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ABSTRACT Quadratic discriminant analysis (QDA) is a widely used classification technique that gener-
alizes the linear discriminant analysis (LDA) classifier to the case of distinct covariance matrices among
classes. For the QDA classifier to yield high classification performance, an accurate estimation of the
covariance matrices is required. Such a task becomes all the more challenging in high dimensional settings,
wherein the number of observations is comparable with the feature dimension. A popular way to enhance
the performance of QDA classifier under these circumstances is to regularize the covariance matrix, giving
the name regularized QDA (R-QDA) to the corresponding classifier. In this work, we consider the case in
which the population covariance matrix has a spiked covariance structure, a model that is often assumed in
several applications. Building on the classical QDA, we propose a novel quadratic classification technique,
the parameters of which are chosen such that the fisher-discriminant ratio is maximized. Numerical
simulations show that the proposed classifier not only outperforms the classical R-QDA for both synthetic
and real data but also requires lower computational complexity, making it suitable to high dimensional
settings.

INDEX TERMS High-dimensional data, quadratic discriminant analysis, random matrix theory, spiked
covariance models.

I. INTRODUCTION
Classification is among the most typical examples of super-
vised learning techniques. When the data is normally dis-
tributed with common covariance matrices across classes,
linear discriminant analysis (LDA) is known to be the opti-
mal classifier in terms of misclassification rate minimiza-
tion. In the case of different covariances across classes,
it has recently been shown that the use of LDA does not
enable to leverage the information on the differences between
covariance matrices [1]. Under such circumstances, it can be
more advisable to employ the quadratic discriminant analysis
(QDA), which turns out to be the optimal classifier under
Gaussian data and known statistics. In practical scenarios,
the covariance matrices and the means associated with each
class are not perfectly known. They are often estimated
based on the available training data for which the class label
associated with each observation is provided. If the number
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of training samples n and their dimensions p are commen-
surable, a situation widely met in numerous applications
such as medical imaging [2], functional data analysis [3],
meteorology and oceanography [4], many estimators of the
covariance matrices such as the sample covariance matrix
become highly inaccurate. A typical extreme scenario cor-
responds to the case n < p, in which the sample covariance
matrix becomes singular, and as such, cannot be used as a
plug-in estimator of the covariance matrix since the QDA
classifier involves the computation of the inverse covariance
matrix. To get around this issue, it was proposed to use
instead, a regularized covariance matrix estimator that lin-
early shrinks through the use of a scalar regularization param-
eter the sample covariance matrix towards identity [5]. The
corresponding classifier is referred to as regularized QDA
(R-QDA). This regularization appoach has been used suc-
cefully in several applications [6]–[8]. However, QDA and
R-QDA remain widely unused in high-dimensional settings,
being very sensitive to the estimation quality of the covari-
ance matrix [9].
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In this work, we consider a high-dimensional setting in
which the number of observations is assumed to scale with
their dimensions. We further assume that the population
covariance matrix associated with each class is a low-rank
perturbation of a scaled identity; that is, it is isotropic except
for a finite number of symmetry-breaking directions. Such
a model is used in many real applications such as detec-
tion [10], electroencephalogram (EEG) signals [11], [12], and
financial econometrics [13], [14], and is known in the random
matrix theory terminology as the spiked covariance model.
Based on this model, we propose to employ for each class a
parametrized covariance matrix estimator following the same
model as the population covariance matrix. The parameters
correspond to the largest eigenvalues, which are optimized
to maximize the classifier performance. More specifically,
by leveraging tools from random matrix theory, we compute
the asymptotic Fisher ratio in the regime n and p growing
to infinity at the same pace. Closed-form expressions of the
optimal parameters that maximize the asymptotic Fisher ratio
are then provided. The approach consisting of exploiting the
spiked structure of the covariance matrix has mainly been
considered in signal processing applications [15] and [16].
It has only recently been used for the classification problem in
our work in [17], [18], wherein a similar approach is applied
to find an improved LDA classifier under the spiked covari-
ance model assumption. Considering a QDA based classifier
is needed when the covariance matrices between classes are
different. It is also more challenging since it involves an
involved quadratic statistic, the statistical properties of which
are much harder to characterize.

The proposed classifier is compared with the regular-
ized QDA (R-QDA) classifier [5] using both real and
synthetic data. The proposed classifier outperforms the
classical R-QDA classifier while requiring less compu-
tational complexity. As shown next in the paper, the
proposed classifier involves a statistic that avoids comput-
ing the inverse of the covariance matrix. Moreover, since
the parameters are obtained in closed-form, it avoids the
grid search or the cross-validation approach needed to deter-
mine the optimal regularization parameter of the R-QDA
classifier [5].

The remainder of this paper is organized as follows. In the
next section, a brief overview of QDA and R-QDA classifiers
is provided. Section III details the steps of the design of our
proposed classifier. The performance of the proposed classi-
fier is studied in section IV, and some concluding remarks are
drawn in section V.

A. NOTATIONS
Throughout this work, boldface lower case is used for denot-
ing column vectors, x, and upper case for matrices, X .
XT denotes the transpose. Moreover, Ip, 0p and 1p denote
the identity matrix, the all-zero vector and all-one vector of
size p respectively. |X | and tr (X) denote the determinant
and the trace of X respectively.

{
xj
}r
j=1 is used to denote the

row vector with entries xj whereas ‖.‖ is used to denote the
`2-norm. The almost sure convergence and the convergence
in distribution of random variables will be denoted as

a.s.
−→

and
d
−→ receptively.

II. QUADRATIC DISCRIMINANT ANALYSIS
Consider x1, · · · , xn observations of size p belonging to two
different classes C0 and C1 with ni observations belonging to
class Ci. For notational convenience, we denote by Ti the set
of indexes of the observations belonging to class Ci.
We assume that x` ∈ Ci, i ∈ {0, 1}, is drawn from
a Gaussian distribution with mean µi and covariance 6i.
In this work, a ‘spiked model’ is assumed for the covari-
ance matrices. Under this assumption, for i ∈ {0, 1}, 6i is
written as:

6i = σ
2
i Ip + σ

2
i

ri∑
j=1

λj,ivj,ivTj,i, (1)

where σ 2
i > 0, λ1,i ≥ · · · ,≥ λri,i > 0 and v1,i, · · · , vri,i are

orthonormal.
Remark 1: The assumed model of the covariance

matrices is encountered in many real applications such
as detection [10], EEG signals [11], [12], and financial
econometrics [13], [14].

The starting point of our work is the classical QDA classi-
fier whose discriminant function is given by:

WQDA(x) = ηQDA −
1
2
(x − µ0)

T6−10 (x − µ0)

+
1
2
(x − µ1)

T6−11 (x − µ1), (2)

where ηQDA = − 1
2 log

|60|
|61|
− log π1

π0
and πi is the prior

probability for class Ci. An observation x is classified to C0 if
the discriminant functionWQDA(x) is positive and to class C1
otherwise. In practice, themean vectors and covariancematri-
ces are unknown and are usually replaced by their empirical
estimates. For notational convenience, we define the sample
mean and the sample covariance matrix of class i ∈ {0, 1},
respectively as:

x i =
1
ni

∑
`∈Ti

x`,

6̂i =
1

ni − 1

∑
`∈Ti

(x` − x i)(x` − x i)T .

It is the case in many real data sets that the dimension
of the observations is of the same order of magnitude if
not higher than their numbers, which makes the sample
covariance matrix 6̂i ill-conditioned. To overcome this issue,
ridge estimators of the inverse of the covariance matrix are
used [9], [19]:

Hi =
(
Ip + γ 6̂i

)−1
, γ > 0. (3)
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Replacing 6i by Hi into (2) yields the R-QDA classifier,
the statistic of which is given by:

ŴR−QDA(x) = ηR−QDA −
1
2
(x − x0)TH

−1
0 (x − x0)

+
1
2
(x − x1)TH

−1
1 (x − x1), (4)

where ηR−QDA = − 1
2 log

|H1|
|H0|
− log π1

π0
. The classification

error of R-QDA corresponding to class i can be written as,

ε
R−QDA
i = P

[
(−1)iŴR−QDA(x) < 0|x ∈ Ci

]
,

The global classification error is given by,

εR−QDA = π0ε
R−QDA
0 + π1ε

R−QDA
1 . (5)

The optimal parameter of R-QDA classifier γ ∗, that mini-
mizes the global classification error, is generally computed by
comparing the performance of a few candidate values using
a cross-validation method [5].

III. IMPROVED QDA
A. PROPOSED CLASSIFICATION RULE
In this section, we propose an improved QDA classi-
fier that leverages the structure of the covariance matrix
model in (1). For simplicity, we assume that σ 2

i and ri are
perfectly known. In practice, there exist several efficient
algorithms in the literature for the estimation of these param-
eters. For more details, we refer the reader to the following
works [13], [14], [20], [21].

Let 6̂i =
∑p

j=1 sj,iuj,iu
T
j,i, be the eigenvalue decom-

position of the sample covariance matrix corresponding to
class i, with sj,i is the j-th largest eigenvalue of 6̂i and uj,i its
corresponding eigenvector. We look for an inverse covariance
matrix estimator that possesses the same eigenvector basis.
It can be thus written as:

Ĉ−1i =

p∑
j=1

tj,iuj,iuTj,i,

where tj,i are some parameters to be designed. In accordance
with the covariance matrix model in (1), it is natural to set
tp−r,i = · · · = tp,i = 1/σ 2

i . Such operation allows to
shrink the covariance matrix estimator towards the struc-
ture described by (1), giving it the name of a shrinkage
estimator [22]. Thus, the inverse of the covariance matrix can
be estimated as,

Ĉ−1i =
1

σ 2
i

Ip + ri∑
j=1

wj,iuj,iuTj,i

 , (6)

where wj,i = σ 2
i tj,i − 1. In the sequel, we work with wj,i as

the considered optimization variables. For notational conve-
nience, we define w = [w1,1, · · · ,wr1,1,w1,0, · · · ,wr0,0]

T .
Our analysis relies on an asymptotic analysis of the behav-
ior of the proposed QDA classifier. The asymptotic regime
that is considered in our work is described in the following
assumption:

Assumption 1: Throughout this work, we assume that, for
i ∈ {0, 1},

(i) ni, p
a.s.
−→∞, with fixed ratio ci = p/ni.

(ii) ri is fixed and λ1,i > · · · > λri,i >
√
ci, indepen-

dently of p and ni.
(iii) The spectral norm of 6i, ‖6i‖ are bounded, that
is ‖6i‖ = O(1).
(iv) The mean difference vector µ , µ1 − µ0 has a
bounded Euclidean norm, that is ‖µ‖ = O(1).
(v) σ 2

i = O(1) and σ 2
0 − σ

2
1 = O(1/p).

Remark 2: • Assumption (i) is a key assumption that is
generally in the framework of the theory of large random
matrices.

• Assumption (ii) is fundamental in our analysis since it
guarantees, as per standard results from random matrix
theory, the one-to-one mapping between the sample
eigenvalues sj,i and the unknown λj,i. In fact, when λj,i >
√
ci, λj,i can be consistently estimated using sj,i as we

will see later. In the case where λj,i ≤
√
ci, the relation

between sj,i and λj,i no longer holds and λj,i cannot be
estimated [23], [24].

• Assumption (v) is a technical assumption, under which
tr (61 −60) = O(1). Moreover, from (1), it ensures that
the low-rank perturbation in 6i has a non-negligible
contribution in tr (61 −60). This is a key assumption
that is needed for the parameter vector w to be asymp-
totically relevant for the classification.

Using the proposed covariance estimator, the discrim-
inant function associated with the proposed classifier is
given as:

Ŵ Imp−QDA(x) = η −
1
2
(x − µ0)

T Ĉ−10 (x − µ0)

+
1
2
(x − µ1)

T Ĉ−11 (x − µ1), (7)

where η accounts for an additional bias; the way it is selected
will be shown later. Let x be a testing observation belonging

to class Ci. Then, x = µi + 6
1
2
i z with z ∼ N (0, Ip). The

classification error corresponding to class Ci can be written
as,

ε
Imp−QDA
i = P

[
(−1)iŴ Imp−QDA(x) < 0|x ∈ Ci

]
, (8)

= P
[
(−1)iYi(Ĉ0, Ĉ1) < 0|z ∼ N (0, Ip)

]
, (9)

where

Yi(Ĉ0, Ĉ1) = zTBiz+ 2yTi z− ξi, (10)

with

Bi = 6
1
2
i

(
Ĉ−11 − Ĉ

−1
0

)
6

1
2
i ,

yi = 6
1
2
i

[
Ĉ−11 (µi − x1)− Ĉ

−1
0 (µi − x0)

]
,

ξi = −2η + (µi − x0)
T Ĉ−10 (µi − x0)

− (µi − x1)
T Ĉ−11 (µi − x1),
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Proposition 1: Under the conditions (i), (iii) and (v) of
Assumption 1, we have

Yi(Ĉ0, Ĉ1)− Ỹi
d
−→ 0

where

Ỹi = pσ 2
i

(
1

σ 2
1

−
1

σ 2
0

)
+ νi + 2yTi z− ξi,

with νi = 1
σ 21

∑r1
j=1 wj,1(z̃

T
i uj,1)

2
−

1
σ 20

∑r0
j=1 wj,0(z̃

T
i uj,0)

2 and

z̃i = 6
1
2
i z.

It entails from Proposition 1 that the asymptotic behavior
of Yi(Ĉ0, Ĉ1) corresponds to that of a linear combination
of a chi-squared and normal distributions. For illustration,
we plot in Fig. 1 the empirical distributions of Y0(Ĉ0, Ĉ1)
and Y1(Ĉ0, Ĉ1) built based on several testing vectors drawn
from C0 and C1. Unfortunately. the distribution of Yi does not
have closed form expressions, which makes the analysis of
the misclassification rate cumbersome.

FIGURE 1. Histograms of Y0(Ĉ0, Ĉ1) and Y1(Ĉ0, Ĉ1) with synthetic data
with σ2

0 = σ
2
1 = 1, r0 = r1 = 3, λ1,0 = λ1,1 = 4, λ2,0 = λ2,1 = 3,

λ3,0 = λ3,1 = 2 and µ0 = −µ1 =
4
√p1p.

B. PARAMETER OPTIMIZATION
In this section, we present a possible setting of the parameter
vector w. Since the misclassification rate cannot be charac-
terized in closed-form, we propose instead for tractability to
maximize the Fisher ratio metric. Such a metric quantifies
the separability between the two classes, by measuring the
ratio of the separation between the means to the variance
within classes and has been fundamental in the design of the
Fisher discriminant analysis (FDA) based classifier. Under
our setting, the square root of the Fisher-Ratio [25] associated
with the classifier in (2) is given by:

ρ(w) =
|m0(w)− m1(w)|
√
v0(w)+ v1(w)

,

where for i ∈ {0, 1}, mi(w) and vi(w) are respec-
tively the mean and the variance of Ỹi with respect to z,

given by:

mi(w) = pσ 2
i

(
1

σ 2
1

−
1

σ 2
0

)
+ Eνi − ξi,

vi(w) = var(νi)+ 4yTi yi.

where we have used the fact that νi and yTi z are uncorrelated.
Following the same methodology in the design of FDA,
we propose to select w that solves the following optimization
problem:

w? = argmax
w

ρ(w).

The optimization cannot be performed at this stage since
mi(w) and vi(w) involve unknown quantities such as λj,i and
vj,i that appear in 6i. To overcome this issue, we resort
to techniques from random matrix theory which allows us
to compute deterministic equivalents of mi(w) and vi(w).
Using these deterministic equivalents, the unknown quan-
tities λj,i and vj,i can be consistently estimated by some
observable quantities under the asymptotic regime defined in
assumption 1. Before presenting the deterministic equiva-
lents of mi(w) and vi(w), we shall first define the following
quantities

αi =
‖µ‖2

σ 2
i

, i = 0, 1

aj,i =
1− ci/λ2j,i
1+ ci/λj,i

, j = 1, · · · , ri, i = 0, 1

bj,i =
µT vj,ivTj,iµ

‖µ‖2
, j = 1, · · · , ri, i = 0, 1

ψ`,j,1,0 = ψj,`,0,1=vT`,1vj,0, `=1,· · ·, r1, j=1,· · ·, r0

φj,0 = 1+ aj,0
r1∑
`=1

λ`,1ψ
2
`,j,1,0, j = 1, · · · , r0

φj,1 = 1+ aj,1

r0∑
`=1

λ`,0ψ
2
j,`,1,0, j = 1, · · · , r1 (11)

Moreover, we shall assume thatµT uj,i > 0 andµT vj,i > 0 for
i = 0, 1, j = 1, · · · , ri. This assumption, which is needed to
simplify the presentation of the results, can be made without
loss of generality since eigenvectors are defined up to a sign.
Theorem 1: Under the asymptotic regime defined in

Assumption 1, we have

mi(w)− mi(w)
a.s.
−→ 0, (12)

vi(w)− vi(w)
a.s.
−→ 0, (13)

with

mi(w) = 2η + c1 − c0 + p

(
σ 2
i

σ 2
1

−
σ 2
i

σ 2
0

)
+ (−1)iαĩ + g

T
i w, (14)

vi(w) = 4
(
wTEiw+ 2eTi w+ bi

)
, (15)
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where ĩ = 1− i and

g0=

{α1aj,1bj,1 + σ 2
0

σ 2
1

φj,1

}r1
j=1

,
{
−1− λj,0aj,0

}r0
j=1

T ,
g1=

{1+ λj,1aj,1}r1j=1 ,−
{
α0aj,0bj,0 +

σ 2
1

σ 2
0

φj,0

}r0
j=1

T ,
b0 = α1

σ 2
0

σ 2
1

1+ r0∑
j=1

λj,0bj,0

+ c1 σ 4
0

σ 4
1

+ c0,

b1 = α0
σ 2
1

σ 2
0

1+ r1∑
j=1

λj,1bj,1

+ c0 σ 4
1

σ 4
0

+ c1,

e0=
α1σ

2
0

σ 2
1

[{
aj,1bj,1

+

r0∑
`=1

λ`,0aj,1
√
bj,1b`,0ψj,`,1,0

}r1
j=1

,0r0

T

e1=
α0σ

2
1

σ 2
0

[
0r1 ,

{
aj,0bj,0

+

r1∑
`=1

λ`,1aj,0
√
bj,0b`,1ψj,`,0,1

}r0
j=1

T

E0 =
[
D̃0 +M0 N0
NT
0 D0

]
, E1 =

[
D1 N1

NT
1 D̃1 +M1

]
,

with Di ∈ Rri×ri , D̃i,Mi ∈ Rrĩ×rĩ and Ni ∈ Rr1×r0 defined
as,

Di =
1
2
diag

{
(1+ λj,iaj,i)2

}ri
j=1
,

D̃i = diag

 σ 4
i

σ 4
ĩ

φ2
j,ĩ

2
+
σ 2
i

σ 2
ĩ

αĩaj,ĩbj,ĩ


ri

j=1

,

[Ni]`,j = −
1
2

σ 2
i

σ 2
ĩ

(1+ λ`,i)2a`,iaj,ĩψ
2
`,j,i,ĩ

,

[Mi]j,k = αĩ
σ 2
i

σ 2
ĩ

aj,ĩak,ĩ
√
bj,ĩbk,ĩ

ri∑
`=1

λ`,iψ`,j,i,ĩψ`,k,i,ĩ.

Remark 3: Using item (v) of Assumption 1, the expressions
in Theorem 1 can be further simplified by leveraging the

fact that
σ 21
σ 20
→ 1. However, when handling real data sets,

we observed that working with the non-simplified expressions
may lead to better performances, due to a possible inaccuracy
of item (v) in Assumption 1. This is the reason why in our
simulations we worked with the expressions of Theorem 1,
which can be further simplified by substituting σ1

σ0
and σ0

σ1
by

1. In doing so, we obtain the following simplified expressions
which we provide below for the sake of completeness:

g0=
[{
α1aj,1bj,1 + φj,1

}r1
j=1 ,

{
−1− λj,0aj,0

}r0
j=1

]T
,

g1=
[{
1+ λj,1aj,1

}r1
j=1 ,−

{
α0aj,0bj,0 + φj,0

}r0
j=1

]T
,

b0 = α1

1+ r0∑
j=1

λj,0bj,0

+ c1 + c0,
b1 = α0

1+ r1∑
j=1

λj,1bj,1

+ c0 + c1,
e0= α1

{aj,1bj,1+ r0∑
`=1

λ`,0aj,1
√
bj,1b`,0ψj,`,1,0

}r1
j=1

,0r0

T

e1= α0

0r1 ,
{
aj,0bj,0+

r1∑
`=1

λ`,1aj,0
√
bj,0b`,1ψj,`,0,1

}r0
j=1

T

E0 =
[
D̃0 +M0 N0
NT
0 D0

]
, E1 =

[
D1 N1

NT
1 D̃1 +M1

]
,

with Di ∈ Rri×ri , D̃i,Mi ∈ Rrĩ×rĩ and Ni ∈ Rr1×r0 defined
as,

Di =
1
2
diag

{
(1+ λj,iaj,i)2

}ri
j=1
,

D̃i = diag

φ
2
j,ĩ

2
+ αĩaj,ĩbj,ĩ


ri

j=1

,

[Ni]`,j = −
1
2
(1+ λ`,i)2a`,iaj,ĩψ

2
`,j,i,ĩ

,

[Mi]j,k = αĩaj,ĩak,ĩ
√
bj,ĩbk,ĩ

ri∑
`=1

λ`,iψ`,j,i,ĩψ`,k,i,ĩ.

Using these deterministic equivalents, a deterministic equiv-
alent of the Fisher ratio ρ(w) can be obtained as,

ρ(w)− ρ(w)
a.s.
−→ 0,

where

ρ(w) =
|m0(w)− m1(w)|
√
v0(w)+ v1(w)

,

Replacingmi(w) and vi(w) by their expressions, our optimiza-
tion problem can be written as:

max
w

∣∣gTw+ β0 + β1∣∣
2
√
wTEw+ 2eTw+ b

, (16)

where βi = αi + p
(
σ 2i
σ 2
ĩ

− 1
)
, g = g0 − g1, e = e0 + e1,

E = E0 + E1 and b = b0 + b1. To simplify the optimization,
we perform the change of variable w̃ = E

1
2w+ E−

1
2 e.

Proposition 2: Assume that β0 + β1 − gTE−1e 6= 0. The
optimal parameter vector w? is given by

w? = E−1(θ?g− e) (17)

where θ? = b−eTE−1e
|β0+β1−gTE−1e|

.

Remark 4: We assumed in Proposition 2 that β0 + β1 −
gTE−1e 6= 0. Although we did not prove that, it is found to be
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true in all our extensive simulations on both real and synthetic
data.
Until now, we assumed that the constant η that appears

in the score function of the proposed classifier is known.
It should be noted that the optimization of the Fisher ratio
is not impacted by this assumption since it does not depend
on η. A possible choice of η is the one that ensures equal
distance between both means, i.e. m0(w?)+m1(w?) = 0. The
η that verifies this equation is:

η = −
1
4

[
(g0 + g1)Tw? + α1 − α0

+ 2(c1 − c0)+ p
σ 4
0 − σ

4
1

σ 2
0 σ

2
1

]
, (18)

The optimal design parameters w? in proposition 2 could
not be directly used in practice, since they depend on the
unobservable quantities αi, λj,i and bj,i. To solve this issue,
consistent estimators for these quantities need to be retrieved.
This is the objective of the following result:
Proposition 3: Under the settings of Assumption 1,

we have

|λj,i − λ̂j,i|
a.s.
−→ 0, |αi − α̂i|

a.s.
−→ 0,

|bj,i − b̂j,i|
a.s.
−→ 0, |ψ`,j,1,0 − ψ̂`,j,1,0|

a.s.
−→ 0,

where

α̂i =
‖µ̂‖2 − c1σ 2

1 − c0σ
2
0

σ 2
i

,

λ̂j,i =
sj,i/σ 2

i +1−ci+
√
(sj,i/σ 2

i +1−ci)
2−4sj,i/σ 2

i

2
,

b̂j,i =
1+ ci/λ̂j,i
1− ci/λ̂2j,i

µ̂
T vj,ivTj,iµ̂

‖µ̂‖2 − c1σ 2
1 − c0σ

2
0

,

ψ̂`,j,1,0 =
1

√a`,1aj,0
uT`,1uj,0,

with µ̂ = x0 − x1 and sj,i is the j-th largest eigenvalue of the
sample covariance matrix 6̂i corresponding to class i.

Proof: The proof is a direct application of results
from [23], [24] and it is thus omitted.

The steps of the design of the proposed classifier are sum-
marized in the following algorithm.

IV. NUMERICAL SIMULATIONS
In this section, we compare the performance of the proposed
improved QDA classifier with R-QDA classifier using both
synthetic and real data.

A. SYNTHETIC DATA
For the synthetic data simulations, we used the following pro-
tocol for Montecarlo estimation of the true misclassification
rate:
• Step 1: Set r0 = r1 = 3, orthogonal symmetry breaking
directions as follows:

V0 = [v1,0, v2,0, v3,0] = [I3×3,03,p−3]T

V1 = [v1,1, v2,1, v3,1] = [03×3, I3×3,03,p−6]T

Algorithm 1 Steps for the Computation of the Proposed
Classifier Decision Rule
1. Given the training set corresponding to class i, use one
of the algorithms of [13], [14], [20], [21] to estimate σ 2

i
and ri.
2. Compute

{
sj,i
}ri
j=1 the ri largest eigenvalues of the sam-

ple covariance matrix of class i and their corresponding
eigenvectors uj,i.
3. Compute the parameters of the proposed classifier
defined in Theorem 1.
4. Compute η using equation (18) and the optimal param-
eter vector w? using equation (17).
5. Plugging η and w? into (7) yields the decision rule of the
proposed classifier.

and their corresponding weights λ1,0 = 5, λ2,0 = 4,
λ3,0 = 3, λ1,1 = 6, λ2,1 = 5, λ3,1 = 4. Set µ0 =
a
√
p [1, 1, · · · , 1]

T and µ1 = −µ0 where a is a finite
constant. In our simulations, we choose a = 0.5 and
a = 0.8.

• Step 2: Generate ni training samples for class i.
• Step 3: Using the training set, design the improved QDA
classifier as explained in section III.

• Step 4: Estimate the true misclassification rate of both
classifiers using a set of 2000 testing samples. For the
R-QDA classifier, a grid search over γ ∈ {10i/10,
i = −10 : 1 : 10} is performed.

• Step 5: Repeat Step 2–4, 250 times and determine the
average misclassification rate of both classifiers.

In Fig. 2, we plot themisclassification rate vs. training sample
size n when p = 500, σ 2

0 = σ 2
1 = 1 and π0 = π1 = 1/2

for the proposed improved QDA and the classical R-QDA
using synthetic data. It is observed that the improved QDA
outperforms the classical R-QDA and the gap between the
two schemes is significant.

As a second investigation, we study the impact of the
difference between the noise variances σ 2

0 and σ 2
1 . Table 1

reports the misclassification rate of the R-QDA classifier and
our proposed classifier for fixed σ 2

0 and different values of σ 2
1 .

As can be seen, the improved QDA outperforms the classical
R-QDA and exploits better the difference between σ 2

0 and σ 2
1 .

Such a finding is expected since as the difference |σ 2
0 − σ

2
1 |

increases, the classes become more distinguishable, resulting
in better performances. The R-QDA is not able to leverage
this difference well since it undergoes a higher estimation
error in the covariance matrix, which affects its performance
considerably.

TABLE 1. Misclassification error for n = 1000, p = 500, a = 0.5, σ2
0 = 1

and different values of σ2
1 .
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FIGURE 2. Misclassification rate vs. sample size n for p = 500,
σ2

0 = σ
2
1 = 1 and π0 = π1 = 1/2. Comparison between

Improved QDA and R-QDA with synthetic data.

B. REAL DATA
For real data simulation, we use two datasets. The first
one is the epileptic seizure detection dataset, which con-
sists of recordings of brain activity using EEG signals.
The dataset is composed of 5 classes with 2300 samples
of dimension p = 178 available for each class. In our
simulation, we consider the most confusing classes of this
dataset for binary classification, namely class 4, which cor-
responds to recordings where the patients had their eyes
closed and class 5, which corresponds recordings where the
patients had their eyes open. This dataset is publicly available
at https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+
Recognition.

The second dataset considered in this paper is the Gisette
dataset composed of handwritten digits. The objective is
to separate the highly confusing digits ‘4’ and ‘9’. In our
simulation, prior to applying the classification technique,
a standard PCA is applied in order to reduce the observation
size. This is a standard procedure in machine learning and
is referred to as feature selection. We leverage all the data
available in the training and validation data sets. A subset
of these samples serves to build the classifier, while the
remaining samples are used as a test data set to estimate

the misclassification rate. This dataset is publicly available
at https://archive.ics.uci.edu/ml/datasets/Gisette. We used the
following protocol for the real dataset:
• Step 1: Let q0 be the ratio between the total number
of samples in class C0 to the total number of samples
available in the full dataset. Denote by nFull the total
number of samples in the full dataset. Choose n < nFull
the number of training samples; set n0 = bq0 nc, where
b·c is the floor function and n1 = n−n0. Take ni training
samples belonging to class Ci randomly from the full
dataset. The remaining samples are used as a test dataset
in order to estimate the classification error.

• Step 2: Using the training dataset, design the improved
QDA classifier, as explained in section III.

• Step 3: Using the test dataset, estimate the true classifi-
cation error for both classifiers. For the R-QDA classi-
fier, a grid search over γ ∈ {10i/10, i = −10 : 1 : 10} is
performed.

• Step 4: Repeat steps 1–4, 250 times, and determine the
average misclassification rate of both classifiers.

In Fig. 3, we compare the performance of the proposed
classifier with that of the R-QDA classifier when used for the
elliptic seizure detection dataset. The misclassification rate
of both classifiers is plotted versus the number of training
samples. As observed, the proposed classifier outperforms the
classical R-QDA significantly.

FIGURE 3. Misclassification rate vs. sample size n for p = 98. Comparison
between Improved QDA and R-QDA with elliptic seizure detection
dataset.

In Fig. 4, the performance of the proposed classifier is
assessed along with that of the classical R-QDA when the
Gisette dataset is considered. We note the important gain of
the proposed Imp-QDA similarly.

As a final investigation, using the elliptic seizure dataset,
we compare the performance of the proposed classifier
with other standard classifiers such as support vector
machine (SVM) and k-nearest neighbors (KNN). For SVM,
linear and polynomial kernels are used, and for KNN,
the number of neighbors used is 1 and 5. The Imp-QDA out-
performs all these classifiers. Moreover, a larger training set
is needed for these classifiers to approach the performance of

VOLUME 8, 2020 117319



H. Sifaou et al.: High-Dimensional QDA Under Spiked Covariance Model

FIGURE 4. Misclassification rate vs. sample size n for p = 98. Comparison
between Improved QDA and R-QDA with gisette dataset.

TABLE 2. Misclassification rate for the binary classification of class 4 and
class 5 of the elliptic seizure detection dataset. Comparaison between the
prposed classifier and classical techniques.

Imp-QDA. For instance, polynomial SVM requires a training
set of size n = 2000 to achieve the performance of our
classifier with a training set of size n = 200.

V. CONCLUSION
In this paper, we proposed an improved QDA classifier that
is shown to outperform the classical R-QDA while requir-
ing lower computation complexity. The proposed classifier
is more suited for spiked covariance populations; a situ-
ation frequently met in EEG signal processing, detection,
and econometrics applications. The obtained results are very
promising, opening the path to extend the analysis to more
general covariance models such as a diagonal-plus-low-rank-
perturbation model.

APPENDIX A
PROOF OF PROPOSITION 3
Replacing Ĉ−10 and Ĉ−11 by their expressions, one can easily
get

Yi(Ĉ0, Ĉ1) =

(
1

σ 2
1

−
1

σ 2
0

)
zT6iz+ νi + 2yTi z− ξi

where

νi =
1

σ 2
1

r1∑
j=1

wj,1(z̃Ti uj,1)
2
−

1

σ 2
0

r0∑
j=1

wj,0(z̃Ti uj,0)
2.

Applying the trace lemma [24], we have

1
p
zT6iz−

1
p
tr(6i)

a.s.
−→ 0,

The assumed spiked model implies that 1
p tr(6i) −→ σ 2

i .
Thus,(

1

σ 2
1

−
1

σ 2
0

)
zT6iz− pσ 2

i

(
1

σ 2
1

−
1

σ 2
0

)
a.s.
−→ 0,

Using Slutsky’s theorem, we can conclude that

Yi(Ĉ0, Ĉ1)−

(
pσ 2

i

(
1

σ 2
1

−
1

σ 2
0

)
+ νi + 2yTi z− ξi

)
d
−→ 0

which concludes the proof.

APPENDIX B
PROOF OF THEOREM 4
First, we recall the following results from [24] that will be
used throughout the proof:

vTj,iuk,iu
T
k,ivj,i − aj,iδj,k

a.s.
−→ 0,

vTj,iuk,`u
T
k,`vj,i − ak,`(v

T
j,ivk,`)

2 a.s.
−→ 0,

1
‖µ‖2

µT uj,iuTj,iµ−aj,ibj,i
a.s.
−→ 0, (19)

where δj,k is Kronecker delta. We shall also recall the fol-
lowing formula allowing to compute the variance and covari-
ance of quadratic forms of a multivariate normal distribution.
If z ∼ N (0, Ip) and Q is a deterministic p× p matrix, then:

var(zTQz) = 2 trQ2 (20)

Let Q1 and Q2 be two deterministic p× p matrices, we have
similarly:

cov
(
zTQ1z, zTQ2z

)
= 2 trQ1Q2 (21)

The mean of Ỹi is given by,

mi(w) = pσ 2
i

(
1

σ 2
1

−
1

σ 2
0

)
+ ν̃i − ξi,

where ν̃i =
∑r1

j=1
wj,1
σ 21
uTj,16iuj,1−

∑r0
j=1

wj,0
σ 20
uTj,06iuj,0. Let us

begin by treating the term ξi. First, we have

ξi = −2ηImp−QDA + (µi − x0)
T Ĉ−10 (µi − x0)

− (µi − x1)
T Ĉ−11 (µi − x1),

Noting that x i = µi +
1
ni
�i1ni where �i = 6

1
2
i Zi and Zi ∈

Rp×ni with entries i.i.d. N (0, 1), we can write

ξ0 = −2ηImp−QDA +
1

n20
1Tn0�

T
0 Ĉ
−1
0 �01n0

− (µ−
1
n1
�11n1 )

T Ĉ−11 (µ−
1
n1
�11n1 ), (22)
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Let z̄i = 1
√
ni
�i1ni . The sample covariance matrix 6̂i is

independent of z̄i [9], which means also that z̄i is independent
of the eigenvectors of 6̂i that appears in Ĉ

−1
i . Thus, we have

1
ni
µT Ĉ−1i �i1ni

a.s.
−→ 0, (23)

1

n2i
1Tni�

T
i Ĉ
−1
i �i1ni −

1
ni

tr6iĈ
−1
i

a.s.
−→ 0, (24)

Replacing 6i and Ĉ
−1
i by their expressions in (24) and using

the fact that r is finite, we have 1
ni
tr6iĈ

−1
i −ci

a.s.
−→ 0. Thus,

1

n2i
1Tni�

T
i Ĉ
−1
i �i1ni − ci

a.s.
−→ 0, (25)

On the other hand, replacing Ĉ−1i by its expression and
applying (19), one can get easily

µT Ĉ−1i µ−
‖µ‖2

σ 2
i

1+
ri∑
j=1

wj,iaj,ibj,i

 a.s.
−→ 0. (26)

Combining (22), (23), (25) and (26), we get

ξ0 −

−2η + c0 − c1 − ‖µ‖2
σ 2
1

1+
r1∑
j=1

wj,1aj,1bj,1


a.s.
−→ 0 (27)

Applying the same approach, one can prove that

ξ1 −

−2η + c0 − c1 + ‖µ‖2
σ 2
0

1+
r0∑
j=1

wj,0aj,0bj,0


a.s.
−→ 0 (28)

Moreover, replacing 60 and 61 by their expressions and
applying (19), we have

ν0 −

σ 2
0

σ 2
1

r1∑
j=1

wj,1φj,1 −
r0∑
j=1

wj,0(1+ aj,0λj,0)

 a.s.
−→ 0

ν1 −

 r1∑
j=1

wj,1(1+ aj,1λj,1)−
σ 2
1

σ 2
0

r0∑
j=1

wj,0φj,0

 a.s.
−→ 0

(29)

Combining (27), (28) and (29), we obtain the first conver-
gence result of Theorem 4. Now, we address the convergence
of vi(w). We will treat the term v1(w) only. The convergence
of v0(w) can be obtained by applying the same steps. Since z is
Gaussian, it is not hard to see that ν1 and yT1 z are uncorrelated.
Thus, we have

v1(w) = var(ν1)+ 4 var(yT1 z),

Let us begin by var(νi) which can be written as

var(ν1)

=
1

σ 4
1

r1∑
j=1

w2
j,1 var

([
uTj,16

1
2
1 z
]2)

+
1

σ 4
0

r0∑
j=1

w2
j,0 var

([
uTj,06

1
2
1 z
]2)

−

r1∑
`=1

r0∑
j=1

2w`,1wj,0
σ 2
1 σ

2
0

cov

([
uT`,16

1
2
1 z
]2
,

[
uTj,06

1
2
1 z
]2)

where we have used in the last equation the fact that uTj,k6
1
2
1 z

is independent of uTj′,k6
1
2
1 z for j′ 6= j, k = 0, 1, a fact

that follows from the orthogonality between eigenvectors uj,k
and uj′,k .

Using (20), we obtain

var

([
uTj,16

1
2
1 z
]2)
= 2 tr

[
6

1
2
1 uj,1u

T
j,16

1
2
1

]2
= 2

[
uTj,161uj,1

]2
Replacing 61 by its expression and applying (19), we can
easily show that[

uTj,16iuj,1
]2
− σ 4

1 (1+ λj,1aj,1)
2 a.s.
−→ 0.

Thus, we have

var

([
uTj,16

1
2
1 z
]2)
− 2σ 4

1 (1+ λj,1aj,1)
2 a.s.
−→ 0. (30)

Similarly, we have

var

([
uTj,06

1
2
1 z
]2)
= 2

[
uTj,061uj,0

]2
Applying (19) again, we can easily show that[

uTj,061uj,0
]2
− σ 4

1 φ
2
j,0

a.s.
−→ 0.

Thus, we have

var

([
uTj,06

1
2
1 z
]2)
− 2σ 4

1 φ
2
j,0

a.s.
−→ 0. (31)

Using now (21), we obtain:

cov

([
uT`,16

1
2
1 z
]2
,

[
uTj,06

1
2
1 z
]2)
= 2

[
uTj,061u`,1

]2
Applying (19) again, we obtain[
uTj,061u`,1

]2
− σ 4

1 a`,1aj,0(1+ λ`,1)
2(vTj,0v`,1)

2 a.s.
−→ 0.

(32)

Combining (30), (31) and (32), we obtain

var(ν1)− v1,1
a.s.
−→ 0, (33)

where

v1,1 = 2
∑r1

j=1 w
2
j,1(1+ λj,1aj,1)

2
+ 2

σ 41
σ 40

∑r0
j=1 w

2
j,0φ

2
j,0

−4
σ 21
σ 20

∑r1
`=1

∑r0
j=1 w`,1wj,0a`,1aj,0(1+ λ`,1)

2(vTj,0v`,1)
2.
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It remains now to deal with the term var(yT1 z), which can be
written as

var(yT1 z) = EyT1 zz
T y1 = yT1 y1

=

(
−Ĉ−11

�11n1
n1
+ Ĉ−10 (µ+

�01n0
n0

)
)T

61

×

(
−Ĉ−11

�11n1
n1
+ Ĉ−10 (µ+

�01n0
n0

)
)

Using the same arguments as in (23), the following conver-
gence holds

1
ni
µT Ĉ−1i 61Ĉ

−1
i �i1ni

a.s.
−→ 0,

The independence of �1 and �0 yields

1
n0n1

1Tn0�
T
0 Ĉ
−1
0 61Ĉ

−1
1 �11n1

a.s.
−→ 0,

while the trace lemma [24, Theorem 3.4] yields:

1

n2i
1Tni�

T
i Ĉ
−1
i 61Ĉ

−1
i �i1ni −

1
ni

tr61Ĉ
−1
i 61Ĉ

−1
i

a.s.
−→ 0,

Replacing 6i and Ĉ−1i by their expressions using the fact
that r is finite, we have 1

n1
tr61Ĉ

−1
1 61Ĉ

−1
1 − c1

a.s.
−→ 0 and

1
n0

tr61Ĉ
−1
0 61Ĉ

−1
0 − c0

σ 41
σ 40

a.s.
−→ 0. Thus,

1

n2i
1Tni�

T
i Ĉ
−1
i 61Ĉ

−1
i �i1ni − ci

σ 4
1

σ 4
i

a.s.
−→ 0,

It remains to deal with the term µT Ĉ−10 61Ĉ
−1
0 µ. Apply-

ing (19), one can obtain after standard calculations:

µT Ĉ−10 61Ĉ
−1
0 µ− v0,1

a.s.
−→ 0 (34)

where v0,1 is given by

v0,1

=
‖µ‖2σ 2

1

σ 4
0

1+ r1∑
`=1

λ`,1b`,1 + 2
r0∑
j=1

wj,0aj,0bj,0

+ 2
r0∑
j=1

r1∑
`=1

wj,0λ`,1aj,0
√
bj,0b`,1vTj,0v`,1+

r0∑
j=1

w2
j,0aj,0bj,0

+

r0∑
k,j=1

r1∑
`=1

wj,0wk,0λ`,1aj,0ak,0
√
bj,0bk,0vTj,0v`,1v

T
k,0v`,1


Putting all these results together and writing the result in
vector form yields the convergence of the variance v1(w).

APPENDIX C
PROOF OF PROPOSITION 5
Using the change of variables w̃ = E

1
2w + E−

1
2 e, our

optimization problem can be written as,

max
w̃
|f (w̃)| , (35)

where

f (w̃) =
gTE−

1
2 w̃+ d

2
√
‖w̃‖2 + b− eTE−1e

with d = β0+β1−gTE−1e. If at optimality we have f (w̃?) <
0, then maxw̃ |f (w̃)| = maxw̃−f (w̃). Moroever, if f (w̃?) ≥ 0,
thenmaxw̃ |f (w̃)| = maxw̃ f (w̃). Clearly, we can conclude that∣∣f (w̃?)∣∣ = max

{
max
w̃
−f (w̃),max

w̃
f (w̃)

}
It remains now to solve these two problems P1 : maxw̃ f (w̃)
and P2 : maxw̃−f (w̃). Let us begin by solving P1 :

maxw̃ f (w̃), which can be reformulated, by separating the
optimization over the norm and the direction of w̃, as

max
θ1

max
‖w̄1‖=1

θ1gTE−
1
2 w̄1 + d

2
√
θ21 + b− e

TE−1e
, (36)

Clearly, the optimal direction is w̄?1 =
E−

1
2 g

‖E−
1
2 g‖

, thus it remains

to solve the following problem

max
θ1≥0

θ1
√
gTE−1g+ d

2
√
θ21 + b− e

TE−1e
, (37)

If d > 0, function θ 7→ θ1
√
gTE−1g+d

2
√
θ21+b−e

TE−1e
is maximized when

θ = θ?1 with

θ?1 =

√
gTE−1g(b− eTE−1e)

d

On the other hand, if d < 0, θ 7→ θ1
√
gTE−1g+d

2
√
θ21+b−e

TE−1e
is strictly

increasing and tends to 1
2

√
gTE−1g when θ → ∞. We thus

conclude

sup
w̃
f (w̃) =


1
2

√
gTE−1g+

d2

b− eTE−1e
if d > 0

1
2

√
gTE−1g otherwise

Similarly, following the same analysis, we obtain:

sup
w̃
−f (w̃) =


1
2

√
gTE−1g+

d2

b− eTE−1e
if d < 0

1
2

√
gTE−1g otherwise

Comparing the optimal objective values, at optimumwe have:

w̃? =
b− eTE−1e
|d |

E−
1
2 g if d 6= 0

Going back to w, we ultimately find that the optimal w? has
the following closed-form expression

w? = E−
1
2 w̃? − E−1e = E−1

[
b− eTE−1e
|d |

g− e
]
.
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