and mass properties (including the masses,
moments of inertias, and the locations of mass centers)
and the geometric shape is symmetrical about the Y -axis
(Fig. 4(b)), the normal modes of each of two rigid bodies
are located symmetrically. Furthermore, the magnitudes of
two small rotational displacements are equal, i.e., ‖δϕ1‖ =
‖δϕ2‖. The verification of these properties of a symmetric
dual-body system is given in Appendix A. Since the vibra-
tion modes of each of two rigid bodies are symmetric about
the Y -axis, using two configurations derived in Appendix
A, D̃j of (15) can be rewritten in the normalized form
as

D̃j =
[
Ŝ
T
1,j Ŝ

T
2,j

]T
=
[
y1,j −x1,j 1 y1,j x1,j 1

]T or (16-1)

=
[
y1,j −x1,j 1 −y1,j −x1,j −1

]T
.

(16-2)

D. ORTHOGONALITY OF A SYMMETRIC DUAL-BODY
SYSTEM
The modal matrix S can be formed using D̃j(j= 1, · · · , 6) as
column vectors such that

S =

[
Ŝ1,1 Ŝ1,2
Ŝ2,1 Ŝ2,2

Ŝ1,3 Ŝ1,4
Ŝ2,3 Ŝ2,4

Ŝ1,5 Ŝ1,6
Ŝ2,5 Ŝ2,6

]
∈ R6×6. (17)

The inertia and stiffness matrices can be diagonalized using
the modal matrix S

STMS =
[
A1 0
0 A2

]

=


m̃1 0 0
0 m̃2 0
0 0 m̃3

0( ∈ R3×3)

0( ∈ R3×3)
m̃4 0 0
0 m̃5 0
0 0 m̃6

 and

(18-1)

STKS =
[
B1 0
0 B2

]

=



k̃1 0 0
0 k̃2 0
0 0 k̃3

0( ∈ R3×3)

0( ∈ R3×3)
k̃4 0 0
0 k̃5 0
0 0 k̃6


.

(18-2)

In a symmetric dual-body system, two conditions to satisfy
(18-1) are examined.
First, all the off-diagonal elements of A1and A2 in (18-1)

become zeros due to the orthogonality of the vibration modes
and can be expressed by

Ŝ
T
1,PM1Ŝ1,Q + Ŝ

T
2,PM2Ŝ2,Q= 0

(P,Q = 1, 2, 3 and P 6= Q) and (19-1)

Ŝ
T
1,VM1Ŝ1,W + Ŝ

T
2,VM2Ŝ2,W= 0

(V ,W = 4, 5, 6 and V 6= W ). (19-2)

If we substitute (16-1) (or (16-2)) and (A1) into (19-1)
and (19-2), we obtain the following relations from the off-
diagonal elements of A1 and A2 of (18-1):

Ŝ
T
1,PM1Ŝ1,Q = Ŝ

T
2,PM2Ŝ2,Q = 11 and

Ŝ
T
1,VM1Ŝ1,W = Ŝ

T
2,VM2Ŝ2,W = 12, (20)

where 11 =
(
c− x1,P

) (
c− x1,Q

)
+ y1,Py1,Q + G, 12 =(

c− x1,V
) (
c− x1,W

)
+ y1,V y1,W + G, G = I

m and c is
the distance between the mass center of each rigid body and
the origin. Clearly, 11 and 12 should be zeros when (19-1)
holds. It means that the six normal modes of each rigid body
are divided into two groups each of which contains three
normal modes satisfying (19-1) and (19-2). Three normal
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modes of each group are also orthogonal to each other with
respect to the inertia matrixMn. Geometrically, the orthocen-
ter of the modal triangle constructed by three modes of each
group coincides with the center of each mass (Fig. 5). Now,
the matrices composed of three vibration modes, which are
divided into two groups in the nth rigid body, are defined as
Sn,1(∈ R3×3) and Sn,2(∈ R3×3), respectively. The triangles
associated with Sn,1 and Sn,2 are called modal triangles of a
symmetric dual-body system, which are depicted by blue and
red triangles in Fig. 5. Now, the modal matrix of (17) can be
rewritten as

S =
[
S1,1 S1,2
S2,1 S2,2

]
. (21)

FIGURE 5. Geometrical configuration of six normal modes in symmetric
dual-body system and modal triangles (blue and red triangles).

Second, all the elements of the 3× 3 upper right and lower
left sub-matrices in (18-1) should be zeros, and thus we have

Ŝ
T
1,P(orV )M1Ŝ1,V (or P) + Ŝ

T
2,P(orV )M2Ŝ2,V (or P)= 0

(P = 1, 2, 3 and V = 4, 5, 6). (22)

Each term on the left side of (22) means the distance between
each side of one modal triangle and the corresponding vertex
of the other modal triangle of the nth rigid body (e.g., l in
Fig. 5). Since the vibration centers of two rigid bodies are
located symmetrically, the two distances corresponding to
each pair of two rigid bodies are identical. Therefore, the
vibration modes of one of two groups should be 180 ◦ out
of phase to satisfy (22). In other words, the vibration modes
of one group are in phase and those of the other group are 180
◦ out of phase, which can be expressed by (16-1) and (16-2),
respectively. The instantaneous motions of two rigid bodies
are illustrated in Fig. 6. Figs. 6(a) and 6(b) depict the motions
of two rigid bodies being in phase and 180 ◦ out of phase,
respectively.

If the inertia and stiffness matrices are given, the phases
between the vibration modes are determined. Otherwise,
from the two conditions explained above, the modal matrix
of (21) can be represented by one of the following four types:

TYPE I : S =
[
−S1,1 S1,2
S2,1 S2,2

]
,

TYPE II : S =
[
S1,1 −S1,2
S2,1 S2,2

]
,

FIGURE 6. Instantaneous motions of two rigid bodies (a) in phase and
(b) 180 ◦ out of phase.

TYPE III : S =
[
S1,1 S1,2
−S2,1 S2,2

]
and

TYPE IV : S =
[
S1,1 S1,2
S2,1 −S2,2

]
(23)

We decided to use TYPE IV in this paper, thus Sn,1 and Sn,2
are rewritten in terms of (x1,j, y1,j) as:

S1,1 =

 y1,1 y1,2 y1,3
−x1,1 −x1,2 −x1,3
1 1 1

 ,
S1,2 =

 y1,4 y1,5 y1,6
−x1,4 −x1,5 −x1,6
1 1 1

 ,
S2,1 =

 y1,1 y1,2 y1,3
x1,1 x1,2 x1,3
1 1 1

 and

−S2,2 = −

 y1,4 y1,5 y1,6
x1,4 x1,5 x1,6
1 1 1

 . (24)

E. FREQUENCY RESPONSE
1) DIRECT EXCITATION SYSTEM
When a symmetric dual-body system is excited by externally
applied harmonic forces F1 and F2 (Fig. 7), the EOM can be
expressed by

M ¨̃X + C ˙̃X + KX̃ = F̃, (25)

where F̃ =
[
FT1 FT2

]T
and C is the damping matrix.
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FIGURE 7. Direct force excitation system.

Here, the damping matrix C is assumed that it can be
diagonalized by use of the modal matrix S as[

c̃
]
= STCS, (26)

where
[
c̃
]
= diag(c̃1,c̃2, c̃3,c̃4, c̃5, c̃6) and c̃j = D̃

T
j CD̃j. The

external harmonic forces are given by

F̃ =
[
f1ŝf1e

i�1t

f2ŝf2e
i�2t

]
, (27)

where fn is the intensity of the force and �n is the driving
frequency. ŝfn is the line of action of the nth force expressed
in (Plücker’s) ray coordinates:

ŝf1 =
[
Cψf1Sψf1dsf1

]T
and ŝf2 =

[
Cψf2 Sψf2dsf2

]T
, (28)

where the symbols C and S are used to denote the cosine
and sine of the angles, respectively. ψfn is the angle between
the X -axis and the line of action of the force. dsfn is the
distance between the origin and the line of action. If two
external forces are applied at the same driving frequency, i.e.,
�1 = �2= �, the time invariant form of (25) is written as(

K −�2M + i�C
)
D̃ =

[
f1ŝf1
f2ŝf2

]
. (29)

D̃ of (29) can be expressed by the linear combination of the
normal modes

D̃ = Sν, (30)

where ν =
[
ν1 ν2 ν3 ν4 ν5 ν6

]T ∈ R6×1 is a constant
vector. Substituting (30) into (29) and premultiplying both
sides of (29) by ST yields

[
H1 0( ∈ R3×3)

0( ∈ R3×3) H2

]
ν =


f1Ŝ

T
1,1ŝf1 + f2Ŝ

T
2,1ŝf2

...

f1Ŝ
T
1,6ŝf1 + f2Ŝ

T
2,6ŝf2

 ,
(31)

where H1 and H2, as shown at the bottom of the page. From
(30) and (31), the frequency response can be expressed by

D̃ =

[
D̂1

D̂2

]
=

[∑6
j=1 νjŜ1,j∑6
j=1 νjŜ2,j

]
, (32)

where νj =
f1Ŝ

T
1,j ŝf1+f2Ŝ

T
2,j ŝf2(

k̃j−�2m̃j
)
+i�c̃j

. If the damping ratio ζj
(
=

c̃j
2m̃j�j

)
is not greater than 0.05, the damping can be considered the
light damping. In this case, the resonant frequencies can be
regarded as the natural frequencies [12]. Therefore, the jth
term of (32) is dominant at the jth resonant frequency (�j).
The frequency response at �j can be approximated as

D̃j =

[
D̂1,j

D̂2,j

]
=


νjŜ1,j≈

f1Ŝ
T
1,jŝf1 + f2Ŝ

T
2,jŝf2

i�jc̃j
Ŝ1,j

νjŜ2,j ≈
f1Ŝ

T
1,jŝf1 + f2Ŝ

T
2,jŝf2

i�jc̃j
Ŝ2,j

 . (33)

The work produced by the external forces at the jth frequency
is obtained as

Wj =

[
f1ŝ

T
f1 f2ŝ

T
f2

] [ D̂1,j

D̂2,j

]

= νj

(
f1ŝ

T
f1 Ŝ1,j + f2ŝ

T
f2 Ŝ2,j

)
=

(
f1Ŝ

T
1,jŝf1 + f2Ŝ

T
2,jŝf2

)2
i�jc̃j

.

(34)

In addition, substituting (23) and (28) into (34) yields as (35),
shown at the bottom of the page, where the positive and the
negative signs of the plus–minus sign (±) are used for j =
1, 2, 3 and j = 4, 5, 6, respectively.

H1 =

 k̃1 −�2m̃1 + i�c̃1 0 0
0 k̃2 −�2m̃2 + i�c̃2 0
0 0 k̃3 −�2m̃3 + i�c̃3

 and

H2 =

 k̃4 −�2m̃4 + i�c̃4 0 0
0 k̃5 −�2m̃5 + i�c̃5 0
0 0 k̃6 −�2m̃6 + i�c̃6

 .

Wj =

{
f1
(
y1,jCψf1 − x1,jSψf1 + dsf1

)
± f2

(
y1,jCψf2 + x1,jSψf2 + dsf2

)}2
2m̃j�2

j ζj
, (35)
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FIGURE 8. Base excitation system.

2) BASE EXCITATION SYSTEM
The base excitation system means a vibration system under
base excitation as shown in Fig. 8. The EOM for a base
excitation system (Fig. 8) can be written as

M ¨̃X + C ˙̃X + KX̃ = C ˙̃XB + KX̃B, (36)

where X̃B denotes the displacement of the base. If Z̃ = X̃ −
X̃B, (36) can be rewritten as

M ¨̃Z+ C ˙̃Z+ KZ̃ = −M ¨̃XB. (37)

Since the two driving frequencies of the applied forces are
identical, the time-independent form of (37) can be expressed
by (

K −�2M + i�C
)
Z̃ = �2MD̃B, (38)

where D̃B = ϕB
[
CψB SψB 0 CψB SψB 0

]T , which is the
input displacement of base excitation given by a repetitive
translational motions. The external forces in (38) can be
written as

F̃
(
= �2MD̃B

)
=

[
f1ŝf1
f2ŝf2

]
, (39)

where f1 = f2 = m�2ϕB, ŝf1 =
[
CψB SψB cSψB

]T and
ŝf2 =

[
CψB SψB −cSψB

]T . ψB is the angle between the
X -axis and the line of action of the force produced by base
excitation (Fig. 8). In (39), the magnitudes of external forces
are proportional to�2 because the input displacement (ϕB) of
base excitation remains constant at all the driving frequencies.
In a practical design of a base excitation system, the input
acceleration due to base excitation is assumed to stay the
same. Accordingly, the exerted force is considered constant,
i.e., f1 = f2 ≡ fB. In this case, the work produced by base
excitation at the jth frequency can be obtained from (34)

Wj = fB
[
ŝTf1 ŝTf2

]
Z̃j =

f 2B
(
Ŝ
T
1,jŝf1 + Ŝ

T
2,jŝf2

)2
i�jc̃j

. (40)

In addition, substituting (23) and ŝfn of (39) into (40) yields

WP =
f 2B
(
2CψBy1,P

)2
2m̃P�2

PζP
(P = 1, 2, 3) and (41-1)

WV =
f 2B
(
2SψB (−x1,V + c)

)2
2m̃V�2

V ζV
(V = 4, 5, 6). (41-2)

Close observations on (41-1) and (41-2) reveal the follow-
ing findings:

1. When 0◦ < ψB < 90◦, both (41-1) and (41-2) are not
zeros. Therefore, the system will have six energy peaks at the
resonant frequencies. Moreover, WP is expressed in terms of
y1,P, and WV is given by x1,V and c.

2. When ψB = 0◦, WV ’s for (V = 4, 5, 6) of (41-2)
become zero . Therefore, the frequency response will show
three energy peaks related to three vibration modes of Sn,1.
3. When ψB = 90◦, WP’s for (P = 1, 2, 3) of (41-1)

become zero . Therefore, the frequency response of work
will have three energy peaks associated with three vibration
modes of Sn,2.
If 0◦ < ψB < 90◦, the work ratios can be determined from

(41-1) and (41-2):

1 : γ1 : γ2 = 1 :
m̃1ζ1�

2
1y

2
1,2

m̃2ζ2�
2
2y

2
1,1

:
m̃1ζ1�

2
1y

2
1,3

m̃3ζ3�
2
3y

2
1,1

and (42-1)

1 : γ ′4 : γ
′

5=1 :
m̃4ζ4�

2
4

(
−x1,5+c

)2
m̃5ζ5�

2
5

(
−x1,4+c

)2 : m̃4ζ4�
2
4

(
−x1,6+c

)2
m̃6ζ6�

2
6

(
−x1,4+c

)2 .
(42-2)

where γ1 =
W2
W1

, γ2 =
W3
W1

, γ ′4 =
W5
W4

, and γ ′5 =
W6
W4

. If the
desired work ratio (1 : γ1 : γ2 : γ3 : γ4 : γ5) is given, γ

′

4 and
γ
′

5 correspond to γ4
γ3

and γ5
γ3
, respectively. Using (41-1) and

(41-2), γ3
(
=

W4
W1

)
is found as

γ3 = κtan2ψB, (43)

where κ =
m̃1�

2
1(−x1,4+c)

2

m̃4�
2
4y

2
1,1

. Consequently, ψB is determined
as

ψB = tan−1
(√

γ3

κ

)
(0◦ < ψB < 90◦). (44)

F. GEOMETRIC CONFIGURATION OF K12

Since the derived stiffness matrix to be realized by means of
linear springs should be positive definite, we consider only
the stiffness matrices with full rank. In this case, the geo-
metric configuration of the spring connections (K12) between
two rigid bodies can be represented as shown in Fig. 9. The
following three cases are not considered in this study because
K12 is not full rank: 1) three springs meet at a common point,
2) they are parallel to the X -axis, and 3) they are parallel to
the Y -axis.
Referring to Fig. 9, when the second spring (k12,2) is paral-

lel to the X -axis and the first (k12,1) and third (k12,3) springs
are symmetric about the Y -axis in all cases, K12 becomes

K12 = jKd jT

=

 k(2+ C2θ ) 0 k(d2 − (d1 + d3)Cθ )
2kS2θ (−d1 + d3) kSθ

symm. k
(
d21 + d

2
2 + d

2
3

)
 , (45)
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FIGURE 9. Geometric configuration of spring connections of K12 with full
rank (d1 = d3, θ 6= 0).

where Kd is the diagonal matrix of the spring constants, and
j is the Jacobian matrix whose columns are the line vectors
of the connected springs [11]. If all the spring constants
of K12 are equal, the diagonal matrix can be expressed by
Kd = diag(k, k, k). Moreover, Jacobian matrix j becomes Cθ 1 Cθ

Sθ 0 −Sθ
−d1 d2 −d3

, where dP is the distance between the origin
and the line of the Pth spring. Because d1 equals d3 in Fig. 9,
K12 of (45) should satisfy the following relations for all
configurations:

K12 (1, 2) (= K12(2, 1)) = 0 and

K12 (2, 3) (= K12(3, 2)) = 0, (46)

where K12 (u, v) means the uth row and vth column of K12.

III. DESIGN METHOD
For the design of a symmetric dual-body system with
prespecified ratios at six target resonant frequencies, the
desired stiffness matrix can be determined from (14), (18-1)
and (18-2)

K = MS
[
�2
]
S−1, (47)

where
[
�2
]
= diag(�2

1, �
2
2, �

2
3, �

2
4, �

2
5, �

2
6) and �j is the

jth target frequency. The stiffness matrix (K) and modal
matrix (S) in (47) must satisfy the following five constraints
for the realization of stiffness:

1) The first constraint is such that the orthogonality of the
vibration modes (or, vibration centers) with respect to the
inertia matrix has to be satisfied. We obtained (20) from this
constraint and the coordinates of vibration centers given by
(20) are rewritten in terms of c, αP, and βP (Fig. 10):

x1,1 = c+ α1, y1,1 = G/α2, x1,3 = c− α3,

x1,4 = c+ β1, y1,4 = β2 and x1,6 = c− β3. (48)

To satisfy (20), the remaining coordinates of vibration centers
can be written as

x1,2 =
G2 (G+ cα3)+ α22(G− cα1)(G− α1α3)

G2α3 + α
2
2α1(−G+ α1α3)

,

y1,2 =
α2G2(α1 + α3)

−G2α3 + α
2
2α1(G− α1α3)

,

y1,3 = α2
(
−1+

α1α3

G

)
,

x1,5 =
G2
+ c

(
β21 + β

2
2

)
β3 + G(β22 − β1 (c+ β3))

−Gβ1 +
(
β21 + β

2
2

)
β3

,

y1,5 =
Gβ2(β1 + β3)

Gβ1 −
(
β21 + β

2
2

)
β3

and y1,6 =
−G+ β1β3

β2
.

(49)

2) Under the assumption of low damping with the identical
modal damping ratio, i.e., ζj(j = 1, · · · , 6) = ζ , another
constraint was given by (42-1) and (42-2). If we substitute
the coordinates obtained from the first constraint of (48) and
(49) into (42-1) and (42-2), we obtain the expressions for the
distances of α1, α3, β1 and β3 (Fig. 10) (Eqn. (50), as shown
at the bottom of the page).
3) The geometrics symmetry conditions given by (46) are
rewritten as K (1, 5) = K (2, 6) = 0. From (23), (47) and

α1 = ±

√
G(−α22�

2
1 + Gγ1�

2
2 + Gγ2�

2
3)

α22�
2
1

,

α3 =
Gα22α1

(
�2

1 + γ1�
2
2

)
G2γ1�

2
2 + α

2
2

(
−G�2

1 + γ1α
2
1�

2
2

)
±

√
Gγ1(G2 + α22(G+ α

2
1))�

2
2(α

2
2(G+ α

2
1)�

2
1 − G

2γ1�
2
2)

G2γ1�
2
2 + α

2
2(−G�

2
1 + γ1α

2
1�

2
2)

,

β1 = ±

√
(G+ β22 )�

2
4

γ ′4�
2
5 + γ

′

5�
2
6

and

β3 =
−Gβ1

(
G+ β22

)
�2

4 ± Gγ
′

4β
3
1�

2
5

β21

(
−G�2

4 + γ
′

4

(
β21 + β

2
2

)
�2

5

)
+

√
Gγ ′4β

2
1β

2
2 (G+ β

2
1 + β

2
2 )�

2
5((G+ β

2
2 )�

2
4 − γ

′

4β
2
1�

2
5)

β21 (−G�
2
4 + γ

′

4(β
2
1 + β

2
2 )�

2
5)

. (50)
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FIGURE 10. Design variables.

(A1), K (1, 5) and K (2, 6) can be determined by

K (1, 5) =
1
2
m (a1 + a2) = 0 and

K (2, 6) =
1
2
m(b1 + b2 + c(b3 + b4)) = 0, (51)

where the detailed expressions of a1, a2 and b1, · · · , b4 in
(51) are given in Appendix B. Since m of (51) is not zero,
(51) becomes

a1 + a2 = 0 and b1 + b2 + c (b3 + b4) = 0. (52)

If we choose β2 as a free variable, α2 and c can be deter-
mined from the substitution of (48), (49) and (50) into (52).
The expressions of α2 and c can be obtained by use of
any symbolic computation software such as Mathematica.
However, to avoid complexity of presentation, α2 and c may
be expressed briefly as (Fig. 10)

α2 = f (a2,G, γ1, γ2, �P) and

c = f (G, αP, βP, �j). (53)

4) The angle of the base excitation force ψB is determined
by (44).
5) Since the spring constants are positive, K1, K2 and K12
must be positive definite. Therefore, positive definiteness of
K1, K2 and K12 has to be checked.
The design process is summarized in a flow chart as shown

in Fig. 11.

IV. NUMERICAL EXAMPLES
In order to demonstrate the usefulness of the proposed design
method, one design example of a vibration energy harvester is
presented. It will be shown how to improve the performance
of harvester significantly while widening the valid working
bandwidth within a target range of frequency.

In this section, four symmetric dual-body systems (energy
harvesters) subject to base excitation are designed to illustrate
the design process and advantages of the proposed method.
All of four systems are assumed to have identical mass and
moment of inertia of m = 4.3 kg and I = 0.17 kgm2,
respectively. In addition, fB of 15 N and β2 of −0.8 m are
selected. The range of the desired bandwidth is determined

FIGURE 11. Flow chart for deriving the stiffness matrices K1, K2, and K12
of symmetric dual-body system with prespecified work ratios at six target
frequencies.

to be from 100 Hz to 125 Hz and the six target resonant
frequencies are specified as:

�1 = 100 Hz, �2 = 110 Hz, �3 = 125 Hz,

�4 = 120 Hz, �5 = 115 Hz and �6 = 105 Hz. (54)

The work ratios in each system are set as follows:

System 1 : 1 : γ1 : γ2 : γ3 : γ4 : γ5 = 1 : 1 : 1 : 1 : 1 : 1,

System 2 : 1 : γ1 : γ2 : γ3 : γ4 : γ5
= 1 : 0.5 : 0.25 : 1 : 1 : 1,
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System 3 : 1 : γ1 : γ2 : γ3 : γ4 : γ5
= 1 : 1 : 1 : 1 : 2 : 3 and

System 4 : 1 : γ1 : γ2 : γ3 : γ4 : γ5
= 1 : 0.7 : 0.25 : 0.4 : 0.55 : 0.85. (55)

The frequency response plots of all the above systems will be
shown (Fig. 13), detailed explanation of the design process
will be given only for the case of System 1. Referring to the
design process (Fig. 11), the first step of the design is to find
α2 and c from (53) and

α2= 0.3278 m and c = 1.1918 m. (56)

Using (48), (49) and (50), the Sn,1 and Sn,2 are computed as

S1,1 =

 0.1206 −0.4873 −0.2690
−1.1636 −0.5111 −1.4425
1.0000 1.0000 1.0000

 ,
S1,2 =

−0.8000 −0.0716 0.1860
−1.8270 −1.0394 −1.3638
1.0000 1.0000 1.0000

 ,
S2,1 =

 0.1206 −0.4873 −0.2690
1.1636 0.5111 1.4425
1.0000 1.0000 1.0000

 and

−S2,2 = −

−0.8000 −0.0716 0.1860
1.8270 1.0394 1.3638
1.0000 1.0000 1.0000

 , (57)

where α1, α3, β1 and β3, as shown at the bottom of the page.
The modal triangles formed by the normal modes of S1,1,
S1,2, S2,1, and S2,2 are shown in Fig. 12(a).

The next step is determining the inertia and modal matrices
of the system from (A1) and (23):

M =


4.3000 0.0000 0.0000
0.0000 4.3000 5.1248
0.0000 5.1248 6.2779

0 ∈ R3×3

0 ∈ R3×3

4.3000 0.0000 0.0000
0.0000 4.3000 − 5.1248
0.0000 − 5.1248 6.2779

 and

S =


0.1206 − 0.4873 − 0.2690
−1.1636 − 0.5111 − 1.4425
1.0000 1.0000 1.0000
0.1206 − 0.4873 − 0.2690
1.1636 0.5111 1.4425
1.0000 1.0000 1.0000

−0.8000 − 0.0716 0.1860
−1.8270 − 1.0394 − 1.3638
1.0000 1.0000 1.0000

−

0.8000 0.0716 − 0.1860
1.8270 − 1.0394 − 1.3638
−1.0000 − 1.0000 − 1.0000

 . (58)

Now, the angle of the base excitation force ψB of 45.3470◦

can be found from (44). Finally, the stiffness matrix is deter-
mined by (47)

K = 106


2.2229 0.2088 0.1990

2.2384 2.6571
symm. 3.2340

symm.

α1 = −

√
G(−α22�

2
1 + Gγ1�

2
2 + Gγ2�

2
3)

α22�
2
1

,

α3 =
Gα22α1

(
�2

1 + γ1�
2
2

)
G2γ1�

2
2 + α

2
2

(
−G�2

1 + γ1α
2
1�

2
2

)
+

√
Gγ1(G2 + α22(G+ α

2
1))�

2
2(α

2
2(G+ α

2
1)�

2
1 − G

2γ1�
2
2)

G2γ1�
2
2 + α

2
2(−G�

2
1 + γ1α

2
1�

2
2)

,

β1 =

√
(G+ β22 )�

2
4

γ ′4�
2
5 + γ

′

5�
2
6

and

β3 =
−Gβ1

(
G+ β22

)
�2

4 + Gγ
′

4β
3
1�

2
5

β21

(
−G�2

4 + γ
′

4

(
β21 + β

2
2

)
�2

5

)
+

√
Gγ ′4β

2
1β

2
2 (G+ β

2
1 + β

2
2 )�

2
5((G+ β

2
2 )�

2
4 − γ

′

4β
2
1�

2
5)

β21 (−G�
2
4 + γ

′

4(β
2
1 + β

2
2 )�

2
5)

.

117826 VOLUME 8, 2020



W. Ryu et al.: Design for Prespecified Ratios Between Six Energy Peaks Using a Planar Symmetric Dual-Body Vibration System

FIGURE 12. (a) Vibration centers of normal modes, modal triangles, and
(b) one feasible realization of the designed stiffness matrix with the work
ratio of 1:1:1:1:1:1.

−0.0155 0.0000 −0.0175
−0.0256 0.0000

symm. −0.0399
2.2229 −0.2088 0.1990

2.2384 −2.6571
symm. 3.2340

 . (59)

Thus, the stiffness matrices (K1,K2, andK12) are determined
as

K1 = 106

 2.2074 0.2088 0.1814
2.2128 2.6571

symm. 3.1942

 ,
K12 = 105

 0.1546 0.0000 0.1755
0.2561 0.0000

symm. 0.3989

 and

K2 = 106

 2.2074 −0.2088 0.1814
2.2128 −2.6571

symm. 3.1942

 . (60)

TABLE 1. Line vectors and spring constants for feasible realization.

K1, K2, and K12 can be realized by means of parallel con-
nection of line springs using the technique presented in [13].
The line vectors and the spring constants are determined and
listed in Table 1. Fig. 12(b) shows one feasible realization of
stiffness by means of nine linear springs.

The work produced by the base excitation are computed.
The frequency responses for four different work ratios and
damping ratios are shown in Fig. 13. Table 2 shows the sim-
ulated values of peaks and their work ratios for the different
damping ratios of System 1.

V. COMPARISON AND DISCUSSION OF RESULTS
The meanings of the working bandwidth can be used differ-
ently according to the researches, e.g., the frequency band
is defined where the output voltage is -3 dB of the peak
value in [14]. In this study, the working bandwidth means the
frequency range within which the energy magnitude remains
over the minimum value to operate electronic circuits. The
energy magnitude can be set depending on the desired elec-
tronic circuits and sensors. In vibration harvesters, the per-
formances of systems can be improved when the working
bandwidth is widened. However, the energy peaks of typical
vibration harvesters rise and drop steeply in narrow range
nearby resonant frequencies, and it overshadows the meaning
of the working bandwidth whichmaintains the power over the
desired level.

Fig. 14 shows the frequency responses of three different
vibration systems in the target frequency range, which is
determined from 10 Hz to 60 Hz because the frequencies of
ambient vibration sources are variable in the low frequency
range within 100 Hz [15], [16]. The dotted curve is the
simulated result using the design method by Kim, and the
detailed description of the design method can be found in [1].
It depicts the frequency response of a single-body system,
which is designed for the work ratio of 1:1:1 at three target
frequencies (35 Hz, 45 Hz and 55 Hz). To compare the single-
body system with the dual-body system, the dotted curve is
plotted using double values of the frequency response of the
single-body system. The dashed curve shows the frequency
response of the dual-body system considering only the six
target frequencies, i.e., 30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz,
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FIGURE 13. Frequency responses for four different work ratios and diverse damping ratios at target resonant
frequencies of (54).

TABLE 2. Simulated values of peaks and work ratios for different damping ratios of System 1.

and 55 Hz, without using any specified work ratio. The solid
curve represents the frequency response of the dual-body
systemwith thework ratio of 1:1:1:1:1:1 at the same six target
frequencies.

Referring to Fig. 14, it is noted that the heights of the
valleys of the dual-body system designed for the specified
work ratio are raised significantly comparing to the other two
systems. This could be an important research issue in design-
ing a vibration system such as a vibration energy harvester
which requires a practically wide bandwidth. The energy
peaks generated at resonant frequencies by a typical vibration

energy harvester drop immediately and significantly when
a slight deviation of the operating frequency from resonant
frequencies occurs. However, Fig. 14 shows that the dual-
body system designed for the specified work ratio has a
practically wide working bandwidth. Moreover, the dashed
and solid curves show that the work ratio is an important
component to widen the working bandwidth.

The working bandwidths of some previous researches are
summarized in Table 3. To compare the results, the working
bandwidth is calculated by the sum of the frequency ranges
over 60 % of the maximum peak value in the target frequency
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TABLE 3. Working bandwidths of published energy harvesters and this research.

FIGURE 14. Frequency responses of three different systems.

range (10 Hz – 60 Hz). The working bandwidths of the
systems by Bai and Park are narrow although they have five
and three resonant frequencies. It is because the differences
of peak values are large. By locating the six target resonant
frequencies in the target frequency range and adjusting work
ratio to 1:1:1:1:1:1 in this research, the rate of the working
bandwidth in the target frequency range could be widened
to 33 %.

VI. CONCLUSION
A novel design method to develop a vibration system with
desired work ratios at six target resonant frequencies is intro-
duced. The number of peaks, which is a significant design
factor for a broad bandwidth, increases to six by using a pla-
nar symmetric dual-body system. An important contribution
of this work lies in introducing geometrical representation of
vibration modes of a symmetric dual-body system together
with its applications. One rigid-body of a dual-body system
has six vibration modes and they are divided into two groups
of three vibrationmodes. Each group of three vibrationmodes

forms a modal triangle whose orthocenter coincides with the
mass center. By obtaining the geometric relations of two
modal triangles from the orthogonality of vibration modes,
the design method has been developed to realize the symmet-
ric dual-body system that satisfies the requirements for six
resonant frequencies as well as the work ratios.

APPENDIX A
The derivation of the relation between the time-independent
displacements of two rigid bodies in a planar symmetric
dual-body vibration system (i.e., D̂1 and D̂2) is described in
Appendix A. Above all, the inertia matrices (M1 andM2) of
(10) can be expressed by

M1 = ET1

m m
I

E1

=

m 0 0
0 m cm
0 cm I + c2m

 and

M2 = ET2

m m
I

E2

=

m 0 0
0 m −cm
0 −cm I + c2m

 , (A.1)

where E1

=
 1 0 0
0 1 c
0 0 1

 and E2

=
 1 0 0
0 1 −c
0 0 1

 are

transformation matrices. c is the distance between the the
mass center of each rigid body and the origin. Furthermore,
the configurations of springs composing K1, K2 and K12 are
symmetrical about the Y -axis, using representative symbols
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(k1,PQ) and (k12,PQ), they can be expressed by

K1 =

 k1,11 k1,12 k1,13
k1,22 k1,23

symm. k1,33

 ,
K2 =

 k1,11 −k1,12 k1,13
k1,22 −k1,23

symm. k1,33

 and

K12 =

 k12,11 0 k12,13
k12,22 0

symm. k12,33

 , (A.2)

where k1(or 12),PQ is the component of the Pth row and Qth
column in K1(or K12). Substituting (A1), (A2) and (12) into
(14) yields[
41 42 43 44 45 46

]T
=

[
0 0 0 0 0 0

]T
,

(A.3)

where

41 = −δx2k12,11 + δy1k1,12 − δϕ2k12,13
+ δϕ1

(
k1,13 + k12,13

)
+ δx1(k1,11 + k12,11 − ω2m),

42 = δx1k1,12 − δy2k12,22 + δϕ1k1,23

+ δy1
(
k1,22 + k12,22 − ω2m

)
,

43 = −δx2k12,13 + δx1
(
k1,13 + k12,13

)
+ δy1k1,23

− δϕ2k12,33 + δϕ1(k1,33 + k12,33 − ω2(I + mc2)),

44 = −δϕ1k12,11 − δy2k1,12 − δϕ1k12,13
+ δϕ2

(
k1,13 + k12,13

)
+ δx2(k1,11 + k12,11 − ω2m),

45 = −δx2k1,12 − δy1k12,22 − δϕ2k1,23
+ δy2(k1,22 + k12,22 − ω2m) and

46 = −δx1k12,13 + δx2
(
k1,13 + k12,13

)
− δy2k1,23

− δϕ1k12,33 + δϕ2(k1,33 + k12,33 − ω2(I + mc2)).

By canceling ω in (A3), (A3) can be simplified, and it is
performed using two approaches: 1) 41 + 44, 42 − 45,
43+46 and 2)41−44,42+45,43−46. From approach
1), (A3) is simplified to01 0 0

0 02 0
0 0 03

 δϕ1 + δϕ2δy1 − δy2
δx1 + δx2

 = 0, (A.4)

where 01, 02, and 03, as shown at the bottom of the page. If
01, 02, and 03 cannot be zeros, the remaining terms of each
equation of (A4) should be zeros. Thus, the relations between
time-independent displacements are derived as

δx1 = −δx2, δy1 = δy2 and δϕ1 = −δϕ2. (A.5)

Similarly, approach 2) yields

(δϕ1 − δϕ2) 04 = 0, (δy1 + δy2) 05 = 0 and

(δx1 − δx2) 06 = 0, (A.6)

where 04, 05, and 06, as shown at the bottom of the
page. Accordingly, the other relations between the time-
independent displacements are derived:

δx1 = δx2, δy1 = −δy2 and δϕ1 = δϕ2. (A.7)

01 =


k1,33 −

k1,23
(
k1,12k1,13 − k1,11k1,23 + k1,23ω2m

)
k21,12 +

(
k1,11 − ω2m

) (
−k1,22 − 2k12,22 + ω2m

)
+
k1,13

(
−k1,12k1,23 + k1,13

(
k1,22 + 2k12,22 − ω2m

))
k21,12 +

(
k1,11 − ω2m

) (
−k1,22 − 2k12,22 + ω2m

)
−ω2

(
I + mc2

)

 ,

02 =

(
k1,22 + 2k12,22 − ω2m+

k21,12
−k1,11 + ω2m

)
and

03 =
(
k1,11 − ω2m

)
.

04 =



k1,33 + 2k12,33

+
k1,23

(
−k1,12

(
k1,13 + 2k12,13

)
+ k1,23

(
k1,11 + 2k12,11 − ω2m

))
k21,12 +

(
k1,11 + 2k12,11 − ω2m

) (
−k1,22 + ω2m

)
+

(
k1,13 + 2k12,13

) (
−k1,12k1,23 +

(
k1,13 + 2k12,13

) (
k1,22 − ω2m

))
k21,12 +

(
k1,11 + 2k12,11 − ω2m

) (
−k1,22 + ω2m

)
−ω2(I + mc2)


,

05 =

(
k1,22 − ω2m−

k21,12
k1,11 + 2k12,11 − ω2m

)
and

06 =
(
k1,11 + 2k12,11 − ω2m

)
.
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a1 =
�2

1y1,1
(
y1,2 − y1,3

)
+�2

2y1,2(−y1,1 + y1,3)+�
2
3y1,3

(
y1,1 − y1,2

)
x1,1(y1,2 − y1,3)+ x1,2(−y1,1 + y1,3)+ x1,3(y1,1 − y1,2)

,

a2 =
�2

4y1,4
(
−y1,5 + y1,6

)
+�2

5y1,5(y1,4 − y1,6)+�
2
6y1,6

(
−y1,4 + y1,5

)
x1,4

(
y1,5 − y1,6

)
+ x1,5

(
−y1,4 + y1,6

)
+ x1,6(y1,4 − y1,5)

,

b1 =

(
−�2

2 +�
2
3

)
x1,2x1,3y1,1 +

(
�2

1 −�
2
3

)
x1,1x1,3y1,2

x1,1
(
y1,2 − y1,3

)
+ x1,2

(
−y1,1 + y1,3

)
+ x1,3

(
y1,1 − y1,2

)
+

(
−�2

1 +�
2
2

)
x1,1x1,2y1,3

x1,1
(
y1,2 − y1,3

)
+ x1,2

(
−y1,1 + y1,3

)
+ x1,3(y1,1 − y1,2)

,

b2 =

(
�2

5 −�
2
6

)
x1,5x1,6y1,4 +

(
−�2

4 +�
2
6

)
x1,4x1,6y1,5

x1,4
(
y1,5 − y1,6

)
+ x1,5

(
−y1,4 + y1,6

)
+ x1,6

(
y1,4 − y1,5

)
+

(
�2

4 −�
2
5

)
x1,4x1,5y1,6

x1,4
(
y1,5 − y1,6

)
+ x1,5

(
−y1,4 + y1,6

)
+ x1,6(y1,4 − y1,5)

,

b3 =
�2

3x1,2y1,1 −�
2
2x1,3y1,1 −�

2
3x1,1y1,2 +�

2
1x1,3y1,2

x1,1(−y1,2 + y1,3)+ x1,2
(
y1,1 − y1,3

)
x1,3

(
−y1,1 + y1,2

)
+

�2
2x1,1y1,3 −�

2
1x1,2y1,3

x1,1(−y1,2 + y1,3)+ x1,2
(
y1,1 − y1,3

)
x1,3

(
−y1,1 + y1,2

) and

b4 =
−�2

6x1,5y1,4 +�
2
5x1,6y1,4 +�

2
6x1,4y1,5 −�

2
4x1,6y1,5

x1,4
(
−y1,5 + y1,6

)
+ x1,5

(
y1,4 − y1,6

)
x1,6

(
−y1,4 + y1,5

)
+

−�2
5x1,4y1,6 +�

2
4x1,5y1,6

x1,4
(
−y1,5 + y1,6

)
+ x1,5

(
y1,4 − y1,6

)
x1,6

(
−y1,4 + y1,5

) .

In (A5) and (A7), the relation between the magnitudes of
small angular displacements is expressed by

‖δϕ1‖ = ‖δϕ2‖ . (A.8)

Furthermore, the configuration of the normal mode which is
normalized by δϕ1 is represented as two types[

δx1
δϕ1

δy1
δϕ1

1 −
δx1
δϕ1

δy1
δϕ1

−1
]T

and[
δx1
δϕ1

δy1
δϕ1

1
δx1
δϕ1

−
δy1
δϕ1

1
]T
. (A.9)

From (A8) and (A9), it can be checked that the normal
modes of two rigid bodies are located symmetrically about
the Y -axis and themagnitudes of small angular displacements
are equal.

APPENDIX B
a1, a2, b1, b2, b3, and b4, as shown at the top of the page.
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