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ABSTRACT Multiplicative Zagreb indices have been studied due to their extensive applications. They play
a substantial role in chemistry, pharmaceutical sciences, materials science and engineering, because we can
correlate themwith numerous physico-chemical properties of molecules.We use graph theory to characterize
these chemical structures. The vertices of graphs represent the atoms of a compound and edges of graphs
represent the chemical bonds. We present upper and lower bounds on the general multiplicative Zagreb
indices for graphs with given number of vertices and cut-edges called bridges. We give all the extremal
graphs, which implies that our bounds are best possible.

INDEX TERMS Multiplicative Zagreb index, bridge, degree.

I. INTRODUCTION
We consider connected graphs without loops and multiple
edges. Let G be a graph with vertex set V (G) and edge
set E(G). The order of G is the number of vertices of G.
A bridge (cut-edge) is an edge of G whose removal increases
the number of components. The number of edges incident
with a vertex v ∈ V (G) is the degree dG(v) of v. A vertex
of degree one is called a pendant vertex. A pendant path of G
is a path having one terminal vertex of degree at least 3 in G,
while the other terminal vertex is a pendant vertex and each
internal vertex (if any exists) is of degree 2 in G.
The symbols Kn, Pn, Sn and Cn denote the complete graph,

the path, the star and the cycle of order n, respectively. Let
Cr = c1c2 . . . cr be the cycle with V (Cr ) = {c1, c2, . . . , cr }
and E(Cr ) = {c1c2, c2c3, . . . , cr−1cr , crc1}. A tree is a
connected graph without cycles. We denote by Cn−k ? Sk
(by Kn−k ? Sk ) the graph obtained by joining one vertex of
Cn−k (of Kn−k ) to k new vertices. The graph Cn−k ∗ Pk
(the graph Kn−k ∗ Pk ) is obtained by attaching one vertex of
Cn−k (of Kn−k ) to a pendant vertex of Pk+1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tu Ngoc Nguyen .

Topological indices have been used for drug design,
chemical documentation, isomer discrimination, quantitative
structure versus property (or activity) relationships (QSPR/
QSAR), toxicology hazard assessments and combinatorial
library design. They have been applied in the process of cor-
relating the chemical structures with various characteristics
such as boiling points and molar heats of formation. These
indices are a convenient method of translating chemical con-
stitution into numerical values which are used for correlations
with physical properties.

Multiplicative Zagreb indices have extensive applications.
They have been investigated particularly in the past decade.
They play a substantial role in chemistry, pharmaceutical
sciences, materials science and engineering, because we can
correlate themwith numerous physico-chemical properties of
molecules. We use graph theory to characterize these chemi-
cal structures. The vertices of graphs represent the atoms of a
compound and edges of graphs represent the chemical bonds.

Tight lower and upper bounds on the multiplicative Zagreb
indices for graphs with given number of vertices and bridges
were given in [14], sharp upper bounds for graphs with
given order and size were obtained in [9], bounds for graphs
with respect to order and clique number wer given in [12],
tight lower and upper bounds for trees, unicyclic graphs and
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bicyclic graphs of given order were presented in [15], upper
bounds for graph products were obtained in [4], lower bounds
for graph operationswere investigated in [11], graphs of given
order and chromatic number in [16], graphs with a small
number of cycles in [1], derived graphs in [2], molecular
graphs in [6] and upper bounds for bipartite graphs were
studied in [13]. Classical Zagreb indices were investigated
in [8] and [10], the augmented Zagreb index in [3] and [7],
and weighted Harary indices for graphs with bridges in [5].

For any real number a 6= 0, the first and second general
multiplicative Zagreb indices of a graph G are defined as

Pa1(G) =
∏

v∈V (G)

dG(v)a

and

Pa2(G) =
∏

v∈V (G)

dG(v)adG(v),

respectively. These indices generalize classical multiplicative
Zagreb indices, since P11(G) is the Narumi-Katayama index,
P21(G) is the first multiplicative Zagreb index and P12(G) is
the second multiplicative Zagreb index.

We generalize results of Wang et al. [14] and present new
methods and proofs.We obtain upper and lower bounds on the
general multiplicative Zagreb indices for graphs with given
number of vertices and bridges. We give all the extremal
graphs which implies that our bounds are best possible.

II. PRELIMINARY RESULTS
First, we show that by adding an edge to a graph G, we get a
graph with larger general multiplicative Zagreb indices.
Lemma 1: Let G be any connected graph with two nonad-

jacent vertices v1, v2 ∈ V (G). Then for a > 0, Pac(G) <

Pac(G+ v1v2), where c = 1, 2.
Proof: Let G′ = G + v1v2. For j = 1, 2, we have

1 ≤ dG(vj) < dG′ (vj), which implies that 1 ≤ dG(vj)a <
dG′ (vj)a, thusPa1(G) < Pa1(G

′). Similarly, 1 ≤ dG(vj)adG(vj) <
dG′ (vj)adG′ (vj), so Pa2(G) < Pa2(G

′). �
The next lemmas are used in the proofs of our main results

as well.
Lemma 2: Let G be formed by any connected nonempty

graph H with a tree T attached to one vertex of H. If G has
the smallest Pa1 index, where a > 0, then T is a star attached
to H by its centre.

Proof: Let G be formed by a nonempty graph H with a
tree T attached to one vertex of H . We show that if G has the
smallest Pa1 index, where a > 0, then T is a star attached to
H by its centre.

Suppose to the contrary that T is not a star attached to some
vertex x by its centre. Thus T has a vertex y (y 6= x) of degree
greater than 1 adjacent to some pendant vertices. Let y′ be a
vertex of T of degree greater than 1 that is farthest from x. Let
y1, y2, . . . , yt (with t ≥ 1) be the pendant vertices adjacent
to y′. We construct a new graph G′. Let V (G′) = V (G) and
E(G′) = {xy1, xy2, . . . , xyt } ∪ E(G) \ {y′y1, y′y2, . . . , y′yt }.
Then dG(y′) = t + 1, dG′ (y′) = 1, dG(x) = s ≥ 2 and

dG′ (x) = s + t . For the other vertices w ∈ V (G) \ {x, y′},
we obtain dG(w) = dG′ (w). Therefore,

Pa1(G)

Pa1(G
′)
=

(t + 1)asa

(s+ t)a
=

(
ts+ s
t + s

)a
> 1,

since ts+s
t+s > 1. So Pa1(G) > Pa1(G

′). Hence G does not have
the smallest Pa1 index, which is a contradiction. Thus T is a
star. �
Lemma 3: Let G be formed by any connected nonempty

graph H with a tree T attached to one vertex of H. If G has
the largest Pa2 index, where a > 0, then T is a star attached
to H by its centre.

Proof: Let G be formed by a nonempty graph H with a
tree T attached to one vertex of H . We show that if G has the
largest Pa2 index, where a > 0, then T is a star.

Suppose to the contrary that T is not a star attached to
some vertex x by its centre. Thus T has a vertex y (y 6= x)
of degree greater than 1 adjacent to some pendant vertices.
Let y′ be a vertex of T of degree greater than 1 that is
farthest from x. Let y1, y2, . . . , yt (with t ≥ 1) be the pendant
vertices adjacent to y′. We construct graphs G′ different from
the graph constructed in the proof of Lemma 2, othewise
it would be complicated to compare Pa2(G) and P

a
2(G
′). Let

dG(x) = s ≥ 2. We consider two cases.
Case 1. s > t .
Let V (G′) = V (G) and E(G′) = {xy1} ∪ E(G) \ {y′y1}.

Then dG(y′) = t + 1, dG′ (y′) = t , dG(x) = s and dG′ (x) =
s + 1. For the other vertices w ∈ V (G) \ {x, y′}, we obtain
dG(w) = dG′ (w). Therefore,

Pa2(G)

Pa2(G
′)
=

(t + 1)a(t+1)sas

tat (s+ 1)a(s+1)

=

[(
1+

1
t

)t (
1−

1
s+ 1

)s+1 t + 1
s

]a
< 1,

since (1 + 1
t )
t < e, (1 − 1

s+1 )
s+1 < 1

e and t+1
s ≤ 1. So

Pa2(G) < Pa2(G
′) which is a contradiction.

Case 2. s ≤ t .
In this case we need to introduce a more complicated

transformation. Let V (G′) = V (G) and E(G′) = {xy1,
xy2, . . . , xyt+2−s} ∪ E(G) \ {y′y1, y′y2, . . . , y′yt+2−s}. Then
dG(y′) = t + 1, dG′ (y′) = t + 1 − (t + 2 − s) = s − 1,
dG(x) = s ≥ 2 and dG′ (x) = s+ (t + 2− s) = t + 2. For the
other vertices w ∈ V (G) \ {x, y′}, we have dG(w) = dG′ (w).
Therefore,

Pa2(G)

Pa2(G
′)
=

(t + 1)a(t+1)sas

(t + 2)a(t+2)(s− 1)a(s−1)

=

[(
1−

1
t + 2

)t+2(
1+

1
s− 1

)s−1 s
t + 1

]a
< 1,

since (1 − 1
t+2 )

t+2 < 1
e , (1 +

1
s−1 )

s−1 < e and s
t+1 < 1.

So Pa2(G) < Pa2(G
′), Hence G does not have the largest Pa2

index, which is a contradiction. Thus T is a star. �
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Lemma 4: Let G be formed by a cycle H (by a complete
graph H), where any vertex of H can be adjacent to pendant
vertices. If G has the smallest Pa1 index (the largest P

a
2 index),

where a > 0, then G contains at most one vertex adjacent to
pendant vertices.

Proof: We show that if G has the smallest Pa1 index (the
largest Pa2 index), where a > 0, then G contains at most one
vertex adjacent to pendant vertices.

Suppose to the contrary thatG has at least two vertices v,w
adjacent to pendant vertices. Without loss of generality,
assume that s = dG(v) ≥ dG(w) = t . Let w′ be any pendant
vertex adjacent to w in G.
Let G′ be the graph with V (G′) = V (G) and E(G′) =
{vw′} ∪ E(G) \ {ww′}. Then dG(v) = s, dG′ (v) = s + 1,
dG(w) = t and dG′ (w) = t − 1. Thus

Pa1(G)

Pa1(G
′)
=

tasa

(t − 1)a(s+ 1)a
=

(
ts

ts+ t−s− 1

)a
> 1,

since t−s ≤ 0. So Pa1(G) > Pa1(G
′), which means thatG does

not have the smallest Pa1 index.
For the Pa2 index,

Pa2(G)

Pa2(G
′)
=

tatsas

(t − 1)a(t−1)(s+ 1)a(s+1)

=

[(
1+

1
t − 1

)t−1 (
1−

1
s+ 1

)s+1 t
s

]a
< 1,

since (1 + 1
t−1 )

t−1 < e, (1 − 1
s+1 )

s+1 < 1
e and t

s ≤ 1. Thus
Pa2(G) < Pa2(G

′), so G does not have the largest Pa2 index,
which is a contradiction. �
Lemma 5: Let G be formed by any connected nonempty

graph H with a tree T attached to one vertex of H. If G has
the largest Pa1 index (the smallest P

a
2 index), where a > 0,

then T is a path attached to H by its pendant vertex.
Proof: Let G be formed by a nonempty graph H with a

tree T attached to one vertex, say x, of H . We show that if G
has the largest Pa1 index (the smallest Pa2 index), where a > 0,
then T is a path attached to H by its pendant vertex.
We prove it by contradiction. Assume that T is not a path.

Let y be a vertex of T of degree at least 3 farthest from x (pos-
sibly y = x). Thus T has two pendant paths, say yy1y2 . . . ys
and yy′1y

′

2 . . . y
′
r , where s, r ≥ 1. Define the graph G′ with

V (G′) = V (G) and E(G′) = {ysy′1} ∪ E(G) \ {yy
′

1}. Then
dG(y) = t ≥ 3, dG′ (y) = t − 1, dG(ys) = 1, dG′ (ys) = 2
and dG(w) = dG′ (w) for the other vertices w ∈ V (G) \ {yys}.
Then

Pa1(G
′)

Pa1(G)
=

2a(t − 1)a

ta
=

(
2t − 2
t

)a
> 1

and

Pa2(G
′)

Pa2(G)
=

22a(t − 1)a(t−1)

tat
=

[(
1−

1
t

)t 4
t − 1

]a
< 1,

since (1 − 1
t )
t < 1

e and 4
t−1 ≤ 2 < e. Thus Pa1(G

′) > Pa1(G)
and Pa2(G

′) < Pa2(G). Hence G does not have the largest

Pa1 index (the smallest Pa2 index), a contradiction. So T is a
path. �
Lemma 6: Let G be formed by a complete graph H (by a

cycle H), where any vertex of H can be adjacent to a pendant
path. If G has the largest Pa1 index (the smallest P

a
2 index),

where a > 0, then G contains at most one pendant path.
Proof: We show that if G has the largest Pa1 index (the

smallest Pa2 index), where a > 0, then G contains at most one
pendant path.

Assume to the contrary that G has at least 2 pendant paths,
say say vy1y2 . . . ys and v′y′1y

′

2 . . . y
′
r , where v, v

′
∈ H and

s, r ≥ 1. Define the graph G′ with V (G′) = V (G) and
E(G′) = {ysy′1} ∪ E(G) \ {v

′y′1}. Then dG(v′) = t ≥ 3,
dG′ (v′) = t−1, dG(ys) = 1, dG′ (ys) = 2 and dG(w) = dG′ (w)
for the other vertices w ∈ V (G) \ {v′, ys}. Then, similarly as
in the proof of Lemma 5,

Pa1(G
′)

Pa1(G)
=

2a(t − 1)a

ta
> 1

and

Pa2(G
′)

Pa2(G)
=

22a(t − 1)a(t−1)

tat
< 1,

so Pa1(G
′) > Pa1(G) and Pa2(G

′) < Pa2(G). Hence G
does not have the largest Pa1 index (the smallest Pa2 index),
a contradiction. �

III. MAIN RESULTS
We study graphs with n vertices and k bridges. Note that there
is no graph with n − 2 bridges, since every tree has n − 1
bridges and every graph with a cycle has at most n−3 bridges.
It is easy to show that the extremal graphs for the general
multiplicative Zagren indices with n vertices and 0 bridges
are the cycles Cn or the complete graphs Kn, therefore we
investigate graphs with k bridges, where 1 ≤ k ≤ n − 3
which means that n ≥ 4.
Theorem 1: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a > 0,

Pa1(G) ≥ (k + 2)a2(n−k−1)a

with equality if and only if G is Cn−k ? Sk+1, and

Pa2(G) ≥ 33a22a(n−2)

with equality if and only if G is Cn−k ∗ Pk+1.
Proof: Let G′ be a graph with the smallest Pa1 index

(with the smallest Pa2 index) among graphs with n vertices
and k bridges. Let Eb be the set of bridges of G′. Since
G′ has k bridges, G′ − Eb contains k + 1 components, say
G1,G2, . . . ,Gk+1.
Since for each i = 1, 2, . . . , k + 1, Gi does not have

bridges, it follows that Gi must be an isolated vertex or a
2-edge connected graph. Since every pendant edge is a bridge,
Gi does not have vertices of degree one. To get dGi (v)

a and
dGi (v)

adGi (v) as small as possible, we need the degree of any
vertex v ∈ V (Gi) as small as possible, thus if Gi is not
an isolated graph, the degree of every vertex in Gi is 2,
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which implies that Gi is a cycle. So each component Gi for
i = 1, 2, . . . , k + 1, is an isolated vertex or a cycle Cp for
some p ≥ 3.
Claim 1.At most one componentGi, where 1 ≤ i ≤ k+1,

is a cycle.
Assume to the contrary that there are two components Gi

and Gj, where 1 ≤ i < j ≤ k + 1, which are cycles. Let
Gi = c1c2 . . . cr and Gj = c′1c

′

2 . . . c
′
s, where r, s ≥ 3.

Since G′ is connected, there is some path P in G′ connecting
Gi and Gj. We can assume that the path P has the terminal
vertices c1 and c′1.
Define the graph G′′ with V (G′′) = V (G′) and E(G′′) =
{c1c′s, c2c

′

2} ∪ E(G
′) \ {c1c2, c′1c

′

2, c
′

1c
′
s}. Then dG′ (c

′

1) = z
and dG′′ (c′1) = z− 2 for some z ≥ 3 (since c′1 can be incident
with many bridges in G′) and dG′ (y) = dG′′ (y) for all the
other vertices y ∈ V (G′). We obtain

Pa1(G
′)

Pa1(G
′′)
=

za

(z− 2)a
=

(
z

z− 2

)a
> 1

and

Pa2(G
′)

Pa2(G
′′)
=

zaz

(z− 2)a(z−2)
=

[
zz

(z− 2)z−2

]a
> 1,

thus Pac(G
′) > Pac(G

′′) for c = 1, 2, so G′ is not a graph
with the smallest Pac index. A contradiction. Hence, Claim 1
is proved.

Therefore, at most one component of G′ − Eb is a cycle.
Not all the edges of G′ are bridges, thus G′ must contain one
cycle. Since G′ contains exactly k bridges, G′ consists of the
cycle Cn−k of length n− k and trees which might be attached
to some vertices of the cycle.

For the Pa1 index, from Lemma 2 it follows that a tree
attached to a vertex of the cycle must be a star and from
Lemma 4 it follows that all the bridges are attached to one
vertex of the cycle, hence G′ is Cn−k ? Sk+1; see Figure 1.

FIGURE 1. Graph Cn−k ? Sk+1.

The graph Cn−k ?Sk+1 contains k vertices having degree 1,
one vertex having degree k + 2 and n − k − 1 vertices of
degree 2, thus

Pa1(Cn−k ? Sk+1) = (k + 2)a2(n−k−1)a1ka

= (k + 2)a2(n−k−1)a.

For the Pa2 index, from Lemma 5 it follows that a tree attached
to a vertex of the cycle must be a path and from Lemma 6 it
follows that G′ contains at most one pendant path. Thus G′ is
Cn−k ∗ Pk+1; see Figure 2.

FIGURE 2. Graph Cn−k ∗ Pk+1.

The graphCn−k∗Pk+1 contains one vertex having degree 1,
one vertex having degree 3 and n−2 vertices having degree 2,
thus

Pa2(Cn−k ∗ Pk+1) = 33a22a(n−2)1a = 33a22a(n−2).

�
Nowwe present upper bounds on the general multiplicative

Zagreb indices for graphs with given number of vertices and
bridges.
Theorem 2: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a > 0,

Pa1(G) ≤ (n− k)a(n− k − 1)a(n−k−1)2a(k−1)

with equality if and only if G is Kn−k ? Pk+1.
Proof: Let G′ be any graph having the largest Pa1 index

among graphs with n vertices and k bridges. Let Eb be the
set of bridges of G′. The removal of a bridge inscreases the
number of components by one. SinceG′ has k bridges,G′−Eb
contains k + 1 components, say G1,G2, . . . ,Gk+1.
Since the Pa1 index increases by adding edges and G′

is maximal, by Lemma 1, each component Gi for i =
1, 2, . . . , k + 1, is a complete graph. Note that Gi cannot
be K2, otherwise it would be a bridge. So Gi is either K1 or
Kp for some p ≥ 3.
Claim 1.At most one componentGi, where 1 ≤ i ≤ k+1,

is Kp for some p ≥ 3.
Assume to the contrary that we have at least two com-

ponents which are complete graphs with at least 3 vertices.
Let Gi and Gj be the farthest components in G′. So Gi is Kr
with V (Kr ) = {u1, u2, . . . , ur } and Gj is Ks with V (Ks) =
{v1, v2, . . . , vs}, where r, s ≥ 3. Since G′ is connected, there
is some path P in G′ connecting Kr and Ks. We can assume
that the path P has the terminal vertices u1 and v1. Without
loss of generality, assume that r ≤ s. By Lemma 5, every
vertex ui can be adjacent (except for the vertices of Kr and P)
to at most one vertex which is a vertex of a pendant path;
i = 1, 2, . . . , r . By the proof of Lemma 6, a pendant path can
be attached only to one vertex of Kr and we can assume that
ur is that vertex. Thus dG′ (ur ) = r−1+ ε, where ε = 0 or 1,
dG′ (u1) = r and dG′ (ui) = r − 1 for i = 2, 3, . . . , r − 1.
Let V (G′′) = V (G′) and E(G′′) = {uivj|i = 2, 3 . . . , r; j =

1, 2, . . . , s}∪E(G′)\ {u1 ui| i = 2, 3 . . . , r}. Then dG′′ (u1) =
1, dG′′ (ur ) = (r−2+ε)+s and dG′′ (ui) = (r−2)+s, therefore
dG′′ (ui) ≥ 2dG′ (ui) for i = 2, 3, . . . , r−1. We also know that
dG′ (vj) < dG′′ (vj) for j = 1, 2, . . . , s, and dG′ (y) = dG′′ (y)

118728 VOLUME 8, 2020



M. R. Alfuraidan et al.: General Multiplicative Zagreb Indices of Graphs With Bridges

for all the other vertices. Thus

Pa1(G
′′)

Pa1(G
′)
>

dG′′ (u1)adG′′ (u2)a . . . dG′′ (ur )a

dG′ (u1)adG′ (u2)a . . . dG′ (ur )a

=

(
1(r − 2+ s)r−2(r − 2+ ε + s)

r(r − 1)r−2(r − 1+ ε)

)a
≥

(
2r−2(r − 2+ ε + s)

r(r − 1+ ε)

)a
.

For r ≥ 4, we have 2r−2 ≥ r , thus
Pa1(G

′′)
Pa1(G

′) > 1.

If r = 3, we obtain
Pa1(G

′′)
Pa1(G

′) >
(
21(s+1+ε)
3(2+ε)

)a
> 1, since

s ≥ 3 and ε = 0 or 1. Thus Pa1(G
′′) > Pa1(G

′) which means
that G′ does not have the largest Pa1 index, a contradiction.
Hence, Claim 1 is proved.

Therefore, at most one component ofG′−Eb isKp for some
p ≥ 3. Since not all the edges of G′ are bridges, G′ must
contain exactly one complete graph with at least 3 vertices.
We know that G′ has k bridges, therefore G′ consists of the
complete graph Kn−k of order n−k and trees which might be
attached to some vertices of that Kn−k .
From Lemma 5 it follows that a tree attached to a vertex

of Kn−k must be a path and from Lemma 6 it follows that G′

contains at most one pendant path. Thus G′ is Kn−k ? Pk+1;
see Figure 3.

FIGURE 3. Graph Kn−k ∗ Pk+1.

The graphKn−k?Pk+1 contains one vertex having degree 1,
k−1 vertices having degree 2, one vertex having degree n−k
and n− k − 1 vertices having degree n− k − 1, thus

Pa2(Kn−k ? Pk+1) = (n− k)a(n− k − 1)a(n−k−1)2a(k−1).

�
Theorem 3: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a > 0,

Pa2(G) ≤ (n− 1)a(n−1)(n− k − 1)a(n−k−1)
2

with equality if and only if G is Kn−k ∗ Sk+1.
Proof: Let G′ be any graph with the largest Pa2 index

among graphs with n vertices and k bridges. Let Eb be the
set of bridges of G′. The removal of a bridge inscreases the
number of components by one. SinceG′ has k bridges,G′−Eb
contains k + 1 components, say G1,G2, . . . ,Gk+1.
Since the Pa2 index increases by adding edges and G′

is maximal, by Lemma 1, each component Gi for i =
1, 2, . . . , k + 1, is a complete graph. Note that Gi cannot
be K2, otherwise it would be a bridge. So Gi is either K1 or
Kp for some p ≥ 3.

Claim 1.At most one componentGi, where 1 ≤ i ≤ k+1,
is Kp for some p ≥ 3.
Assume to the contrary that there are two components

which are complete graphs with at least 3 vertices, say Kr ′
with V (Kr ′ ) = {u1, u2, . . . , ur ′} and Ks′ with V (Ks′ ) =
{v1, v2, . . . , vs′}, where r ′, s′ ≥ 3. Since G′ is connected,
there is some path P in G′ connecting Kr ′ and Ks′ . We can
assume that the path P has the terminal vertices u1 and v1.
Without loss of generality, suppose that r = dG′ (u1) ≤
dG′ (v1) = s. Clearly, r ≥ r ′ and s ≥ s′. Let us note that
any verrtex of Kr ′ or Ks′ can be incident with many bridges
in G′.
Let V (G′′) = V (G′) and E(G′′) = {uivj|i = 2, 3 . . . , r ′;

j = 1, 2, . . . , s′} ∪ E(G′) \ {u1ui| i = 2, 3 . . . , r ′}. Then
dG′′ (u1) = r− (r ′−1) and dG′′ (v1) = s+ (r ′−1). Obviously,
dG′ (y) ≤ dG′′ (y) for the other vertices y ∈ V (G′) \ {u1, v1}.
Thus dG′ (y)adG′ (y) ≤ dG′′ (y)adG′′ (y) and

Pa2(G
′)

Pa2(G
′′)

≤
dG′ (u1)adG′ (u1)dG′ (v1)adG′ (v1)

dG′′ (u1)adG′′ (u1)dG′′ (v1)adG′′ (v1)

=
rarsas

[r − (r ′ − 1)]a[r−(r ′−1)][s+ (r ′ − 1)]a[s+(r ′−1)]

=

[(
1+

r ′ − 1
r − (r ′ − 1)

)r−(r ′−1)
(
1−

r ′ − 1
s+ (r ′ − 1)

)s+(r ′−1) rr ′−1
sr ′−1

]a
< 1,

since (1+ r ′−1
r−(r ′−1) )

r−(r ′−1) < er
′
−1, (1− r ′−1

s+(r ′−1) )
s+(r ′−1) <

1
er ′−1

and rr
′
−1

sr ′−1
≤ 1. Therefore, Pa2(G

′) < Pa2(G
′′), which

means that G′ does not have the largest Pa2 index, a contra-
diction. Thus Claim 1 is proved.

Therefore, at most one component ofG′−Eb isKp for some
p ≥ 3. Since not all the edges of G′ are bridges, G′ must
contain exactly one complete graph with at least 3 vertices.
We know that G′ has k bridges, therefore G′ consists of the
complete graph Kn−k of order n−k and trees which might be
attached to some vertices of that Kn−k .

From Lemma 3 it follows that a tree attached to a vertex
of Kn−k must be a star and from Lemma 4 it follows that all
the bridges are attached to one vertex of that complete graph,
hence G′ is Kn−k ? Sk+1; see Figure 4.

FIGURE 4. Graph Kn−k ? Sk+1.

The graph Kn−k ?Sk+1 contains k vertices having degree 1,
one vertex having degree n− 1 and n− k − 1 vertices having
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degree n− k − 1, thus Pa2(Cn−k ? Sk+1)

= (n− 1)a(n−1)(n− k − 1)a(n−k−1)(n−k−1)1ka

= (n− 1)a(n−1)(n− k − 1)a(n−k−1)
2
.

�

IV. BOUNDS FOR a < 0
In the proofs of our results for a > 0 we often used that if
f > 1, then f a > 1; or more generally, if f1 > f2 ≥ 1, then
f a1 > f a2 ≥ 1, Similarly, if 0 < f < 1 and a > 0, we obtain
0 < f a < 1.

Note that if f > 1 and a < 0, we get 0 < f a < 1; or more
generally, if f1 > f2 ≥ 1, then 0 < f a1 < f a2 ≤ 1, Similarly,
if 0 < f < 1 and a < 0, we obtain f a > 1.
Using these inequalities and the proofs of the results given

in Sections II and III we obtain results for a < 0.
Lemma 7: Let G be a connected graph with two nonad-

jacent vertices v1, v2 ∈ V (G). Then for a < 0, Pac(G) >

Pac(G+ v1v2), where c = 1, 2.
Proof: Let G′ = G + v1 v2. For j = 1, 2, we have

1 ≤ dG(vj) < dG′ (vj), which implies that 1 ≥ dG(vj)a >
dG′ (vj)a > 0, thus Pa1(G) > Pa1(G

′). Similarly, since 1 ≤
dG(vj)dG(vj) < dG′ (vj)dG′ (vj), we obtain

1 ≥ dG(vj)adG(vj)

= [dG(vj)dG(vj)]a

> [dG′ (vj)
dG′ (vj)]a

= dG′ (vj)
adG′ (vj) > 0,

so Pa2(G) > Pa2(G
′). �

Lemma 8: Let G be formed by any connected nonempty
graph H with a tree T attached to one vertex of H. If G has
the largest Pa1 index, where a < 0, then T is a star attached
to H by its centre.

Themain difference between the proofs of Lemmas 2 and 8
is that in the proof of Lemma 8 we would use

Pa1(G)

Pa1(G
′)
=

(
ts+ s
t + s

)a
< 1,

since ts+s
t+s > 1.

Lemma 9: Let G be formed by any connected nonempty
graph H with a tree T attached to one vertex of H. If G has
the smallest Pa2 index, where a < 0, then T is a star attached
to H by its centre.
Lemma 10: Let G be formed by a cycle H (by a complete

graph H), where any vertex of H can be adjacent to pendant
vertices. If G has the largest Pa1 index (the smallest P

a
2 index),

where a < 0, then G contains at most one vertex adjacent to
pendant vertices.
Lemma 11: Let G be formed by any connected nonempty

graph H with a tree T attached to one vertex of H. If G has
the smallest Pa1 index (the largest P

a
2 index), where a < 0,

then T is a path attached to H by its pendant vertex.
Lemma 12: Let G be formed by a complete graph H (by a

cycle H), where any vertex of H can be adjacent to a pendant

path. If G has the smallest Pa1 index (the largest P
a
2 index),

where a < 0, then G contains at most one pendant path.
The main difference between the proofs of Lemmas 5, 6

and proofs of Lemmas 11, 12 is that in the proofs of
Lemmas 11, 12 we would use

Pa1(G
′)

Pa1(G)
=

(
2t − 2
t

)a
< 1,

since 2t−2
t > 1, and

Pa2(G
′)

Pa2(G)
=

[(
1−

1
t

)t 4
t − 1

]a
> 1,

since (1− 1
t )
t 4
t−1 < 1.

We can use Lemmas 7 – 12 to obtain the following bounds
for a < 0.
Theorem 4: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a < 0,

Pa1(G) ≤ (k + 2)a2(n−k−1)a

with equality if and only if G is Cn−k ? Sk+1, and

Pa2(G) ≤ 33a22a(n−2)

with equality if and only if G is Cn−k ∗ Pk+1.
The main difference between the proofs of Theorems 1

and 4 is that in the proof of Theorem 4 we would use

Pa1(G
′)

Pa1(G
′′)
=

(
z

z− 2

)a
< 1

and

Pa2(G
′)

Pa2(G
′′)
=

[
zz

(z− 2)z−2

]a
< 1,

since z
z−2 > 1 and zz

(z−2)z−2
> 1.

Upper bounds on the Pa1 and Pa2 indices are given in
Theorems 5 and 6.
Theorem 5: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a < 0,

Pa1(G) ≥ (n− k)a(n− k − 1)a(n−k−1)2a(k−1)

with equality if and only if G is Kn−k ? Pk+1.
Theorem 6: Let G be a graph having n vertices and k

bridges, where 1 ≤ k ≤ n− 3. Then for a < 0,

Pa2(G) ≥ (n− 1)a(n−1)(n− k − 1)a(n−k−1)
2

with equality if and only if G is Kn−k ∗ Sk+1.
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