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ABSTRACT In recent years, more and more oil companies adopt initiative delivery mode to make the
refined oil secondary distribution scheme. In this work, we focus on the optimization problem of refined
oil secondary distribution based on the initiative distribution mode considering stochastic demand and the
limited inventory capacity of each petrol station. We present a two-stage stochastic programming model that
determines the replenishment quantity of each petrol station based on its existing stock and the available
supply quantity of each oil depot, as well as transportation schedule. When the uncertainty in demand can
be captured via a finite set of scenarios, the two-stage stochastic programming model is transformed into
an equivalent deterministic mixed integer programming model that can be efficiently solved by CPLEX
solver. The effectiveness of the two-stage stochastic programming model is verified by simulation on
extensive computer-generated instances. To solve practical problems with a large number of scenarios,
we propose a method to reduce the problem scale by merging similar scenarios. We demonstrate that
compared to the optimal solution obtained from the model with all scenarios, the gap corresponding to
the model with merged scenarios is always less than 1%. The results of the sensitivity analysis show that an
increase in the inventory capacity leads to a decrease in the total cost within a certain range. The results of
this study can help companies making refined oil secondary distribution plan.

INDEX TERMS Refined oil secondary distribution, initiative distribution mode, transportation, stochastic
demand, limited inventory capacity, two-stage stochastic programming.

I. INTRODUCTION
Refined oil logistics includes two stages: primary distribution
and secondary distribution, which link refineries, transfer
depots and petrol stations or clients. Primary distribution
refers to the process of transporting refined oil from refineries
to oil depots, which is mainly achieved by oil vessels, railway
tankers, oil pipeline and other channels in a large-quantity
low-frequency mode. Secondary distribution is the process of
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transporting the refined oil from oil depots to petrol stations
or end-users, which is mainly completed by using petroleum
tank vehicles through road transportation in a small-quantity
high-frequency mode. The secondary distribution of refined
oil accounts for a large proportion of the whole refined oil
logistics and results in high logistics costs. Therefore, it is an
important means to reduce the logistics cost by optimizing
the secondary distribution process of refined oil.

Generally, after arriving at central oil depots through the
primary distribution, the refined oil is temporarily stored
in the large storage tanks, then transported to each petrol
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station or end-user by secondary distribution to meet their
demands. Since the refined oil is dangerous liquid, it needs
a tightly closed container or isolated compartment to store
and transfer. And the oil loaded in one compartment of a
vehicle is not allowed to be unloaded to multiple storage
tanks. Making a refined oil secondary distribution plan is to
determine the quantity of refined oil to be transported from
oil depots to petrol stations, the types of vehicles to be used
and their distribution routes, the arriving time of each vehicle
at the petrol stations it serves for, and so on, so as to meet the
demand of petrol stations or end-users.

There are two modes to be selected for making a refined
oil secondary distribution plan: passive delivery mode and
initiative delivery mode. In the passive delivery mode, inven-
tory management of each petrol station is controlled by itself
rather than oil company/vendor. All petrol stations report
their demands to the oil company daily at a certain time. The
oil company arranges a refined oil secondary distribution plan
for the next day according to the demand data reported by
each petrol station.

Adopting passive delivery modemay result in imbalance in
resource allocation when the total supply quantity of refined
oil from all oil depots is in shortage. On the other hand, when
oil depots have adequate stocks, they would not have enough
vacant tanks to accept the refined oil from refineries next day
if the petrol stations do not report their high demand plans.

Over the last few years, more and more industries began
to adopt initiative delivery mode based on vendor managed
inventory (VMI) (Marquès et al. (2010) [1], Danese(2011)
[2]). When adopting the initiative delivery mode, the oil
company/supplier determines the replenishment quantity of
refined oil for each petrol station based on its existing stock
and historical sales volume, and then arrange the distribution
plan and vehicle scheduling scheme. Since all managerial
decisions, including the supply volume of oil depots, the
replenishment quantity of each petrol station, and the trans-
portation vehicles to be used, are controlled by the oil com-
pany in initiative delivery mode, the oil company can overall
optimize the refined oil secondary distribution plan so as to
effectively reduce the inventory and transportation cost of the
whole distribution system (Marquès(2010) et al. [1]).

In initiative delivery mode, the sales volume of each petrol
station at each time period is random, therefore, it is difficult
for the oil company to precisely predict the sales volume of
each petrol station during next day (or next time period) when
making distribution plan. On the other hand, the capacity of
each oil storage tank in each petrol station is limited. When
implementing the initiative distribution plan, each petrol sta-
tion might encounter one of the following three scenarios.

(1) The replenishment volume to a petrol station plus its
existing stock is sufficient for next day’s sales demand, and
the volume of unsold oil is less than the capacity of its storage
tanks, so they can be stored in the oil storage tanks.

(2) The replenishment volume to a petrol station plus its
existing stock is sufficient for next day’s sales demand, and
the volume of unsold oil exceeds the spare capacity of storage

tanks, so the exceeding part of oil cannot be stored in the
storage tanks. This situation will inevitably result in the cost
of handling surplus refined oil.

(3) The replenishment volume to a petrol station plus its
existing stock is less than next day’s sales demand, which
causes stockouts in next day. This situation will result in
shortage cost.

In the process of implementing the oil secondary distri-
bution plan, when scenario (1) occurs, there are no extra
costs incurred, since the sales and the storage capacity of the
petrol station are normal.When scenario (2) occurs, the petrol
station needs to pay extra costs for handling the surplus
oil, which is defined as surplus cost in this work. When
scenario (3) occurs, the petrol station needs to pay extra costs
for stockouts, which is defined as shortage cost.

When the next day’s sales volume of each petrol station is
unknown, a key issue for making the refined oil secondary
distribution scheme based on the initiative delivery mode is
how to determine the replenishment quantity and plan the
vehicles distribution routes based on the existing stock of
each petrol station and the available supply quantity of each
oil depot, such that the sum of transportation costs and the
expected recourse costs is minimized.

The remainder of this paper is organized as follows.
In section II, we briefly review the related literature and high-
light our contributions. In section III, we formulate the refined
oil secondary distribution problem as a two-stage stochas-
tic programming, and transform it into an equivalent mixed
integer programming model when the number of scenarios
is finite. In section IV, we measure the relevance of using
a stochastic programming approach. Section V presents the
computational experiments and numerical results to verify the
effectiveness of the proposed model. Finally, we summarize
our work and point out some potential extensions for future
research in section VI.

II. RELATED RESEARCH
The refined oil secondary distribution problem (ROSDP)
is a well-known research topic. As pointed out by
Popović et al. (2012) [4] and Cornillier et al. (2011) [5],
there were many researches taking into account the inter-
relationship between inventory management and transporta-
tion. Carotenuto et al. (2015) [6] decomposed the final
distribution of fuel oil into determining the weekly replen-
ishment plan for each station and arranging petrol sta-
tions’ visiting sequences (vehicle routes) for each day of
the week. Recent studies that focus on multi-period fuel
replenishment can also be found in Charusakwong and
Lohatepanont (2016) [7], Vidović et al. (2014) [8]. The
problem can be extended to a vehicle towing a trailer with
several compartments and visiting multi-depots. Related
research efforts on these topics have been intensified by
Zhang et al. (2016) [9] and Li et al. (2018) [10] considered
a heterogeneous fleet of vehicles with multi-compartment
used for fuel distribution involving unloading sequence.
Several studies from this research area have considered
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Neighborhood Search (NS) algorithms (Popović et al. [4];
Vidović et al. [8]; Li et al. [10]), Genetic Algo-
rithms (Carotenuto et al. [6]; Zhang et al. [9]) and Tabu
Search heuristics(Benantar et al. [11]). Additionally, a
branch-and-price algorithm for exact optimization of the fuel
delivery problem was proposed by Avella et al.(2004) [12].
Due to the complex characteristics of ROSDP,

Li et al. (2016) [10] and Hanczar (2012) [13] proposed two-
stage heuristic algorithms - first grouping the petrol stations,
then assigning vehicles and planning the distribution paths.
Popović et al. (2012) [4], Vidović et al. (2014) [8] and
Hanczar (2012) [13] considered both the stock level of petrol
stations and the vehicles’ distribution routes simultaneously,
and investigated the joint optimization problem of inven-
tory control and vehicle routing. Zhang et al (2019) [14]
used a multi-scenario mixed integer programming model
to describe the problem of the transportation process of
oil products, considering the stochastic hub disruption and
uncertain demands. Most studies mentioned above are based
on the situation where the demands of petrol stations are
deterministic. Although the sales volume of each station is
stochastic, most researchers use average sales volume to
replace random demands, so that the stochastic problem is
simplified to a deterministic counterpart.

The refined oil secondary distribution problem based on
stochastic demands can be considered as a variant of the
Stochastic Transportation Problem (STP). The stochastic
transportation problem was proposed by Williams (1963)
[15] in 1963, and it was solved by a decomposition algo-
rithm. Tsai et al. (2011) [16] described the transportation
problem with uncertainty delivery capacities and costs.
Thapalia et al. (2012) [17] studied the single-commodity net-
work flow problem with stochastic edge capacities, com-
pared optimal stochastic solution with the deterministic
counterparts, and then provided a heuristic algorithm for
the stochastic problem. Hinojosa et al. (2014) [18] pre-
sented the transportation problem with stochastic demands.
They constructed a two-stage stochastic transportation model
formulation of single commodity with stochastic demand
and incorporated the existence of multiple commodities and
capacities at sources. Singh et al. (2019) [19] formulated
an uncertain three-dimensional transportation problem with
multi-objective decision-making and proposed a solution
methodology based on chance-constraint programming tech-
niques. Huang et al. (2018) [20] developed a stochastic
programming model to handle milk collection and delivery
process with maximum route duration limitation, external
cooling facility options, and travel time uncertainty.

However, there seems to be a lack of research consider-
ing the transportation problem of the refined oil secondary
distribution with inventory capacity. Most of existing studies
assume that demand rates or sales volume of petrol stations
are deterministic. Moreover, existing researches on stochastic
transportation problems rarely consider both limited sup-
ply quantity at sources and the limited storage capacity at
destinations. According to the actual situation of ROSDP,

in the case that the sales volume (or sales rate) of petrol
stations is stochastic, all constraints must be considered in
planning the refined oil secondary distribution scheme based
on the initiative distribution mode, including the supply limit
of oil depots, the storage capacity limit of petrol stations,
the compartment capacity of transport vehicles, and so on.
Although these constraints make the problem more compli-
cated, they can provide greater flexibility for final decision
makers. To the best of our knowledge, so far there are no
models or algorithms to tackle this problem.

In this paper, we focus on the refined oil secondary delivery
problem based on the initiative distribution mode. We pro-
posed a two-stage stochastic programming model for refined
oil secondary distribution problem with stochastic demand
and limited inventory capacity at each petrol station, limited
supply quantity at each depot, and considering the capacity
of vehicle’s compartments. When the number of scenarios is
limited, the stochastic programming model is reduced to an
equivalent deterministic mixed integer programming model
and the algorithm for solving the model is designed. Numer-
ical experiments demonstrate the validity of the proposed
model and algorithm. The computational effectiveness of the
stochastic programmingmodel is evaluated by using the value
of the stochastic solution (VSS) and the expected value of
perfect information (EVPI).

III. PROBLEM FORMULATION
A. PROBLEM DESCRIPTION
The refined oil secondary distribution problem (ROSDP) can
be described as follows:

A set of oil depots I supply a single type of refined oil
to a set of petrol stations J . The supply quantity of each
oil depot is limited. A set of vehicles K can be used to
transport refined oil from oil depots to petrol stations. Each
oil depot is equipped with a sufficient number of all types
of vehicles, and each type of vehicle has a specific limited
loading capacity and a fixed cost. The transportation cost for
delivering refined oil is proportional to the travel distance and
loading volume. In order to ensure safety and conveniently
calculate the replenishment volume, the oil loaded in each
compartment of one vehicle can only be unloaded to one
petrol station.

Under the initiative distribution mode or VMI, by the
end of each day, the petroleum company needs to make the
next day’s refined oil secondary distribution plan according
to the supply quantity of oil depots, the existing stock of
each petrol station and the number of available transportation
vehicles. The refined oil secondary distribution plan includes
the quantity of refined oil transported from each oil depot to
each petrol station, the type of transport vehicles and drivers
to perform each distribution task, the time of each vehicle
arriving at petrol stations, and other information.

Because the daily sales volume of each petrol station is
uncertain, if a petrol station is out of stock next day, it will
result in penalty costs, assuming that the unit shortage cost
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at each petrol station is known. If the replenishment volume
transported to a petrol station exceeds its demand and the
storage tank of the petrol station is full, then some special
measures should be taken to properly handle the surplus
refined oil, (for example, the surplus refined oil has to be
transported back to the depot). Extra costs need to pay for
dealing with the surplus refined oil, assuming that the unit
cost for dealing with the surplus oil at each petrol station is
known.

When the sales volume of each petrol station in the next day
is uncertain, an important problem is how to determine the
replenishment quantity of refined oil to be transported from
each oil depot to each petrol station, and the type of vehicles
to be used, so as to minimize the sum of the distribution costs
and the expected recourse costs?

This problem can be formulated as a two-stage stochastic
programming model. Since next day’s sales volume cannot
be predicted accurately when making the distribution plan,
the problem has obviously two-stage characteristics. In the
first stage, according to the limited supply quantity of oil
depots and available transport vehicles, the quantity of the
replenishment oil to be delivered from each depot to each
petrol station and the type of vehicles to be used can be
determined, so the distribution costs can be calculated. In the
second stage, when the sales volume of each petrol station is
known, the shortage quantity or surplus volume at each petrol
station can be determined, so the total recourse costs can be
calculated. Accordingly, the overall costs can be determined
as well.

B. ASSUMPTIONS
To simplify the problem, several assumptions are made as
follows:

(1) Each transportation vehicle only serves for one petrol
station at a time. In other words, all the refined oil transported
by one vehicle can only be unloaded to one petrol station. It is
not allowed to be separated unloaded to two or more petrol
stations.

(2) The maximum capacity of each type of vehicle is less
than the volume of the storage tank of any petrol station.
In other words, if the storage tank is empty, the refined oil
delivered by any vehicle can be completely unloaded to the
tank without overflow.

(3) After the refined oil secondary distribution plan is
made, all the transportation tasks are performed according to
the plan, and the modification of the distribution plan is not
considered.

(4)We assume that each vehicle only performs one delivery
task every day and it will arrive at its petrol station in the
given time window. So, we do not take into account either
the overflow caused by a vehicle’s earlier arrival at a petrol
station, or the stockout caused by a vehicle’s later arrival at a
petrol station.

(5) Only the overflow or stockout caused by mismatching
between the replenishment volume and next day’s demand
are considered.

(6) The sales volume or demand of each petrol station
is a stochastic variable. There are three possible levels for
the sales volume of each petrol station: high, medium and
low.

(7) The sales volumes of all petrol stations comprise a
stochastic vector. Since the sales volume of each petrol station
is related to each other, we assume that the number of scenar-
ios that affect the sales volume vector of all petrol stations
is finite, and the occurrence probability of each scenario is
known.

C. NOTATIONS AND VARIABLES
The relevant notations and variables of the model for the
problem are described as follows:

1) SETS
I : set of oil depots
J : set of petrol stations
K : set of types of transportation vehicles
S: set of scenarios affecting petrol stations’ sales volume

2) INDICES
i: index of oil depots
j: index of petrol stations
k: index of types of transportation vehicles
s: index of scenarios

3) SYMBOLS
ai: supply quantity of oil depot i
Rj: maximum storage tank capacity of petrol station j
rj: existing stock of petrol station j
cj: unit shortage cost of petrol station j
dj: unit surplus cost of petrol station j
hk : fixed cost of vehicle type k
qk : capacity of vehicle type k
gij: unit transportation cost from oil depot i to petrol

station j

4) STOCHASTIC PARAMETERS
ξ : stochastic scenario which affects the sales volume of

each petrol station
S = {ω1, ω2, . . . , ω|s|}: set of all stochastic scenario real-

ization, which contains a finite number of elements
bj(ξ ): actual sales volume of petrol station j when scenario

ξ occurs

5) DECISION VARIABLES
xij: quantity of refined oil to be transported from oil depot

i to petrol station j
zijk : number of vehicles of type k used to deliver refined oil

from depot i to petrol station j
y+j (ξ ): surplus quantity of refined oil in petrol station j

under scenario ξ
y−j (ξ ): shortage quantity of refined oil in petrol station j

under scenario ξ
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D. A TWO-STAGE STOCHASTIC PROGRAMMING MODEL
ROSDP can be formulated as a two-stage stochastic program-
ming model as follows:

The first-stage model:

min SP =
∑
i∈I

∑
j∈J

∑
k∈K

hkzijk+
∑
i∈I

∑
j∈J

gijxij+Eξ (Q(x, z, ξ ))

(1)

s.t.
∑
j∈N

xij ≤ ai i ∈ I (2)

∑
k∈K

zijkqk ≥ xij i ∈ I , j ∈ J (3)

xij ≥ 0 i ∈ I , j ∈ J (4)

zijk ≥ 0 integer i ∈ I , j ∈ J , k ∈ K (5)

The second-stage recourse function:

Q(x, z, ξ ) = min

∑
j∈J

cjy
−

j (ξ )+
∑
j∈J

djy
+

j (ξ )

 (6)

s.t. y−j (ξ ) ≥ bj(ξ )− rj −
∑
i∈I

xij j ∈ J (7)

y+j (ξ ) ≥
∑
i∈I

xij + rj − bj(ξ )− Rj j ∈ J (8)

y−j (ξ ) ≥ 0 j ∈ J (9)

y+j (ξ ) ≥ 0 j ∈ J (10)

In the first stage, with unknown values of scenarios,
the model determines the quantity of refined oil to be trans-
ported from each depot to each petrol station and the number
of vehicles to perform the distribution task.

The objective function (1) minimizes the sum of distri-
bution costs and the expected recourse costs of the second
stage, where the distribution costs include the fixed costs and
the transportation costs. Constraints (2) represent the supply
quantity constraints of each oil depot. The total quantity of
refined oil transported from depot i to each petrol station can-
not exceed its limited supply volume. Constraints (3) ensure
that the total capacity of vehicles to perform the distribution
task from depot i to petrol station j can hold the quantity of
oil that should be delivered from depot i to station j. Con-
straints (4) and (5) define variable constraints. In the second
stage, for a given scenario value of ξ , the sales volume of each
petrol station is known. Based on the replenishment quantity
obtained in the first stage, both the shortage quantity and the
surplus quantity of each petrol station can be determined,
so the second-stage total costs can be formulated by summing
up the shortage costs and surplus costs.

In the second stage model, for a given scenario value ξ , the
recourse function (6) is to minimize the total costs based on
the first stage solution x and z. Constraints (7) represent the
inequality that the shortage quantity of each petrol station j
should satisfy. Constraints (8) denote the inequality that the

surplus quantity of each petrol station j should satisfy. Con-
straints (9) and (10) ensure that both the shortage quantity and
the surplus quantity of each petrol station j are nonnegative
variables.

E. EQUIVALENT DETERMINISTIC MIXED INTEGER
PROGRAMMING MODEL
When the realizations of stochastic scenario vector ξ are
finite, the two-stage stochastic programming model can be
formulated as a deterministic mixed integer programming
model.

Assume that S = {ω1, ω2, . . . ω|S|} is the set of all realiza-
tions of stochastic scenario ξ and the probability of scenario
realization ωs is ps = P{ξ = ωs}, where∑

s∈S

ps = 1.

For simplification, let y+js , y
−

js respectively represent the
surplus quantity and the shortage quantity of petrol station
j in scenario realization ωs, and bjs represents the actual sales
volume of petrol station j in scenario realization ωs. Then the
two-stage stochastic programming model can be transformed
into a deterministic mixed integer programming model as
follows.

min SP =
∑
i∈I

∑
j∈J

∑
k∈K

hkzijk +
∑
i∈I

∑
j∈J

gijxij

+

∑
s∈S

ps

∑
j∈J

cjy
−

js +
∑
j∈J

djy
+

js

 (11)

s.t.
∑
j∈J

xij ≤ ai i ∈ I (12)

∑
k∈K

zijk qk ≥ xij i ∈ I , j ∈ J (13)

y−js ≥ bjs − rj −
∑
i∈I

xij j ∈ J , s ∈ S (14)

y+js ≥
∑
i∈I

xij + rj − bjs − Rj j ∈ J , s ∈ S (15)

xij ≥ 0, i ∈ I , j ∈ J (16)

zijk ≥ 0 integer i ∈ I , j ∈ J , k ∈ K (17)

y−js ≥ 0 j ∈ J , s ∈ S (18)

y+js ≥ 0 j ∈ J , s ∈ S (19)

The objective function of the two-stage stochastic pro-
gramming is to minimize the sum of distribution cost of the
first stage and the expected storage cost and surplus cost
of the second stage. It is in fact a joint optimization prob-
lem of two stages. The global optimal solution of the two-
stage stochastic programming can be obtained by solving its
equivalent deterministic mixed integer programming model.
Its optimal value is denoted by SP.
Example 1: Consider an instance of ROSDP with |I | =

2 depots and |J | = 4 petrol stations, |K | = 2 types of
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TABLE 1. Information associated with oil depots and petrol stations.

TABLE 2. Fixed costs and capacities of each type of vehicle.

TABLE 3. Demand of each petrol station in each scenario and the
probability of each scenario.

TABLE 4. Results associated with each depot and each petrol station j.

vehicles, and |S| = 3 scenarios. Other parameters are given
in Table 1–Table 3:

We solve the mixed integer programming model with
CPLEX solver, and the result can be obtained in less than
1 second. The minimal cost is 3020 yuan. The optimal solu-
tions are listed in Table 4.

The solution of the first stage is presented in Table 4. The
numbers outside of the parentheses indicate the quantity of
refined oil transported from oil depot i to petrol station j,
and the numbers inside of the parentheses show the specific
transportation plan, which consists of the types and number
of vehicles to be used. For example, the total replenishment
quantity delivered from depot 2 to petrol station 4 is 50 tons.
The specific plan 20∗2 + 10∗1 means that two vehicles of
capacity 20 tons and one vehicle of capacity 10 tons are used
to perform the transportation task. According to the solution
in Table 4, all 150 tons of refined oil supplied from two depots

are delivered to four petrol stations. The last row of Table 4
lists the total replenishment quantity to each petrol station.
The total distribution cost of the first stage is 2630 yuan.

Based on the first stage transportation plan, the short-
age quantity and the surplus quantity of each petrol sta-
tion in the second stage with given scenarios are presented
in Table 5 and Table 6 respectively.

TABLE 5. Shortage quantity of each petrol station in each scenario.

TABLE 6. Surplus quantity of each station in each scenario.

Table 5 and Table 6 illustrate that when scenario 1 occurs,
there will be 5 tons of surplus oil in petrol station 2 and it
results in 100 yuan surplus cost. When scenario 2 occurs,
the supply and demand of four petrol stations are balanced,
without causing surplus or shortage costs. When scenario
3 occurs, there will be 5 tons of shortage oil in both petrol
station 1 and petrol station 2, and 10 tons of surplus oil
in petrol station 4. So, the recourse cost corresponding to
scenario 3 is 1200 yuan, which consists of 1000 yuan shortage
cost and 200 yuan surplus cost. Based on the probabilities
of three scenarios, the expected recourse cost of the second-
stage is 390 yuan.

Therefore, the optimal value of the two-stage stochastic
programming is 3020 yuan.

IV. MEASURING THE RELEVANCE OF USING A
STOCHASTIC APPROACH
In this work, we use two measures to evaluate the two-
stage stochastic programming: the value of stochastic solu-
tion (VSS) and the expected value of perfect information
(EVPI).

A. THE VALUE OF STOCHASTIC SOLUTION(VSS)
When the random demand bj(ξ ) of each petrol station j ∈ J
is replaced by its expected value b̄j, the two-stage stochas-
tic programming model is transformed into a deterministic
mixed integer programming model as follows.

min EV =
∑
i∈I

∑
j∈J

∑
k∈K

hkzijk +
∑
i∈I

∑
j∈J

gijxij

+

∑
j∈J

cjy
−

j +
∑
j∈J

djy
+

j (20)
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s.t.
∑
j∈J

xij ≤ ai i ∈ I (21)

∑
k∈K

zijkqk ≥ xij i ∈ I , j ∈ J (22)

y−j ≥ b̄j − rj −
∑
i∈I

xij j ∈ J (23)

y+j ≥
∑
i∈I

xij + rj − b̄j − Rj j ∈ J (24)

xij ≥ 0, i ∈ I , j ∈ J (25)

zijk ≥ 0 integer i ∈ I , j ∈ J , k ∈ K (26)

y−j ≥ 0 j ∈ J (27)

y+j ≥ 0 j ∈ J (28)

The optimal solution x̂, ẑ, ŷ−, ŷ+ of this deterministic
mixed integer programming model gives a first-stage feasible
solution x̂, ẑ of the original two-stage stochastic program-
ming problem. Fixing the first-stage solution x̂, ẑ, and solv-
ing the recourse model equation (29-33) of the second stage
for each scenario s ∈ S, we can find the optimal recourse
solution y−∗js , y

+∗

js (j ∈ J ) of the second stage in each scenario
s ∈ S.

min RCs =
∑
j∈J

cjy
−

js +
∑
j∈J

djy
+

js (29)

s.t. y−js ≥ b̄j − rj −
∑
i∈I

x̂ij j ∈ J (30)

y+js ≥
∑
i∈I

x̂ij + rj − b̄j − Rj j ∈ J (31)

y−js ≥ 0 j ∈ J (32)

y+js ≥ 0 j ∈ J (33)

So, the minimal expected cost EEV of the expected value
model can be found by equation (34).

EEV =
∑
i∈I

∑
j∈J

∑
k∈K

hk ẑijk +
∑
i∈I

∑
j∈J

gijx̂ij

+

∑
s∈S

ps

∑
j∈J

cjy
−∗

js +
∑
j∈J

djy
+∗

js

 (34)

Inmodel (20)-(28), the random demand bj(ξ ) of each petrol
station j ∈ J is replaced by its expected value b̄j, so it has
fewer number of variables and constraints than the equiva-
lent mixed integer linear programming model (11)-(19), and
it is much easier to be solved. But we can only find the
first stage solution x̂, ẑ of the original two-stage stochas-
tic programming problem by solving model (20)-(28). To
further calculate the recourse cost of each scenario s ∈
S in the second stage, we must solve a recourse model
(29-33) and find the solution y−∗js , y

+∗

js (j ∈ J ) for each
scenario s ∈ S.
Since the first stage solution x̂, ẑ, and the second stage

solution y−∗js , y
+∗

js (j ∈ J , s ∈ S) are obtained by solving
different models, the solution obtained by combining x̂, ẑ
and y−∗js , y

+∗

js (j ∈ J , s ∈ S) is a local optimal solution of the

two-stage stochastic programming model. And the objective
value EEV must be larger than that of SP.

The difference between EEV and the optimal value of the
stochastic problem SP is defined as the value of the stochastic
solution i.e. VSS = EEV − SP.
In order to eliminate the effect of value magnitude and

obtain a better perception ofVSS, we adopt the related percent
of VSS defined by Hinojosa et al. (2014) [18].

VSSR = 100×
1
SP

(EEV − SP) (35)

Both VSS and VSSR can be used to verify the efficient of
two-stage stochastic programming, the larger VSS or VSSR is,
the more superior the stochastic programming method is.

B. THE EXPECTED VALUE OF PERFECT
INFORMATION (EVPI)
EVPI represents the value of perfect information, which is
the value of stochastic solution SP minus the value of wait-
and-see solution WS. To obtain EVPI, we should calculate a
set of optimal values WSs of the problem with each scenario
s ∈ S by solving the mixed integer programming as follows:

min WSs =
∑
i∈I

∑
j∈J

∑
k∈K

hkzijks +
∑
i∈I

∑
j∈J

gijxijs

+

∑
j∈J

cjy
−

js +
∑
j∈J

djy
+

js (36)

s.t.
∑
j∈J

xijs ≤ ai i ∈ I (37)

∑
k∈K

zijksqk ≥ xijs i ∈ I , j ∈ J (38)

y−js ≥ bjs − rj −
∑
i∈I

xijs j ∈ J (39)

y+js ≥
∑
i∈I

xijs + rj − bjs − Rj j ∈ J (40)

xijs ≥ 0, i ∈ I , j ∈ J (41)

zijks ≥ 0 integer i ∈ I , j ∈ J , k ∈ K (42)

y−js ≥ 0 j ∈ J (43)

y+js ≥ 0 j ∈ J (44)

The model (36)-(44) can be regarded as a special case of
the deterministic programming model (11)-(19), where there
is only one scenario s in the set of all scenarios S. The optimal
solution of model (36)-(44) means that if we can accurately
predict the actual demand of scenario s to being occurred in
future, we would find the optimal solutions xijs, zijks, y

−

js , y
+

js
based on the determined information of scenario s, and obtain
the minimal costWSs corresponding to this optimal solution.

After solving each model of (36)-(44) under every sce-
nario, we gather them into the wait-and-see solution WS:

WS =
∑
s∈S

ps ·WSs
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Obviously,WS is smaller than SP. The difference between
SP andWS is defined by EVPI, which can be used to measure
the value of information.
EVPI is defined as follows:

EVPI = SP−WS

Similarly, we define a related percent of EVPIR as follows:

EVPIR = 100×
1
SP

(SP−WS)

In this work, we use VSSR and EVPIR to measure the
relevance of the stochastic programming approach.

C. CALCULATE VSSR AND EVPIR OF EXAMPLE 1
For the problem in Example 1, if we replace the random
demand bj(ξ ) of each petrol station by its expected demand
value b̄j, the first stage solution can be found by solving the
mixed integer programming model based on the expected
value of demands. The detailed information of the solution
is provided in Table 7, and the total cost of the first stage is
1861 yuan. In Table 7, the value outside of the parentheses
describes the replenishment quantity from oil depot i to petrol
station j, whereas the value inside of the parentheses describes
the capacity of vehicle type times the number of vehicles
used to deliver the replenishment quantity. For example,
the information in the second row and the forth column is
30(20∗1+ 10∗1), which means that 30 tons of refined oil
should be transported from depot 2 to station 4, and the deliv-
ery task is performed by one vehicle with 20-ton capacity and
one vehicle with 10-ton capacity.

Based on the first stage solution in Table 7, both the short-
age and the surplus quantities of each station in each scenario
can be obtained by solving the second-stage recourse model.
The shortage quantity of each station in each scenario is listed
in Table 8.

When the stochastic demand of each petrol station is
replaced by its expected demand, the total replenishment
quantity of refined oil transported from each depot to each
petrol station will decrease, so the total distribution costs

TABLE 7. The first stage solution based on expected value of demands.

TABLE 8. Shortage quantity of each station in each scenario based on the
expected solutions.

would decrease accordingly. However, when the actual sales
volume increases, the shortage cannot be avoided. When
scenario 1 occurs, the shortage quantities at petrol station
3 and petrol station 4 are 10 tons and 20 tons respectively,
which result in 3000 yuan shortage cost. When scenario
3 occurs, the shortage quantities of petrol station 1 and petrol
station 2 will be 10 tons and 17 tons respectively, which result
in 2700 yuan shortage cost. There is no shortage cost under
scenario 2.

Furthermore, since the total replenishment quantity trans-
ported to each petrol station is relatively small, no surplus
occurs under each scenario.

Summing up the shortage cost and the surplus cost, the total
expected cost based on the expected value model can be
obtained.

EEV = 1861+ 3000× 0.3+ 0× 0.4+ 2700× 0.3=3571

VSSR = 100×
EEV − SP

SP
= 100×

3571− 3020
3020

= 18.25

For the problem in Example 1, the perfect information
solutions of three scenarios can be found by solving three
mixed integer programming models, and the optimal values
of three scenarios are 2165, 1855 and 1965 yuan respectively.
Therefore, the wait-and-see solution can be calculated as
follows:

WS = 2165× 0.3+ 1855× 0.4+ 1965× 0.3 = 1981

EVPIR = 100×
SP−WS

SP
= 100×

3020− 1981
3020

= 34.4

As analyzed above, for the refined oil secondary distri-
bution problem with random demand, the expected total
cost corresponding to the two-stage stochastic programming
solution is lower than the expected total cost correspond-
ing to the expected value solution. The larger fluctuation
the demand has, the more obviously superior the stochastic
solution is. On the other hand, the expected cost of wait-and-
see solution with perfect information is lower than that of
the stochastic solution, so the value of perfect information
is great.

V. COMPUTATIONAL EXPERIMENTS
In this section, we conduct numerical simulations on small,
medium, and large size examples respectively, and report the
computational results to evaluate the performance of the pro-
posed two-stage stochastic programmingmodel. Section V-A
describes the generation of the experimental instances.
Section V-B reports and analyzes the computational results.
Section V-C reduces the problem scale by merging similar
scenarios and assesses the performance of the merged model.
Section V-D reports the sensitivity analysis of inventory
capacity and the demand.

All computational experiments were performed on a PC
with an Intel(R) Core(TM) i7 processor with 2.80 GHz and
8GB of RAM. Programswith default parameters were imple-
mented using ILOG CPLEX Studio Academic 12.8.0.
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A. INSTANCE GENERATION
To generate the instances, we consider four factors asso-
ciated with the dimension of the test instances: the num-
bers of (i) depots, (ii) petrol stations, (iii) vehicle types and
(iv) scenarios. For each factor, we consider one or several
values which correspond to the different dimensions of test
instances.

In particular, the number of depots |I | is chosen from the
set {2, 4, 6}, the number of petrol stations |J | is chosen from
{20, 50, 100}, the number of vehicle types |K | is 3, and the
number of scenarios |S| is chosen from {4, 8, 12, 20}.
Once the dimensions are set, one instance was generated

as follows:
For each depot i ∈ I , the supply ai was drawn from a

uniform distribution U [u0 − 40, u0 + 40], where

u0 = 40× |J |/
|I |.

For each j ∈ J , the capacity Rj was randomly drawn from
{20, 30, 40}. The initial inventory rj was randomly drawn
from{5,10,15}.The unit shortage penalty cost cj was drawn
from {90,100,110}. The unit surplus handling cost dj was
drawn from {10,20,30}. Demand bj was generated from three
possible uniform distributions, which corresponds to the low
demand level, medium demand level, and high demand level
respectively:

(i) U [10, 30], (ii) U [30, 40] and (iii) U [40, 60].
For each i ∈ I , j ∈ J , the unit transportation cost gij was

drawn from a uniform distribution U [1, 4].
For each vehicle type k ∈ K , the capacity qk was set as

follows: q1 = 10, q2 = 15, q3 = 20; the fixed cost hk was
set as follows: h1 = 200, h2 = 250, h3 = 300.
Our data sets consist of four different types of scenarios:
(S1) all the demand levels are drawn from interval

(i) representing low demand level;
(S2) all the demand levels are drawn from interval

(ii) representing medium demand level;
(S3) all the demand levels are drawn from interval

(iii) denoting high demand level;
(S4) For each petrol station, a demand level is chosen

randomly from three different intervals (i) (ii) (iii) with the
same probability.

The number of each type of scenarios is summarized
in Table 9.

ps = P{ξ = s} =
1
|S|

For each combination of parameters |I |, |J |, |K | and |S|,
five instances were generated. In total, 180 instances were
generated.

TABLE 9. Number of each type of scenarios.

B. COMPUTATIONAL RESULTS AND ANALYSIS
For each instance, we have used the solver ILOG CPLEX
Studio Academic 12.8.0 to solve the equivalent deterministic
mixed integer programming model. The time limit is set to
be 2000s. If an optimal solution was found before the time
limit was reached, we recorded the CPU time (in seconds) to
obtain the optimal solution. When the time limit was reached,
we saved the relative gap between the objective value of the
best integer solution and the best-known lower bound of the
optimal solution value.

Table 10 and Table 11 report the results of the instances
associated with each combination of parameters |I |, |J |,
|S|. In Table 10 and Table 11, the rows were grouped
into several blocks, one for each parameter value of |I |.
Within each block, the rows were further grouped into sub-
blocks by the parameter value of |J |. Each subblock corre-
sponds to a parameter value of |J |. Each row in a subblock
corresponds to an instance with a particular combination
of |I |, |J | and |S|.

Table 10 summarizes the results for the stochastics pro-
gramming of refined oil secondary distributionwith inventory
capacity constraints. The average of percent gaps listed in

TABLE 10. Average gap and CPU time (seconds) for the stochastics
programming of refined oil secondary distribution with inventory capacity
constraints.
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TABLE 11. Relative percentage EVPIR , VSSR and the corresponding CPU
time (in seconds).

the columns headed by ‘Gap’ is defined by 100 × (best-
lowbound) /lowbound, where ‘best’ is the objective value of
the best integer solution and ‘lowbound’ is the best lower
bound found by the solver.

The column headed by ‘CPU’ lists the average CPU
times (seconds) required by the solver to obtain the opti-
mal/best solution. The column headed by ‘Opt’ lists the num-
ber of instances whose optimal solutions were found within
time limit.

From the results in Table 10, we found that the optimal
solutions of all instances were obtained within 6.7231 sec-
onds. When the parameter value of |I |, |J | or |S| increases,
the CPU time required for obtaining the optimal solu-
tion increases too. For the largest instance with 6 depots,
100 petrol stations and 20 scenarios, none of experimental
CPU time for finding the optimal solution exceeds 7 seconds.
So the solver can be used to find the optimal solutions of real
problems.

Table 11 provides the relative percentage EVPIR and VSSR,
and the CPU time (in seconds) required to obtain each value.
An entry in the column headed by ‘EVPIR’ (or ‘VSSR’) gives
the average relative value of the information (or the stochastic
solution) as introduced in Section IV. An entry in the column

headed by ‘CPU-1’ (or ‘CPU-2’ ) corresponds to the average
CPU time (seconds) required by the solver to obtain the value
of ‘EVPIR’ (or ‘VSSR’). In Table 11, the minimal value of
EVPIR is larger than 31%, and the minimal value of VSSR is
larger than 29%. In other words, both EVPIR and VSSR are
quite significant across all the instances. Table 11 verifies the
necessity and effectiveness of using a stochastics approach
for the problem we aim to address.

Since the instances in Table 10 and Table 11 are ran-
domly generated, it is difficult to find the correlation between
‘EVPIR’ (or ‘VSSR’) and the parameter values in |I |, |J |
and |S|.

From each subblock with same parameter values |I | and
|J | in Table 10, we found that the CPU time required for
obtaining the optimal solution increases with the number of
scenarios |S|.

In practice, since the sales volume of each petrol station
might take a lot of values (it even can be regarded as a con-
tinuous random variable), there is a large number of scenarios
related to the sales volumes of all petrol stations. In this
case, it will take much longer CPU time to solve the equiv-
alent mixed integer programming model of the two-stage
stochastic programming problem. How to find approximately
optimal solutions in short time is the key issue for solving
large scale practical problems.

C. REDUCING THE PROBLEM SCALE BY MERGING
SIMILAR SCENARIOS
For a given practical problem, the parameters |I |, |J | and |K |
are usually determined in prior. The CPU time for solving the
stochastic programming model increases with the number of
scenarios |S| increases.

When the number of oil depots and petrol stations is large,
the size of SP model in one scenario is already large. With
the number of scenarios increases, the size of SP model
will increase rapidly. Since the actual demand of each petrol
station might be a discrete random variable with a large
number of possible values, or a continuous random variable,
the number of scenarios in the SP model might be astronom-
ical. If we solve the SP model with all scenarios by solver,
the running time will be out of acceptable range. For exam-
ples with 6 depots, 100 petrol stations, and 100 scenarios,
the average CPU time is more than 10 minutes. By merging
a large number of similar scenarios into fewer ones, we can
effectively reduce the size of SP model and rapid the running
speed.

On the other hand, there will be errors when replacing the
original problem by the one after merging scenarios. Next,
we will study the gap of solutions obtained from the model
with merged scenarios. By fixing the number of oil depots |I |,
the number of petrol stations |J |, and the number of vehicle
types |K |, we take a practical problem with 20 scenarios as
an example and analyze the gap of solutions obtained from
the model with merged scenarios.
Assume that 20 scenarios are divided into 4 types accord-

ing to the classification rules in Section V-A, and each type
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TABLE 12. Comparative analysis of the results obtained by two models before and after merging scenarios.

contains 5 scenarios. As shown in Table 9, the value range of
each petrol station’s sale volume is identical in the first three
types of scenarios. For example, in the first type of scenarios
S1, the sales volume of each petrol station is drawn from
interval [10, 30], which corresponds to the low demand level.
Therefore, five scenarios of the same type can be merged into
one scenario. After merging the five scenarios of the same
type, the sales volume of each petrol station is replaced by
the average of sales volumes under five scenarios. Obviously,
the value of average sales volume is taken from interval of
[10, 30], which is the same interval as that of sales volumes
taken from in each scenario of S1 type. The occurrence
probability of the merged scenario is taken as the sum of the
occurrence probability of each scenario before merging.

The last type of scenarios S4 is different from the first
three scenarios. In S4 type of scenarios, the sales volume
of the same petrol station in different scenarios may take
value from different demand intervals. If the scenarios are
merged, the sales volume of the same petrol station in differ-
ent scenarios might be offset each other, so the average sales
volume under the merged scenarios might be significantly
different from the sale volume of the same petrol station in
any scenarios before merging.

Therefore, the scenarios in type S4 can be merged into
multiple scenarios according to the demand interval (high,
medium and low) that each petrol station’s sale volume is
drawn from. Given two or more scenarios, if the sales vol-
ume of every petrol station in all scenarios falls in the same
interval, then the scenarios can be merged into one scenario.
Otherwise, they cannot be merged.

The K -means clustering method can be directly used for
merging scenarios. If multiple scenarios are merged, the aver-
age sales volume of each petrol station in all scenarios is
taken as the sales volume of this petrol station in the merged
scenario, and the probability of the merged scenario is the
sum of the probabilities of each scenario before merging.

To analyze the efficiency and effectiveness of merging
scenarios, we first solve the two-stage stochastic program-
ming model corresponding to merged scenarios by CPLEX
solver, and obtain the transportation scheme of the first stage;
then, based on the transportation scheme in the first stage,
the recourse cost of the second stage under each scenario
before merging is calculated, and the total expected cost cor-
responding to the problem after merging scenarios is further
calculated.

For each instance, the CPU time for solving the stochastic
programming models before and after merging scenarios are
recorded and compared. The expected cost of the model with
merged scenarios is compared with the optimal value of the
model before merging scenarios. We also analyze the change
of error rate and CPU time after merging scenarios. The
detailed results are listed in Table 12.

In Table 12, the columns headed by ‘‘|S| (1)’’, ‘‘CPU
(1)’’, ‘‘cost (1)’’ represent the number of scenarios, CPU
time and the total expected costs respectively related to the
model before merging scenarios; the columns headed by
‘‘|S| (2)’’, ‘‘CPU (2)’’, ‘‘cost (2)’’ represent the number of
scenarios, CPU time and the total expected costs respectively
related to the model after merging scenarios. The last column
headed by ‘‘Gap’’ represents the total costs increasing rate
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corresponding to the solution obtained by the model after
merging scenarios, the Gap is calculated by the equation as
follows:

Gap = (cost (2)− cost (1)) /cost (1)

It can be seen from Table 12 that after merging similar
scenarios, the scale of the problem becomes smaller, and the
CPU time for solving the problem is reduced accordingly.
After merging 20 scenarios into 8 scenarios, the CPU time is
reduced to about 50% of the original. Comparedwith the opti-
mal solution obtained by solving themodel with 20 scenarios,
the error rate of themodel with 8merged scenarios is less than
1%. So, whenever the practical problem has a large number
of scenarios, we can first merge some similar scenarios using
clustering methods, and then solve the smaller scale problem
with merged scenarios to obtain an approximately optimal
solution of the original problem in much shorter CPU time.

D. INFLUENCE OF INVENTORY CAPACITY
AND DEMAND CHANGES
We perform additional testing on the sensitivity of inventory
capacity and the demand to the optimal solution. We generate
an instance with 2 depots, 30 petrol stations, 3 types of
vehicles and 12 scenarios by the method in V-A.

Firstly, we vary the inventory capacity of each petrol sta-
tion by the same ratios λ, and calculate the optimal solution
under each parameter λ ∈ [0.5, 2]. Figure 1 depicts the
relationship between the total cost of optimal solution and the
value of parameter λ. The results clearly show that increasing
the inventory capacity results in the total cost reduction.
Decreasing the inventory capacity by 50% leads to a total cost
increase of 9.8%.Vice versa, increasing inventory capacity by
90% results in theminimal total cost. If the inventory capacity
increases further, the total cost can’t decrease any more.
We also conduct further investigation to study the influence
of parameter λ on the expected shortage and surplus cost.
The results are depicted in Figure 2(a) and 2 (b) respectively.
It is easily seen that a larger inventory capacity result in lower
shortage cost and surplus cost because it enables more refined
oil to be stored and the more uncertainty demands will be
satisfied.

Furthermore, we study the influence of increasing or
decreasing the demand of each petrol station in each scenario

FIGURE 1. The effect of the total cost under different parameter λ.

FIGURE 2. The effect of (a) the expected shortage cost and (b) the
expected surplus cost under different parameter λ.

FIGURE 3. The effect of the total cost under different parameter µ.

FIGURE 4. The effect of (a) the expected shortage cost and (b) the
expected surplus cost under different parameter µ.

by the same ratios µ, and calculate the optimal solution
under each parameter µ ∈ [0.5, 2]. Figure 3 depicts the
relationship between theminimal cost of optimal solution and
the value of parameter µ. The results show that increasing
demands lead to the total cost increases. Decreasing demands
by 50% results in a total cost reduction of 61%, whereas
50% higher demands increase the total cost by more than
128%. We also analyze how different values of parameter
µ affect the expected shortage and surplus. The results are
shown in Figure 4(a) and 4(b) respectively. We observe that
the higher demands results in the higher shortage cost due
to the limited supply. Notice that the surplus cost increases
sharply to a peak of 634 and decreases rapidly to 50, since
the higher demands narrow the gap between the total supply
and demand.

Hence, the tests clearly show that a larger inventory capac-
ity results in lower total cost because it reduces both the
shortage cost and the surplus cost. In practice, the inventory
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capacity of each petrol station should be determined based
on its demand and delivery amounts. If the conditions permit,
a greater inventory capacity of each petrol station should be
taken into consideration.

VI. CONCLUSION
In this paper, we investigate the refined oil secondary distri-
bution problem faced by oil companies which adopt initiative
delivery mode. The uncertain demand of petrol stations and
limited inventory capacity of petrol stations are considered.
We formulate the refined oil secondary distribution prob-
lem with stochastic demand and limited capacity as a two-
stage stochastic programming model. In the first stage, a
decision is made about the replenishment quantity of refined
oil transported from each depot to each petrol station, and
the number of each type of vehicles used to perform each
transportation task so as to minimize the sum of distribution
costs and the expected recourse costs. In the second stage,
a decision is made to minimize the recourse costs including
the shortage penalty costs and the surplus handling costs
at each petrol station in a given scenario. By analyzing the
simulation results of instances with different scales, we found
that if the sales volume at each petrol station is stochastic,
the expected total cost of the inventory transportation scheme
obtained by the two-stage stochastic programming model is
about 30%-40% lower than that of the deterministic program-
ming model using the average sales volume. On the other
hand, the number of oil depots, the number of petrol stations
and the number of vehicle types in practical instances will not
exceed themaximum scales of the simulation examples in this
work. So when the number of scenarios is no more than 20,
we can solve the equivalent deterministic mixed integer prob-
lem corresponding to the two-stage stochastic programming
by CPLEX solver and obtain global optimal solutions in a
short time.

When the two-stage stochastic programming model is
transformed into the deterministic mixed integer program-
ming model, the number of scenarios is the main factor
affecting the scale of the problem. Since it needs longer CPU
time for solving the larger scale equivalent mixed integer pro-
gramming model, for practical problems with larger number
of scenarios, we can merge some similar scenarios so as to
obtain approximately optimal solutions by the solver in a
shorter CPU time.

The results of sensitivity analysis indicate that the total cost
decreases with corresponding increase in inventory capacity
within a certain range. Therefore, the petrol stations should
use the relatively larger storage tank if it is possible.

In order to calculate the replenishment quantity conve-
niently, the oil delivered by one vehicle is only allowed to
be unloaded to one petrol station. It is not allowed to be sepa-
rately unloaded to multiple petrol stations. This assumption is
applicable to the case that a petrol station only sells a single
type of refined oil product and the storage tank capacity is
larger than the vehicle’s compartment capacity. In practice,
when a petrol station sells several types of oil products,

and the storage tank capacity of each type of refined oil is
smaller than the total capacity of a vehicle, the oil company
can use the vehicles with several independent compartments
for distribution. At this time, different compartments of one
vehicle can be loaded with different types of oil products, and
the oil loaded in different compartments can be unloaded to
one or more oil storage tanks in one or more petrol stations.

The refined oil secondary transportation problem with
multiple compartments vehicles is the generalization of the
problem in this work. In the future research, we will study
this more general problem.

The CPLEX solver can be used to solve the equivalent
mixed integer programming model for the refined oil sec-
ondary transportation problem with single type of oil in this
work. But when the number of scenarios increases, the CPU
time consumed for solving the model will increase, and the
solver cannot find exact optimal solutions in a short time.
Therefore, it is an important research direction to design exact
algorithms or heuristic algorithms based on the characteris-
tics of practical problems.
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