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ABSTRACT As a novel computing technology closer to business ends, edge computing has become an
effective solution for delay sensitive business of power Internet of Things (IoT). However, the uneven spatial
and temporal distribution of business requests in edge network leads to a significant difference in business
busyness between edge nodes. Due to the natural lightweight and portability, container migration has become
a critical technology for load balancing, thereby optimizing the resource utilization of edge nodes. To this
end, this paper proposes a container migration-based decision-making (CMDM) mechanism in power IoT.
First, a load differentiation matrix model between edge nodes is constructed to determine the timing of
container migration. Then, a container migration model of load balancing joint migration cost (LBJC) is
established to minimize the impact of container migration while balancing the load of edge network. Finally,
the migration priority of containers is determined from the perspective of resource correlation and business
relevance, and by introducing a pseudo-random ratio rule and combining the local pheromone evaporation
with global pheromone update at the same time, a migration algorithm based on modified Ant Colony
System (MACS) is designed to utilize the LBJC model and thus guiding the choice of possible migration
actions. The simulation results show that compared with genetic algorithm (GA) and Space Aware Best
Fit Decreasing (SABFD) algorithm, the comprehensive performance of CMDM in load balancing joint
migration cost is improved by 7.3% and 12.5% respectively.

INDEX TERMS Container migration, load balancing, migration cost, edge computing, power Internet of
Things.

I. INTRODUCTION
With the development of smart grid construction and the
rising popularity of connected devices and sensors in smart
cities, massive transmission and processing data has led to a
significant increase in the network transmission pressure and
computing load of cloud center under the gradually formed
new business requirements of large connection, wide cover-
age and intelligence in power IoT, which makes it difficult
to meet the business processing delays [1]. By deploying
intelligent processing equipment or servers with capabilities
of communication access, business processing and data stor-
age closer to the edge of user terminals, namely the edge
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node to provide services, edge computing provides an effec-
tive solution for alleviating the pressure of computing and
storage in cloud center and ensuring the delay demand of
business of power IoT [2]. As shown in Figure 1, the terminal
devices communicate with the edge nodes through wired,
WiFi, or 4G/5G, and send the task requests to edge nodes
instead of the cloud platform, which reduces the network
transmission time and increases the terminals’ intelligence
capabilities at the same time.

However, under the framework of edge computing,
the power IoT still faces a series of problems. The uneven
spatial and temporal distribution of service requests in edge
network with limited resources of the edge node leads to a
significant difference in the busyness of business between
edge nodes. As a result, some of the edge nodes are too
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FIGURE 1. The power IoT structure based on edge computing.

busy to timely meet the business’s requirement of connection
and processing, while resources of the others are not fully
utilized. Therefore, it is necessary to implement load bal-
ancing of the edge network, thereby optimizing the resource
utilization of the edge nodes. By migrating a running virtual
machine (VM) from one physical machine to another without
disconnecting the applications, real-time migration of virtual
machines has become an effective technology for balancing
the load between edge nodes. However, the slow startup speed
of virtual machine makes it difficult to meet the Quality of
Service (QoS) requirements of delay sensitive business of
power IoT. At the same time, as the number of virtual
machines deployed in the edge network increases, the per-
formance of virtual machines will decrease significantly.

To overcome the known deficiencies of VM, a light-weight
virtualization technology called container has been widely
used. Compared with VMs, containers use hierarchical stor-
age that separates the mirror layer from the data layer, and
are isolated by control groups (Cgroups) rather than hypervi-
sors, thus enabling rapid startup, deployment, and release [3].
In addition, container is lightweight and supports migration
for it is an operating system-level virtualization technol-
ogy that shares the kernel of host’s operating system [4].
Therefore, it is necessary to formulate a reasonable container
migration strategy to realize load balancing of the edge net-
work andminimize the impact of containermigration on users
at the same time on the premise of meeting the requirements
of multiple types of business of power IoT.

To solve the above problem, on the one hand, a reasonable
migration timing and container migration selection strategy
need to be established, and on the other hand, container
migration algorithms require rational selection. Concerning
to the problem of migration timing, some existing solutions
typically rely on static thresholds while the others use pre-
diction techniques such as linear regression [5] and machine
learning [6]. However, when only taking into consideration
the state of host, the overall condition of edge network may
be ignored. And since the container migration (CM) prob-
lem is NP-hard [7], some researchers put forward heuristic
algorithms to get approximate optimal solutions, but it is
easy to fall into the local optimal. Bio-inspired meta-heuristic
algorithms, such as Ant Colony System (ACS) algorithm,
Genetic Algorithm and Particle Swarm Optimization (PSO)

algorithm can not only avoid falling into a locally opti-
mal solution but also get high-quality approximation [8].
However, some meta-heuristic algorithms such as GA and
PSO require special encoding for combinatorial optimization
problems because they are designed for continuous prob-
lems originally. In comparison, ACS algorithm designed
for discrete problems is viewed as an effective approach
to solve the CM problem. For solving the multi-objective
optimization-scheduling problem in cloud computing, [9]
proposed an improved Ant Colony Optimization (ACO)
algorithm, which considers not only the utilization of com-
puting and storage resources of physical nodes but also the
number of micro-service requests and failure rate. In [10],
a multi-objective Ant Colony algorithm was proposed for
finding the optimal mapping of VMs on the servers of a
data center by searching for Pareto-optimal solutions based
on two dimensions, namely the power consumption and
resource wastage. However, the abovemethods are specific to
container redeployment problem and lack the consideration
of migration cost and delay in edge computing.

In summary, in order to address the problem of container
migration for load balancing of edge network in power IoT,
we propose a container migration-based decision-making
mechanism and a migration algorithm based on improved
ACS is designed for model optimization. The specific con-
tributions of this paper are summarized as follows:
• The container migration problem for load balanc-
ing of edge network in power IoT is described as
a multi-objective combination optimization problem
under QoS constraints. By considering the balancing
of resource utilization and remaining resource, network
transmission delay and container migration downtime,
a container migration model of load balancing joint
migration costs is established to minimize the impact
of container migration while balancing the load of edge
network.

• The selection strategy of containers to be migrated is
considered from the perspective of resource correlation
and business relevance in order to ensure the delay
demand of business of power IoT while further reducing
the migration cost.

• A modified ACS migration algorithm based on CMDM
mechanism is designed to solve the container migration
problem. By introducing a pseudo-random ratio rule and
combining the local pheromone evaporation with global
pheromone update at the same time, the algorithm’s con-
vergence speed is ensured while the exploration ability
is enhanced.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III presents the container
migration-based decision-making mechanism, and a migra-
tion algorithm based on improved discrete ACS for solving
container migration problem is described in section IV.
Section V shows the performance of proposed algorithm by
simulation, and the last chapter summarizes the full text and
draws conclusions.
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II. RELATED WORK
A. LOAD BALANCING IN EDGE COMPUTING
Load balancing for edge network is a process of redistribut-
ing load among edge nodes to improve resource utilization
and reduce response time [11]. At the same time, ensuring
the load balancing of the edge network can cope with the
emergency situation in power IoT, and has a good bearing
capacity for the peak of business requests. At present, there
are two main types of load balancing in distributed envi-
ronment, namely the static load balancing and dynamic load
balancing [12]. By expressing the problem of load balancing
under the edge computing architecture as an optimization
problem, reference [13] proposed a scalable algorithm to find
the redirection of tasks among a given set of edge nodes in
the network, thereby minimizing the average response time.
In [14], a cloud-assisted framework of mobile edge comput-
ing was proposed to enhance the computing capabilities of
edge network, and a workload scheduling mechanism was
proposed to balance the system latency and cost at the same
time. In order to balance the resource utilization of large data
centers, reference [15] studied the container placement and
redistribution problems in the industrial environment, and
proposed a worst fit decreasing algorithm and a two-stage
algorithm respectively for optimizing the given initial distri-
bution of containers by migrating containers among servers.

In short, most of the current solutions for load imbalances
under edge computing scenarios are to formulate static load
balancing strategies, that is, to implement the initial task
allocation or resource allocation based on the load balancing
model, which makes it difficult to deal with dynamic prob-
lems under the edge network.

B. CONTAINER MIGRATION
Container migration is considered as an efficient and
lightweight virtualization technology for dynamic load
balancing. At present, the two main research directions
of container migration are migration strategies and con-
crete migration implementation. Reference [16] proposed a
method to minimize the service delay in a scenario with two
edge servers, in which the computation delay was reduced
by migration and the communication delay was improved by
transmission power control at the same time. In [17], a con-
tainer scheduling algorithm based on ACO was proposed
to balance the resource utilization and improve the applica-
tion performance. Considering the power consumption and
delay, reference [3] modeled the container migration strategy
as multiple dimensional Markov Decision Process (MDP)
spaces and proposed a deep reinforcement learning algorithm
to achieve fast decision-making. A VM dynamic migration
framework for load balancing was designed in [18]. By divid-
ing the server into four different load states, a dynamic
migration strategy of VM was formulated to guide the
migration decision. In [19], a cost model of migration time
was constructed and two dynamic migration strategies for
different application scenarios were proposed, namely the

load balancing and fault tolerance. To flexibly meet users’
demands in cloud computing, reference [20] proposed a grey
relational analysis (GRA) and technique for order preference
and a two-level hybrid heuristic algorithm was designed to
consolidate resources in order to reduce costs and energy
consumption.

From the existing work above, we can see that there is just
a little research on container migration for load balancing in
edge network. In addition, the existing VM-based migration
mechanism for load balancing in cloud computing fails to
consider the migration cost, which makes it difficult to meet
the QoS requirements of delay sensitive business of power
IoT in edge computing.

III. CONTAINER MIGRATION-BASED DECISION-MAKING
MECHANISM
In this section, we propose a CMDM mechanism for making
container migration decision whereby the migration model is
built to make a tradeoff between the load balance and migra-
tion cost. The scheme is described in three parts in Figure 2.
First, we measure the load diversity of different edge nodes
and decide whether to perform migration. Then, we propose
a container migration model based on load balancing and
migration cost. Finally, we provide a container migration
strategy, which including the selection of migration contain-
ers and immigration edge nodes. Specific processes of the
three parts are shown as below.

A. LOAD BALANCING DETECTION
A large number of tasks generated by the terminal devices are
offloaded through the access network to the corresponding
containers within the edge node (EN) closer to the terminal
for execution. A container can be abstracted as an ‘‘active’’
application environment that has acquired or occupied a por-
tion of the edge node’s resources.

Assume that the set of ENs in the edge network is N =
{n1, n2, · · · , nJ }, where J is the number of ENs and the set of
containers is C = {c1, c2, · · · , cI }, where I is the number of
containers. Each ENhasmultiple types of resources including
CPU, memory, storage and countless others, so the collection
of resources can be expressed as R = {r1, r2, · · · , rK }.
For each nj ∈ N , let

−→
Wj = (W 1

j ,W
2
j , · · · ,W

K
j ) denote

its capacity of all types of resources, where W k
j represents

the maximum amount of k − th resource that nj can pro-
vide, and let −→uj = (u1j , u

2
j , · · · , u

K
j ) denote its resource

utilization. The maximum data transmission rate between nj
and nj′ is defined as Bandj,j′ . For each ci ∈ C, let wi =
[
−→
di , tstai , tdeli ,Toli] denote its operating information, where
−→
di = (d1i , d

2
i , · · · , d

K
i ) represents the requirement for all

types of resources, tstai represents the startup time of ci, tdeli
represents the computing delay when the resource require-
ment are met, and Toli represents the delay threshold within
toleration. The resource requirement of containers considered
in this paper are the number of virtual resource units after
standardization.
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FIGURE 2. The framework of CMDM mechanism.

Taking a binary indicator xi,j to donate the container place-
ment decision variable. Let xi,j = 1 if ci is placed at nj, and
xi,j = 0 else. The set of containers deployed on nj is defined
as V (nj).
The load 0nj for each nj is calculated using the following

equation.

0nj =
∑
rk∈R

ηkukj (1)

where ηk represents the weight of rk on the load of nj, and
ukj is the utilization of rk on nj. The calculation formula is as
follows.

ukj =

∑
ci∈C

xi,jdki

W k
j

(2)

Hence, the load diversity between nj and nj′ is:

hnj,nj′ =
0nj

0nj′
(3)

Derived from the above, the EN load diversity matrixHJ×J
can be represented as follows.

HJ×J =


1 hn1,n2 · · · hn1,nJ

hn2,n1 1 · · · hn2,nJ
...

...
...

hnJ ,n1 hnJ ,n2 · · · 1

 (4)

Two aspects are considered concerning to the load imbal-
ance of edge network, namely the load diversity between
any two ENs and the utilization of each type of resources
of a single EN. By calculating the load diversity, frequent
container migration between ENs can be avoided, and the
resource fragmentation problems caused by over-utilization
of certain types of resources can be averted by taking into
consideration the resource utilization of ENs at the same time.

Therefore, given the threshold σ of load diversity and the
upper threshold Thrk of resource utilization, the containers
migration-triggered metric due to load imbalance of the edge
network is:

∀nj ∈ N , ∃ukj ≥ Thrk
∀nj ∈ N , rk ∈ R, ∃hnj,nj′ ≥ σ (5)

B. LBJC CONTAINER MIGRATION MODEL
First, container migration and replacement are defined as two
binary variables: yij,j′ and xi,j. If ci is migrated from nj to nj′ ,
that is xi,j = 1 and x̃i,j′ = 1, yij,j′ = 1, otherwise yij,j′ = 0.

The migration cost is mainly formed by two compo-
nents, namely the network latency caused by the trans-
mission of intermediate and final data between two edge
nodes and the migration time of the container itself, that is
the downtime. The downtime is mainly affected by the mem-
ory size of containers, and the larger the memory, the longer
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TABLE 1. Definition of variables used in the article.

the downtime [21]. Compared with network latency and
downtime, the migration decision delay is negligible [22].
So, when a container ci is migrated from EN nj to nj′ ,
the migration cost Migicost can be defined as follows.

Migicost =

3i + d
kmem
i /

∑
ci∈C

xi,jd
kmem
i

Band j,j′
(6)

where 3i is the amount of data transmitted by ci during
the migration process, and dkmemi is the memory resource
allocated to it. Therefore, the total migration cost can be
calculated as follows.

Migtotalcost =
∑
ci∈C

yij,j′Mig
i
cost (7)

After the migration of containers to be migrated, the load
balancing degree of the edge network Loadbalance is measured
from two aspects, namely the balance of resource utilization
between ENs of the same kind and the equilibrium degree of
residual resource of different types of resources on the ENs.

Loadbalance = U total
balance + V

total
balance (8)

where U total
balance is the balance of resource utilization and

V total
balance is the equilibrium degree of residual resources, that

are defined as follows.

U total
balance =

∑
rk∈R

∑
nj∈J

(
ũkj − ũ

k
j

)2

J
(9)

V total
balance =

∑
nj∈J

∑
rk1 ,rk2∈R

max

{
0,

Sk1j

W k1
j

−
Sk2j

W k2
j

}
(10)

where ũkj denotes the utilization of rk on nj, ũ
k
j is the mean uti-

lization of rk of all ENs and Skj refers to the residual available
resource rk on nj, which can be calculated as follows.

Skj = W k
j −

∑
ci∈C

x̃i,jdki (11)

From the above, we can see that the smaller the value
of balancing of resource utilization joint residual resource,
the higher the load balancing degree of edge network.

Finally, the objective of container migration is defined as a
weighted sum of all the factors defined above.

F = θ (U total
balance + V

total
balance)+ γMig

total
cost (12)

where θ and γ are the weights of load balancing degree of
edge network and container migration cost, and θ + γ = 1.
To minimize the above objective, containers should be

migrated to the most suitable ENs, but this process should
satisfy some strict constraints.

C1 :
∑
ci∈C

xi,jdki ≤ W
k
j , ∀nj ∈ N , rk ∈ R

C2 : tdeli + y
i
j,j′Mig

i
cost ≤ Toli, ∀ci ∈ C, nj ∈ N

C3 :
∑
nj∈N

xi,j = 1, ∀ci ∈ C

C4 :
∑
nj∈N

x̃i,j = 1, ∀ci ∈ C (13)

Constraint C1 imposes that the utilization of any type of
resources on EN should be lower than the maximum capacity
of that on EN. Constraint C2 indicates that the total delay of
tasks in the container to be migrated should not exceed the
delay threshold that the user can tolerate. Constraint C3 and
C4 stipulate that a container can only be allocated to one EN
for processing.

To sum up, in order to make a trade-off between the load
balancing degree of edge network after migration and the
migration cost of containers during migration, this paper
describes the container migration problem for load balanc-
ing of the edge network in power IoT as a multi-objective
optimization problem under QoS constraints and presents the
migration model as follows.

P1 : min
{
θ (U total

balance + V
total
balance)+ γMig

total
cost

}
s.t. C1,C2,C3,C4

xi,j, x̃i,j, yij,j′ ∈ {0, 1} , ∀ci ∈ C, nj ∈ N (14)
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C. MIGRATION STRATEGY
The purpose of migration strategy is to migrate some contain-
ers from overloaded ENs to relatively idle ENs with higher
migration efficiency when container migration is triggered.
In short, the two main issues to be solved by the migration
strategy are the selection of containers to be migrated and
container remapping.

1) MIGRATION CONTAINER SELECTION
Containers to be migrated from the overloaded EN are
selected according to two aspects, namely the resource cor-
relation and business relevance. Resource correlation prefers
to migrate a container with relatively short migration time
and more efficiency for eliminating overload. Business cor-
relation takes into consideration the execution progress of the
business hosted by the container.

The CPU and memory size of the container are direct
factors affecting migration downtime, resource loss and
energy consumption [23]. The smaller the utilization of CPU
and memory, the shorter the container migration downtime,
the lower the energy consumption of the ENs and the less
the impact on performance. Thus, the migration probability
mMMTi,j of the container ci on the EN nj based on migration
time can be expressed as:

mMMTi,j =
ωcpud

kcpu
i∑

ci∈C
xi,jd

kcpu
i

+
ωmemd

kmem
i∑

ci∈C
xi,jd

kmem
i

(15)

where ωcpu and ωmem are pre-specified weights of the impact
of container utilization of CPU and memory on migration
downtime, and ωcpu + ωmem = 1.

However, minimizing the migration time cannot improve
the load state of edge network. In contrast, the total migration
downtime may increase due to frequent container migration.
Therefore, considering the single container migration time,
the Euclidean distance between containers and ENs is calcu-
lated at the same time to reduce themigration frequency. Note
that, the larger the distance, the effect of the EN is dominant.

℘i,j =
∑
rk∈R

$k√(
ukj − u

k
i

)2 (16)

where $k is the weight of the influence of rk on the load of
nj, and is defined as follows:

$k =
ukj∑

rk∈R
ukj∑

rk∈R
$k = 1 (17)

Thus, the migration probability mMMi,j of ci on nj based on
migration frequency can be expressed as:

mMMi,j =
℘i,j∑

ci∈C
℘i,j

(18)

From the perspective of the business hosted by the con-
tainer, container migration will inevitably result in the net-
work overhead of data transmission between two ENs. The
amount of data transmitted is mainly affected by the progress
of business execution, that is, the more the progress of busi-
ness execution, the smaller the relative amount of data gen-
erated. Therefore, the migration probability mTTi,j of ci on nj
based on the amount of migration data can be expressed as.

mTTi,j =
talri
tdeli

(19)

where talri is the execution time of ci.
In summary, the migration priority of container ci on the

EN nj is defined as:

mi,j = −λmMMTi,j + µmMMi,j + ψm
TT
i,j (20)

where λ,µ andψ are theweights ofmigration time,migration
frequency and the amount of migration data of ci on nj, and
λ + µ + ψ = 1. And according to Equation (20), we can
get a set Mj =

{
m1,j,m2,j, · · ·m|V (nj)|,j

}
, which represents

the migration priority between the EN nj and containers
developed on it.

2) IMMIGRATION EDGE NODE SELECTION
Guided by the migration model proposed in the previous
section, nj is selected as the immigration EN of the container
to be migrated based on the following equation.

nj = argmin
{
θ (U total

balance + V
total
balance)+ γMig

total
cost

}
s.t. C1,C2,C3,C4

xi,j, x̃i,j, yij,j′ ∈ {0, 1} , ∀ci ∈ C, nj ∈ N (21)

IV. CMDM_MACS MIGRATION ALGORITHM
In order to obtain the global optimal container migration
decision, an optimal ACS algorithm for discrete problems
is designed based on CMDM mechanism. Compared with
other meta-heuristic algorithms such as GA and PSO, ACS
algorithm adopts pheromone strategy to make the experience
information shared among different groups.

The ACS algorithm simulates the feeding process of ants
to complete the scheduling of container migration, as shown
in Figure 3. The algorithm is summarized as follows:
• Ant Antl is randomly placed to a container ci to be
migrated.

• Antl selects a mapping tuple < ci, nj > with a certain
probability pi,j, that is deploying ci to nj according to
the pheromones τi,j and heuristic information ηi,j. After
that, ci can be put into tabu list Tabul of Antl .

• Antl returns to the next container in the set of containers
to be migrated Cmig, and repeats the previous process to
complete the following migration allocation, getting a
migration plan.

• That all the ants complete the allocation of all the
containers to be migrated once, can be regarded as
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FIGURE 3. Diagram of ACS Algorithm based on container migration.

one iteration. The algorithm terminates until the maxi-
mum number of iterations is reached.

A. PHEROMONE UPDATING
In reality, the pheromone is a kind of chemical substance that
ants use to communicate with each other. Ants find the source
of food along the way by sensing the pheromones released by
other ants [24]. In the process of container migration, the ACS
algorithm saves the search experience of ants by creating
the pheromone matrix

[
τi,j
]
N×M , where τi,j represents the

pheromone that migrated ci to nj and the larger the value
of τi,j, the more likely the ant is to choose tuple < ci, nj >
in the previous iteration process. The initial value of the
pheromone is defined as follows:

τ0 =
1∣∣Cmig∣∣ (22)

where
∣∣Cmig∣∣ is the number of containers to be migrated.

After selecting a new mapping relation tuple < ci, nj >,
the ant updates the pheromone of this traversed mapping
relation using the following local pheromone update rule.

τi,j = (1− ρl) τi,j (23)

where ρl ∈ [0, 1] is the local pheromone evaporating param-
eter and the larger the value of ρl , the less pheromone remains
on < ci, nj >.
After all the ants complete building migration schemes,

the quality of all current solutions is evaluated according to
the objective function, and the best one is selected to perform
the following global pheromone update rule to preserve the
experience of the global optimal solution.

τi,j = τi,j + ρg1τ

1τ =


1

F
(
X+
) , if x̃i,j = 1 in X+

0, otherwise
(24)

where ρg ∈ [0, 1] is the global pheromone evaporation
parameter,1τ is the increment of additional pheromones and
X+ is the global optimal solution in an iteration.

B. HEURISTIC INFORMATION
Unlike the pheromone that provides historical information,
heuristic information is better selected by greedy strategy in
the current local situation. The heuristic factor is expressed
as ηi,j, representing the desirability of migrating ci to nj.
The heuristic factor reduces the blindness of ant search and
is combined with the pheromone in ACS to construct the
migration decision scheme.

Based on the CMDM mechanism proposed in this paper,
heuristic information ηi,j is mainly calculated based on the
migration cost of migrating ci to nj and the remaining
resources on nj after migration.
For the migration cost incurred by migrating ci to nj,

heuristic information η1i,j is expressed as:

η1i,j = Bandj′,j (25)

For the impact of container migration on the target node nj,
heuristic information η2i,j is designed to avoid resource
overload while balancing the surplus of different types of
resources, and is expressed as:

η2i,j =

∑
rk∈R

Skj −d
k
i

W k
j∑

∀rk1 ,rk2∈R
max

{
0,

S
k1
j −d

k1
i

W
k1
j

−
S
k2
j −d

k2
i

W
k2
j

} (26)

By synthesizing the above heuristic information of the two
objectives, the expectation of Antl to migrate the container ci
to the EN nj can be formulated as:

ηi,j = η
1
i,j × η

2
i,j (27)

C. PSEUDO-RANDOM-PROPORTION RULE
Antl tends to select the next mapping relation tuple with more
pheromone and higher expectation from the current path.
However, to avoid falling into local optimum, ants will select
the tuples to traverse according to the following pseudo-
random-proportion rule j.

j =

{
arg maxnu∈2l (i)

{
[τi,u]α × [ηi,u]β

}
, if q ≤ q0

J , otherwise
(28)

where q is a random number uniformly distributed in [0, 1]
and q0 ∈ [0, 1] is a predefined parameter. When q ≤ q0,
Antl selects nj with the max product as the destination EN
of ci. Otherwise, the destination EN is selected based on the
following roulette wheel rule.

pi,j=


[τi,j]α × [ηi,j]β∑

nu∈2l (i) [τi,u]
α
× [ηi,u]β

, if nj ∈ 2l(i)

0, otherwise

, q > q0

(29)

where pi,j represents the probability that ci selects nj as its
destination EN. 2l(i) is a set of effective ENs of Antl that
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Algorithm 1: Container Migration Based On Modified
ACS Algorithm

Input: N ′,Cmig, nI , nA, nC, α, β, ρl, ρg, q0, ε
Output: X

1 for p ∈ [1, nI ] do
2 for l ∈ [1, nA] do
3 for each container ci in Cmig do
4 for each EN nj in 2l(i) do
5 calculate pi,j according to Eq.(27);
6 end
7 generate a random variable q ∈ [0, 1];
8 if q ≤ q0 then
9 choose an EN according to Eq.(28);
10 else
11 choose an EN according to Eq.(29);
12 end
13 add tuple < ci, nj > to Xl ;
14 update the local pheromone according to

Eq.(23) and the resources;
15 xi,j = 1;
16 put ci into Tabul ;
17 end
18 calculate the score of Xl according to Eq.(14);
19 end
20 X+ ← argmaxXl∈X {f (Xl)};
21 update the global pheromone according to Eq.(24);
22 end

satisfy the constraints, and is defined as follows.

2l(i)=

nj
∣∣∣∣∣∣
∑
cs∈C

xs,jdks + d
k
i ≤ Thrk ×W

k
j , ∀rk ∈ R


(30)

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluated the performance of
CMDM_MACS in a heterogeneous edge network environ-
ment and compared it with other algorithms.

In the edge computing system, the physical environment is
a square area with a side length of 5km. The number of ENs
is 20, the number of containers is 30 ∼ 210, and the position
of containers is randomly generated in this area. The relevant
parameters in the experiment are listed in table 2 and are
applicable to the simulation example unless otherwise spec-
ified. In addition, we have uploaded the detailed algorithm
code to https://github.com/TTtong567/CMDM_MACS.

A. STRATEGY PERFORMANCE
In order to verify the feasibility and effectiveness of the
CMDM mechanism, the following three container selection
strategies are selected for comparison.

For minimizing the impact of VMmigration on users, [25]
proposed a minimum migration time (MMT) strategy,

TABLE 2. Simulation parameters.

which selects a VM that takes the shortest possible time
to complete the migration relatively to the other VMs allo-
cated to the overloaded EN. Reference [26] proposed a high
CPU utilization-based selection (HS) strategy that selects a
VM making the highest CPU utilization in the overloaded
host, thereby decreasing the workload of the host quickly
and minimizing the number of potential migrations needed.
Aiming at simplifying the process of container selection, [27]
proposed a random selection (RS) strategy, which selects a
container to be migrated according to a uniformly distributed
discrete random variable.

In Figure 4, the migration cost under four container selec-
tion strategies mentioned above are compared. With the con-
tinuous increase of the number of containers, the resource
occupancy rate of ENs goes up, and the load difference of
edge network becomes more and more obvious, which will
cause more containers migrating to relatively idle ENs to
ensure the delay constraint of business. As a result, as the
number of containers increases, the cost of migration in the
system increases linearly. When the total number of con-
tainers is less than 60, the MMT strategy shows better per-
formance. However, with the increasing load of some ENs,
MMT strategy falls to improve the migration cost due to
frequent container migration. On the contrary, the selection
strategy proposed in this paper tends to migrate containers
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TABLE 3. Experimental results comparison with different number of containers under different strategies.

FIGURE 4. Cost of migration with different number of containers under
different strategies.

that can significantly reduce the load while considering the
reduction of the single migration time. Therefore, as the num-
ber of containers increases, the CMDM migration strategy
shows better performance.

Figure 5 shows the comparison of load balancing degree
of edge network under four migration selection strategies.
The load balancing degree is measured from two aspects,
namely the balance of resource utilization between ENs of
the same kind and the equilibrium degree of residual resource
of different types of resources on the ENs, and the smaller

FIGURE 5. Degree of load balancing with different number of containers
under different strategies.

the value of load balancing is, the more balanced the load is
between ENs. As can be seen from the figure, as the number
of containers continues to increase, the CMDM migration
strategy not only improves the cost of system migration but
also ensures the load balancing of edge network.

Table 3 summarizes the simulation results of load
balancing degree and migration cost with different number
of containers under different container migration selection
strategies, which further verifies the feasibility and effective-
ness of the CMDMmechanism that taking into consideration
both the resource correlation and business relevance.

B. ALGORITHM PERFORMANCE
Based on the CMDM mechanism, the container migration
algorithm based on improved ACS proposed in this paper
is compared with the Elitist Ant System (EAS) algorithm,
the genetic algorithm proposed in [28] and the Space Aware
Best Fit Decreasing (SABFD) algorithm proposed in [29]
to verify the performance from aspects of convergence, load
before and after migration and optimization objective.

The EAS algorithm is the first improvement of the basic
Ant System (AS) algorithm. It adds an enhancement method
to the hitherto optimal path based on the pheromone update
rule of the original. The genetic algorithm works as follows.
First of all, set the number of iterations and chromosomes,
and initialize the first generation population. Then, calculate
the value of fitness function so as to obtain the natural selec-
tion probability. After that, individuals are selected, crossed,
and mutated during the iterative phase. At last, the calculation
is terminated by taking the individual with the maximum
fitness obtained in the evolutionary process as the output of
the optimal solution. The related parameters of the genetic
algorithm are listed in Table 2. The SABFD algorithm is a
kind of greedy algorithm of local optimum. The containers
selected to migrate are sorted in a decreasing order of CPU
utilization, and the EN with the minimum migration cost and
themaximum load balancing degree of the edge network after
the first container being migrated to will be selected as the
target node of this container.

Although the comparison algorithms mentioned above can
be implemented in practical scenarios, the time complexity
and performance vary from each other significantly.

As shown in Algorithm 1, we can conclude that the time
complexity of the MACS algorithm is O(nI · nA ·

∣∣Cmig∣∣ · J ),
while the time complexity of GA and SABFD algorithm are
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FIGURE 6. Relationship between optimization value and iteration times
under different algorithms.

O(nI ·nC ·
∣∣Cmig∣∣ ·J ) andO(∣∣Cmig∣∣ · log|Cmig| ·J ) respectively,

where nI is the number of iterations, nA is the number of ants,
nC is the number of chromosomes,

∣∣Cmig∣∣ is the number of
containers to be migrated and J is the number of ENs.

Figure 6 shows the performance of the MACS, EAS and
GA algorithms as the number of iterations increases dur-
ing container migration. The smaller the value of optimiza-
tion, the better the performance. It can be seen that the
EAS algorithm has the advantage of better performance than
the GA algorithm after convergence, but the convergence
speed is slower. The MACS algorithm proposed in this paper
improves the EAS algorithm by introducing pseudorandom
ratio rule and combining local pheromone evaporation with
global pheromone update, so as to provide a better solution
by strengthening the connection between tuples under better
migration results. Therefore, the MACS algorithm can over-
come the disadvantages of convergence speed, and the final
performance is better than the EAS and GA algorithms.

In Figure 7, the performance of MACS under different
parameters of the pseudo-random ratio rule are compared as

FIGURE 7. Relationship between optimization value and iteration times
under different parameter.

the number of iterations increases during container migration.
By changing the value of q0, we can effectively adjust the
balance between ‘‘development’’ and ‘‘exploration’’ of the
ACS algorithm, so as to determine whether to focus on devel-
oping the area near the optimal path or explore the new area.
It can be seen that the smaller the value of q0 is, the more the
algorithm tends to explore new regions so as to avoid falling
into the local optimal solution, thereby obtaining better per-
formance after convergence. On the contrary, the larger the
value of q0 is, the more the algorithm tends to develop the
region near the optimal path with poor performance. Based on
this, we choose the value of q0 as 0.1 to obtain the minimum
load balancing degree and migration cost.

Figure 8 shows the load changes of each EN before and
after migration. It can be seen that the load of EN7 was
over 80%, while that of EN1, EN2 and EN6 was less than
30% before the container migration, in which case the con-
tainer virtualization layer of the heavily loaded EN will be
congested, and the queuing delay will be greatly increased,
resulting in the dissatisfaction of QoS requirements of some
businesss, while the ENwith less load cannot be fully utilized,
due to the regularity and predictability of terminal requests in
power IoT. After the execution of CMDM_MACS, the load of
the edge network is relatively balanced, that is, the resource
utilization of idle ENs is optimized while the execution pres-
sure of individual busy ENs is alleviated.

FIGURE 8. Load changing of each EN before and after migration.

In Figure 9, the value of optimization, namely the weight-
ing of load balancing degree and migration cost under the
three algorithms is compared. As can be seen that, with the
increase of the number of containers, the value of optimiza-
tion increases slowly. This is because the increase in the
number of containers leads to an increase in the resource
occupancy rate of ENs, which in turn causes the number of
containers to be migrated to increase. The container deploy-
ment algorithm based on improved ACS proposed in this
paper minimizes the migration cost while taking into con-
sideration both the utilized and remaining resources, and
has better performance than GA and SABFD algorithm.
Taking 120 containers as an example, the optimization value
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FIGURE 9. Cost of migration with different number of containers under
different algorithms.

ofMACS algorithm proposed in this paper is reduced by 7.3%
and 12.5% respectively compared with GA and SABFD.

VI. CONCLUSION
Aiming at the problem of unbalanced load of edge network
caused by different business demands and uneven spatial and
temporal distribution of business requests in power IoT, this
paper proposes a container migration-based decision-making
mechanism for achieving the shunting of business require-
ments between ENs, thereby minimizing the impact of con-
tainer migration while realizing the load balancing of edge
network and optimizing the resource utilization of EN. The
CMDM mechanism divides the container migration problem
for load balancing of edge network into three parts. First,
determining the timing of container migration based on the
load differentiation matrix model between ENs. Then, estab-
lishing the container migration model of load balancing joint
migration cost to minimize the impact of container migration
while balancing the load of edge network. Finally, calculat-
ing the migration priority of containers from the perspective
of resource correlation and business relevance, and design-
ing the migration algorithm based on improved discrete ant
colony system to utilize the migration model and thus guiding
the choice of possible migration actions. Simulation results
show that the proposed CMDM mechanism can reduce the
cost of container migration while improving the load of edge
network.

On the basis of three-layer edge network structure, how
to realize the optimal dynamic task scheduling for energy
consumption, delay and other aspects among ENs by using
virtualization technology is an urgent problem to be solved
in the future. We will take into consideration the mobility
and improve the migration strategy for multiple optimization
goals, namely the consumption, load balancing, delay and
countless others from the directions of cloud-to-side, side-by-
side, and side-to-end collaboration. In addition, performance
of MACS algorithm in the actual application based on edge
computing in electric power IoT need to be further modified.

We will use specific mathematical algorithm to approximate
MACS and improve the stability of the algorithm.
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