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ABSTRACT In order to guarantee and improve the product quality, the data-driven fault detection technique
has been widely used in industry. For three-way datasets of batch process in industry process (i.e., batch ×
variable × time), a novel method named functional local kernel principal component analysis (FLKPCA)
is proposed. Since the variables’ trajectories often show functional nature and can be considered as smooth
functions rather than just vectors. Firstly, the variables’ trajectory is expressed as the combination of smooth
basis functions using functional data analysis (FDA), which means that the datasets of batches process would
be transformed from the three-ways array into two-ways function matrix. Then, kernel locality preserving
projections (LKPCA) is used to perform dimensionality reduction on two-way function matrix directly.
Different from kernel principal component analysis (KPCA). LKPCA aims at preserving the both local and
global structure of the data in a new optimization objective. Consequently, FLKPCA could more effectively
seek the potential information that hidden in the three-ways datasets. Lastly, the effectiveness of the proposed
approach is illustrated by the benchmark of fed-batch penicillin fermentation process and the hot strip rolling
process.

INDEX TERMS Kernel functional local principal component analysis, process monitoring, fault detection,
function data analysis.

I. INTRODUCTION
With the development of industry process, the customers put
forward higher demands for production quality, so the fault
detection of the industrial process has been research hotspot.
In the past few years, fault detection methods could be
classified as being associated with one or more approaches:
data-driven, analytical and knowledge-based [1]. Since the
advancement of statistical algorithms and computer tech-
nology, the fault detection methods based on data-driven
approaches have been widely applied to industrial systems.
At the beginning, the fault detection is just performed on
single variable, such as statistical process control (SPC). The
SPC charts including Shewhart, cumulative sum (CUSUM)
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and exponentially weighted moving average (EWMA) charts
have been used to monitor processes and improve prod-
uct quality. Those methods are only suitable for the small
industrial systems, because they maybe lead to mislead-
ing judgments to monitor multiple process characteristics
independently [2], [3]. The shortcoming of single variable
monitoring promotes the rapid development of the multivari-
ate statistical process monitoring (MSPM) technique, and
many famous data-driven fault diagnosis methods have been
proposed including principal component analysis (PCA),
canonical variate analysis (CVA), independent component
analysis (ICA) and partial least squares (PLS) [4]–[9]. The
common methods are to reduce the dimension of the data,
which try to extract the most important features from the
original process data. The methods of dimension reduc-
tion will directly affect the monitoring performance [10].
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PCA, PLS and their extended methods only consider the
global structure of dataset and ignore the local information of
dataset. In order to preserve the local structure, the manifold
learning has been proposed and developed rapidly, including
isometric feature mapping (Isomap), locally linear embed-
ding (LLE) [11], Laplacian Eigen-maps (LE) [12], locality
preserving projections (LPP) [13], etc.

Considering both local and global data information
for dimension reduction, some new algorithms have
been proposed, including a global-local structure analysis
(GLSA) [10], local and global principal component analysis
(LGPCA) [14], orthogonal multi-manifold projection
(OMMP) [15] and local KPCA (LKPCA) [16]. For LKPCA
algorithm, a new optimization target is constructed by inte-
grating local and global structure information based on
KPCA. LKPCA has more effective feature extraction than
KPCA and KLPP method, which considers both global and
local data information.

With the rapid development of the batch process in the
manufacturing industry, batch processes are great impor-
tance in the manufacturing of many high-quality and high
value-added products such as bio-chemicals, food and semi-
conductors [17]. The fault detection of batch processes has
become the research focus to guarantee and improve the prod-
uct quality. Different from the continuous process, the batch
process has the following distinct features: (a) operation
duration is finite; and (b) repeats itself until the speci-
fied amount of products has been made [18]. The dataset
of batch process can be expressed as the three-way data
array (batch × variable × time). The traditional analytical
method of three-way data array mainly includes bilinear
and trilinear methods. Bilinear methods try to unfold the
three-ways data array into a matrix before constructing
monitoring models, such as multiway partial least squares
(MPLS), multiway locality preserving projections (MLPP),
multiway principal component analysis (MPCA), multiway
independent component analysis (MICA), and the related
nonlinear methods [19]–[25]. The trilinear methods that the
three-way data is dealt directly with tensor decomposition,
including parallel factor analysis (PARAFAC), tensor local-
ity preserving projections (TLPP), trilinear decomposition
(TLD), GTucker2 and Tucker3 decomposition [26]–[30].

Both the bilinear and trilinear methods require the original
dataset at the same sampling duration for each batch and same
sampling rate for each variable, but these constraints are often
not satisfied in the actual production process. Functional data
analysis (FDA) [31], which uses the basis function to repre-
sent the trajectory of the original data, can deal with varying
length in batch runs. Besides, FDA can reduce the variable
dimension, since the number of basis functions is often
much smaller than that of sampling time [31]. Meanwhile,
functional data analysis (FDA) is capable of pinpointing the
subtle differences in the variable trajectories between normal
and faulty batches by removing the random noise. Many
FDA-related methods have been proposed, such as functional
data analysis andmodeling [32], [33], function space analysis

based PCA (FSPCA) [34], multivariable functional kernel
principal component analysis (MFKPCA) [31], functional
partial least squares (FPLS) [35] and functional kernel local-
ity preserving projections (FKLPP) [36].

In the paper, a novel method of fault detection has been
proposed called functional local kernel principal component
analysis (FLKPCA) to enhance the fault detection in batch
process. For the three-way dataset of batch process, FDA is
used to transform the original dataset into functional matrix
firstly. FDA can effectively reduce the noise and extract
the effective information from trajectories of original data.
In order to obtain local-global structure information and deal
with nonlinear features in the data, LKPCA based on the
functional matrix is used to build the process monitoring
model. Then, the related statistic T 2 and SPE are used as
metrics index to judge whether the batch is abnormal.

The organization of the rest content is as follows, Section II
introduces the functional data representation and Section III
shows the derivative process of the FLKPCA. Section IV
presents how to use the FLKPCA for fault detection and
introduce two cases of fault detection in Section V. Section VI
summarizes the proposed method and research results.

II. FUNCTIONAL DATA REPRESENTATION
For the batch process, the dataset can be expressed as three-
ways array Y (I×J×K) where the element yi,j,k represents
the i-th batch of variable j-th in the k-th observation and the
corresponding time is ti,j,k , where i = 1, . . . , I , j = 1, . . . , J ,
k = 1, . . . , K . Here, the relationship of observation yi,j,k and
sampling times ti,j,k satisfy the following mode:

yi,j,k = xi,j(ti,j,k )+ εi,j,k (1)

where the function xi,j(t) lies in the Hilbert space L2(T ) of
squared integrable functions for a compact domain T . Mean-
while, assuming that the measurement errors εi,j,k conform
to the independent normal distribution. For the i-th batch
sample, the batch sample can be expressed as a J -dimensional
vector-valued function xi(t) = [xi,1(t), · · · , xi,J (t)]T,
and the entire three-ways dataset is transformed into an
I × J -dimensional functional matrix X(t)

X(t) =

 x1,1(t) · · · x1,J (t)
...

. . .
...

xI ,1(t) · · · xI ,J (t)

 (2)

The functions matrix in (2) can be expressed as the combina-
tion of the basis functions, such as the Fourier basis functions,
B-splines, wavelets, etc. [36] In general, fitting the periodic
data can use the Fourier basis functions or wavelet. Spline
functions are the most common choice of approximation
system for non-periodic functional data or parameters. [31]
Variable j is expressed by the basis functions {ϕj,d (t), d =
1, · · · ,Dj}, where d andDj are respectively the sequence and
total number of the basic functions used for variable j, then

xi,j(t) =
Dj∑
d=1

ci,j,dϕj,d (t) = cTi,jϕj(t) (3)
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where ϕj(t) = [ϕj,1(t), · · · , ϕj,Dj (t)]
T is the basis functions

vector of variable j and ci,j = [ci,j,1, · · · , ci,j,Dj ]
T is the

coefficient vector. In order to estimate the coefficient vector
ci,j, the least squares can be used as follow:

min
ci,j

Ki,j∑
k=1

[yi,j,k − xi,j(ti,j,k )]2

= min
ci,j

(yi,j − ψ i,jci,j)
T(yi,j − ψ i,jci,j) (4)

where the basis function matrix ψ i,j is

ψ i,j =

 ϕj,1(ti,j,1) · · · ϕj,Dj (ti,j,1)
...

. . .
...

ϕj,1(ti,j,Ki,j ) · · · ϕj,Dj (ti,j,Ki,j )


Ki,j×Dj

(5)

and the vector yi,j = [yi,j,1, yi,j,2 · · · , yi,j,Ki,j ], the Ki,j is the
time point number of variable j-th in the i-th batch,
the coefficient matrix ĉi,j can be calculated by solving
the (4)

ĉi,j = (ψT
i,j
ψ i,j)

−1ψT
i,j
yi,j (6)

In order to control the smoothness of the functions,
a roughness penalty function pen(xi,j(t)) =

∫
T [L(xi,j(t))]2dt

is often added, where L(·) is a linear differential operator
defined as

L(xi,j(t)) = ω0 + ω1
dxi,j(t)
dt
+ · · · + ωn

dnxi,j(t)
dtn

(7)

Since the roughness penalty function is to smooth the curve,
the second derivative [d2x(t)/dt] is usually chosen as the
measure of a function’s roughness. Then, the optimization
problem becomes

min
ci,j

Ki,j∑
k=1

[yi,j,k − xi,j(ti,j,k )]2 + η × pen(xi,j(t))

⇒ min
ci,j

(yi,j − ψ i,jci,j)
T(yi,j − ψ i,jci,j)+ ηc

T
i,jRjci,j (8)

where Rj =
∫
T L(ϕj(t))L(ϕj(t))

Tdt is a Dj × Dj symmetric
matrix by using a numerical quadrature scheme. The smooth-
ing parameter is a trade-off between the error of fitting and
the smoothness of functions, which can be chosen by the
generalized cross-validation approach. Thus, the estimated
coefficient vector can be solved according to

ĉi,j = (ψT
i,j
ψ i,j + ηRj)

−1ψT
i,j
yi,j (9)

and the corresponding fitting function is

x̂i,j(t) = ĉTi,jϕj(t) (10)

Then, the x̃i,j(t) is normalized and expressed as x̂i,j(t). The
standardization of x̂i,j(t) can be expressed as:

x̃i,j(t) = (x̂i,j(t)− µj(t))/δj (11)

where the µj(t) and δj are the mean function and the scaling
parameter of x̂i,j(t), as follows:

µj(t) =
1
I

I∑
i=1

x̂i,j(t)

δj =

√√√√√1
I

I∑
i=0

1
L(T )

∫
T

(_xi,j(t)− µj(t))2 (12)

where the parameter I is the number of the batch process
and the L(T ) is the length of time variable T . According to
the (12), the standardization function x̃i,j(t) can be expressed
as

x̃i,j(t) = (ĉTi,jϕj(t)−
1
I

I∑
i=0

ĉTi,jϕj(t))/δj

= [(ĉTi,j −
1
I

I∑
i=0

ĉTi,j)/δj]ϕj(t)

= c̃Ti,jϕj(t) (13)

Therefore the i-th batch sample function vector is x̃i(t) =
[x̃i,1(t), · · · , x̃i,J (t)], and the batch functional matrix can be
expressed as X̃(t) = [x̃1(t), · · · , x̃I (t)]T.

III. FUNCTIONAL LOCAL KERNEL PRINCIPAL
COMPONENT ANALYSIS
A. FUNCTIONAL KERNEL PRINCIPAL COMPONENT
ANALYSIS
For batch processes whose samples are vector-valued
functions x̃i(t), the training dataset X(t) is expressed as
[x̃1(t), x̃2(t), · · · , x̃I (t)]T (dimension is I × J ). According to
the kernel trick, the linear PCA in the high-dimensional
feature space corresponds to a nonlinear PCA in the orig-
inal input space [37], so the training data is mapped onto
a high-dimensional space 0 and the nonlinear mapping is
expressed as φ : xi(t) → φ(xi(t)) ∈ 0. Meanwhile, seek a
loading functional vector p(t) to project the high-dimensional
matrix φ(X(t)) into low-dimensional subspace vector z as
follows

z =< φ̃(X(t))T , p(t)> (14)

where the input matrix φ̃(X(t)) has been standardized, and the
inner product of φ̃(X(t)) and p(t) can be solved as the form

< φ̃(X(t))T , p(t) >=
∫
T

φ̃(X(t))p(t)dt (15)

According to the PCA algorithm, the objective is to maximize
variance of the vector z. Then, this expression can be formu-
lated as

max J (p(t)) = max
1
I
zT z

= max
1
I

〈
φ̃(X(t))T , p(t)

〉T 〈
φ̃(X(t))T , p(t)

〉
s.t 〈p(t), p(t)〉 = 1 (16)
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where the loading vector p(t) can be transformed to
the linear combination of the feature functional matrix
φ̃(X(t)), and the corresponding coefficients vector is α =
[α1, α2, · · · , αI ]T (dimension is I × 1), such that the loading
functional vector takes the form

p(t) = φ̃(X(t))Tα (17)

Substituting (17) into (16) leads to the form as follow

max JFKPCA(p(t))

= max
1
I

〈
φ̃(X(t))T , φ̃(X(t))Tα

〉T
×

〈
φ̃(X(t))T , φ̃(X(t))Tα

〉
= maxαT

1
I

〈
φ̃(X(t))T , φ̃(X(t))T

〉T
×

〈
φ̃(X(t))T , φ̃(X(t))T

〉
α

s.t
〈
φ̃(X(t))Tα, φ̃(X(t))Tα

〉
= 1 (18)

The kernel trick has been applied to simplify calcula-
tions of the nonlinear high-dimensional mapping. Therefore,
the inner product of high-dimension matrix φ̃(xi(t)), φ̃(xj(t))
can be expressed by the following kernel function:

k(xi(t), xj(t)) =
〈
φ̃(xi(t))T , φ̃(xj(t))T

〉
(19)

where the kernel function k can be used in many forms
including polynomial kernel, Gaussian kernel and radial basis
kernel etc. Based on (19), the corresponding kernelmatrix can
be expressed as follows:

K = k(X(t),X(t))

=

 k(x1(t), x1(t)) · · · k(x1(t), xI (t))
...

. . .
...

k(xI (t), x1(t)) · · · k(xI (t), xI (t))


I×I

(20)

the matrix K̃ is expressed as the corresponding centered
kernel matrix K and the form is expressed as follows:

K̃ = K − 1I×IK − K1I×I + 1I×IK1I×I

and 1I×I =
1
I

 1 · · · 1
...

. . .
...

1 · · · 1


I×I

(21)

The K̃ is a symmetric matrix. Substituting kernel matrix
into (18).

max JFKPCA(α)

= max
1

n− 1
αT K̃K̃α

s.t. αT K̃α = 1 (22)

According to the optimization in (22). The optimal solution
of α can be solved by the eigenvector problem:

K̃K̃α = (n− 1)λK̃α (23)

with the constraint condition αT K̃α = 1 in (22). The optimal
coefficients vector α of (22) can be obtained by solving the
equivalent problem:

K̃α = (n− 1)λα (24)

When solving the eigenvalue problem in (24), it will yield
the nonzero eigenvalues λ1 ≥ λ2 ≥ · · · λn > 0with the corre-
sponding eigenvector αi, 1 ≤ i ≤ n. Then, the eigenfunction
in the feature space satisfies

zi =
〈
φ̃(xi(t))T , p(t)

〉
=

〈
φ̃(xi(t))T , φ̃(X(t))Tα

〉
= k̃

T
i α (25)

where k̃i = [k̃(xi(t), x1(t)), · · · , k̃(x(t)i, xI (t))]T .

B. FUNCTIONAL LOCAL KERNEL PRINCIPAL COMPONENT
ANALYSIS
The KPCA is viewed as a global structure data analysis tech-
nique, which just considers the outer relationship of the whole
dataset. In order to preserve the inner relationship among
neighborhood samples, the manifold learning methods have
been proposed. Both local and global structure information
in the data can reflect the potential characteristics of the data,
which motivates us to combine the local structure analysis
with the FKPCA. In this section, local structure analysis
based on the LPP is briefly introduced firstly, and then local
structure is integrated with KPCA.

1) LOCAL STRUCTURE ANALYSIS
Based on the basic idea of lpp which is to find the optimal lin-
ear approximation that makes the neighboring points to stay
as close together as possible. Seek a transformation matrix
p(t) to projects high-dimensional functional matrix X̃(t) into
a low-dimensional numerical vector z = [z1, z2, · · · , zI ] and
the form can be expressed as zi =

〈
pT (t), x̃i(t)

〉
. Meanwhile,

the values zi, zj are as close as possible when the corre-
sponding high-dimensional vectors x̃i (t) , x̃j (t) are close.
According to the optimization goal, the minimize objective
function is expressed as follow

min JLSA = min
∑
ij

∥∥zi − zj∥∥2Wij (26)

where the weight coefficient Wij represents a heavy penalty,
if the neighboring points x̃i(t), x̃j(t) have been mapped far
away. Therefore, a possible way of defining of weight coef-
ficient Wij can be defined using the Heat kernel [36], which
can be expressed as

Wij =


e
−

∥∥x̃i(t)− x̃j(t)∥∥2
σ

if xj and xi is the k − nearest neighbor
0
otherwise

(27)

where σ is an empirical parameter, which is selected as the
mean value of the K -nearest neighbors. The detail can be
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found in [38]. Meanwhile define the di =
∑n

i=1Wij and
substitute into (28) that can be rearranged as:

min JLSA(p) = min
∑
ij

(
〈
pT (t), x̃i(t)

〉
−

〈
pT (t), x̃j(t)

〉
)Wij

= min

[
n∑
i=1

〈
x̃i(t)T , p(t)

〉T
di
〈
x̃i(t)T , p(t)

〉

−

n∑
i,j=1

〈
x̃i(t)T , p(t)

〉T
wi,j

〈
x̃i(t)T , p(t)

〉
= min

〈
x̃i(t)T , p(t)

〉T
(D−W )

〈
x̃i(t)T , p(t)

〉
= min

〈
x̃i(t)T , p(t)

〉T
L
〈
x̃i(t)T , p(t)

〉
(28)

whereD = diag {d1, d2, · · · , dn} denotes the diagonal matrix
and sparse symmetric matrixW is a weight matrix consisted
of weight coefficient Wij,L = W − D is Laplacian matrix.
Then, the functional matrix is mapped to a high-dimensional
matrix φ̃(X(t)) by the kernel trick to deal with the nonlin-
ear characteristic. The optimization functional (28) can be
rewritten as:

min JLSA(p)

= min
〈
φ̃(X(t))T , p(t)

〉T
L
〈
φ̃(X(t))T , p(t)

〉
(29)

Similar to KPCA algorithm, the projection vector p(t) takes
the form of the linear combination of training samples as
p(t) = φ̃(X(t))Tα, the above optimization function in (29)
becomes

min JLSA(α)

= min
〈
φ̃(X(t))T , φ̃(X(t))Tα

〉T
L
〈
φ̃(X(t))T , φ̃(X(t))Tα

〉
= minαT K̃LK̃α (30)

2) FUNCTIONAL LOCAL KERNEL PRINCIPAL COMPONENT
ANALYSIS
For the FKPCA, its optimization objective that maximize
the variance in the projection direction to extract the global
structure information. And the FKLPP tends to preserves
the neighborhood structure between pre- and post-feature
extraction. Both the local and global structure information of
dataset are useful for data analysis in actual industrial process,
so the novel method called FLKPCA has introduced the local
structure projection into FKPCA. As shown in (22) and (30),
the optimization objective of the FLKPCA can be described
as maximize αT K̃K̃α (to extract maximize variance) and to
minimize αT K̃LK̃α (to preserve local structure). The opti-
mization objective is expressed as follows:

max JFLKPCA(α) = max
αT K̃K̃α

αT K̃LK̃α
s.t. αT K̃α = 1. (31)

The coefficient vector α that maximize the objective
function is given by solving the generalized eigenvector
problem:

K̃K̃α = λK̃LK̃α (32)

In order to ensure a nonsingular problem, the regularization
method can be used by substituting K̃LK̃ with K̃LK̃+δIn
in (34), where δ is a small positive regularization parameter
and In denotes the n × n identity matrix [16]. A set of
coefficient vector α1,α2, · · ·αn could be solved by (32).
Then, the first l coefficient vector as αl could be preserved
to reduce the dimensionality of variables. For a new sam-
ple xnew(t), the new transform value znew can be computed
according to

znew =
m∑
j=1

αj(φ̃(xnew(t))T φ̃(xj(t)) = k̃
T
newαm (33)

where k̃new = [k̃(xnew(t), x1(t)), · · · , k̃(xnew(t), xn(t))]T .
The widely used radial basis kernel is the following form:

k(xi(t), xj(t)) = exp
(
−
∥∥xi(t)− xj(t)∥∥2/S2) (34)

where the kernel parameter S is pre-specified by the user, and
the squared L2-norm of (34) is expressed as follow:∥∥x̃i(t)− x̃j(t)∥∥2

=

J∑
k=1

∫
T
(x̃i,k (t)− x̃j,k (t))2dt

=

J∑
k=1

(c̃i,k − c̃j,k )T
∫
T
ϕj(t)ϕj(t)Tdt(c̃i,k − c̃j,k )

=

J∑
k=1

(c̃i,k − c̃j,k )R0
j dt(c̃i,k − c̃j,k ) (35)

Meanwhile, the corresponding kernel matrix K also can be
obtained via substituting (35) into (34).

IV. FLKPCA FOR FAULT DETECTION OF BATCH
PROCESSES
A. CONTROL CHARTING SCHEME
For fault detection of PCA, the control charts based on sta-
tistical variables T 2 and squared prediction error (SPE) have
been widely used in real industry, but the roles of SPE and T 2

are not symmetric. The T 2 is used to measure the magnitude
of variations in the principal component subspace (PCS),
while SPE calculates the variability based on the residual
subspace (RS). For fault detection, statistic T 2 and SPE are
also used asmetrics index. The T 2 statistic of one sample xi(t)
can be computed as follows

T 2
i = zTi 3

−1zi (36)

where 3 is the diagonal matrix composed of first l princi-
pal components, as diag(λ1, λ2, · · · , λl). The score vector
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zi = [zi,1, zi,2 · · · zi,l]T and the score value zi,l of the l-th
principal component can be expressed as below

zi,l =
〈
φ̃(xi(t)), pl(t)

〉
=

∫
T

φ̃(xi(t))pl(t)dt

=

∫
T

φ̃(xi(t))φ̃(X(t))Tαldt = K̃i(xi(t),X(t))αl (37)

The SPE is calculated from the residual value, which can be
expressed as follows:

SPE =
∥∥∥φ̃(xi(t))− φ̃p(xi(t))∥∥∥2 (38)

where φ̃p(xi(t)) is the refactoring functional data matrix and
can be expressed as the form:

φ̃p(xi(t)) =
l∑
j=1

zi,jpj(t)
T
= ziP(t)T (39)

where the projection function matrix of first l principal com-
ponents can be computed as follows

P(t) = [p1, p2 · · · pl]

= φ̃(X(t))T [α1,α2, · · ·αl]

= φ̃(X(t))Tϒ (40)

Substitute (40) into (39), the form can be changed as:

SPEi =
∥∥∥φ̃(xi(t))− ziP(t)T∥∥∥2

= < φ̃(xi(t)), φ̃(xi(t)) > −ziP(t)TP(t)zTi
= k̃(xi(t), xi(t))− ziP(t)TP(t)zTi
= k̃(xi(t), xi(t))− ziϒTK(X(t),X(t))ϒzTi (41)

The illustration of FLKPCA for fault detection is shown
in Fig. 1.

FIGURE 1. Illustration of FLKPCA for fault detection.

B. CONTROL LIMITS
As the previous section, the T 2 and SPE statistic have been
employed to detect process fault. So the control limits need
to be determined for judging whether the process is within

control. Based on assumption that the distribution of pro-
cess parameters are the multivariate normal, the T 2 and SPE
statistics are following F and χ2 distribution respectively.
However, when dataset show sufficient evidence of a marked
departure from multivariate normality, the control limits
based on the χ2-distribution and F-distribution are poor or
even inaccurate. In order to avoid the initial assumptions,
the kernel density estimation (KDE) is proposed to estimate
the distribution of the T 2 and SPE statistic based on training
samples [39]. For a given vector x = [x1, x2, · · · , xn], the
distribution of x can be estimated as follow

f̂h(x) =
1
n

n∑
i=1

K
[
(x − xi)

h

]
f̂h(x) > 0 and

∫
f̂h(x)dx = 1 (42)

where K is the kernel function whose bandwidth is h in KDE.
The KDE approach is able to estimate the underlying prob-
ability density function (PDF) of the T 2 and SPE statistics.
The confidence region is given by 99% in the present work,
which means occupying the 99% area of these two density
functions. The 99% confidence limitCα with the significance
level α = 0.01 can be determined by

Cα∫
−∞

f̂h(t)dt = 1− α (43)

There are many kernel functions that can be used, such as
normal, uniform, triangular, cosines, among others. Among
all kernel function, the normal kernel function has been
widely used which is also applied in the paper. Meanwhile,
the bandwidth is also important to fault detection. When the
bandwidth value is not suitable, the density estimator will not
able to estimate the accurate distribution of the variable [36].
To determine the right bandwidth, an adaptive kernel den-
sity estimation method based on the smoothing properties
of linear diffusion process is used to compute the control
limits [40]. The method is considered as ‘‘nonparametric’’
method which does not require any normality assumption for
the dataset.

This adaptive kernel density estimation method can be
divided into three steps as follows:
(1) Calculate T 2 or SPE statistics based on the training data;
(2) Get an adaptive bandwidth by the diffusion method

based on [41];
(3) Estimate the probability density of variables using (42),

and calculate the control limit Cα by (43).

C. MONITORING PROCEDURES
The inference process of FLKPCA can be summarized as
shown in Fig 2. According to the role for fault detection,
the FLKPCA-based fault detection procedure can be divided
into two stages including: offline modelling stage and fault
detection stage. The specific steps for each stage are shown
as below:
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FIGURE 2. Formal procedure of the FLKPCA process monitoring.

For the offline modelling stage:

(1) Get the three-way training dataset (I×J×K) of refer-
ence batches within in-control;

(2) Transform the three-way dataset into functional matrix
X̃(t) via functional data analysis (FDA) using (13);

(3) Calculate the kernel matrix K by (34), and centralize
the kernel matrix as K̃ using (21);

(4) Determine the hyper-parameter values of latent vari-
ables P and kernel parameters S via the generalized
cross-validation approach;

(5) Solve the generalized eigenvector problem in (32) to
obtain the coefficient vector α;

(6) Transform the training dataset into T 2 and SPE statis-
tics based on (36) and (41), and calculate the control
limits of fault detection according to (42).

For fault detection stage:

(1) Get a new test sample data matrix Xnew (The dimen-
sion is J × K );

(2) Transform the test dataset into functional vector
x̃i,new(t)(i =1,. . . , I ) by the (13);

(3) Calculate the kernel vector k̃(xi,new(t), xi,j(t)) between
the new sample and each training sample, and central-
ize the kernel vector;

(4) Calculate the T 2 and SPE statistics of the test sample
based the coefficient vector α, which is calculated
by the offline modelling stage, and compare with the
control limits to determine whether the process is
abnormal.

FIGURE 3. Flowchart of the penicillin process.

In order to measure the accuracy of monitoring results,
the false alarm rate (FAR) and fault detection rate (FDR) are
used as the measurement indexs, which can be described as
follows:

FAR =
NN
TNN

(44)

FDR =
AN
TAN

(45)

where NN is the number that normal is identified abnormal;
TNN is the total number of the normal batches; AN is the
number that abnormal is identified abnormal; TAN is the total
number of the abnormal batches.

V. RESULTS AND DISCUSSION
In this section, the fault detection procedure of FLKPCA
is demonstrated by following actual cases, including the
Fed-batch penicillin fermentation process and head width
shrinkage of hot rolled strip process.

A. FED-BATCH PENICILLIN FERMENTATION PROCESS
In the section, the simulated fed-batch fermentation process
for penicillin production is used to test the fault detection
capability of FLKPCA. Such a process is a biochemical batch
benchmark process with nonlinear dynamics and multiphase
characteristics, which has been widely used for testing batch
process monitoring based on multivariate statistical methods
and fault diagnosis [41]–[44]. The simulation tool of this pro-
cess has been released inWeb at: http://simulator.iit.edu/web/
pensim/simul.html. Fig 3 shows the whole simulation process
of penicillin production. At first a certain amount of biomass
and substrate need to be added to fermenter and the substrate
need continue to be added with the reaction progresses to
make sure the reaction works. Meanwhile, the reaction rate
is affected by HP of the reaction environment and fermenter
temperature. Detailed descriptions of the penicillin produc-
tion and its applications are presented in Birol et al. [41].
In this study, a total of 17 process variables have been
measured which related to the production process and used
for fault detection. These 17 process variables are shown in
TABLE 1.
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TABLE 1. Overview of available measurements.

TABLE 2. Five types of faulty batches.

For the simulatedmodel involved in the section, the normal
feed rate is set as 0.06 L/h. A batch is terminated when
total of 25 L of substrate have been added, initial conditions
are randomly determined to introduce additional batch-to-
batch variability. The volume decrease is used as indicator
during the first (batch) phase, and used to resample the full

measurement data in this phase every 0.5% decrease for a
total of 201 data points. In the second (fed-batch) phase,
the total amount of added substrate is used to resample all
batches every 2.5 L added, resulting in 1000 data points in
this phase, or a total batch length of 1201 samples. Based
on the model, a total of 400 normal batches have been
produced and array size of three-way normal batch datasets is
400×17× 1201. Five types of faulty batches are investigated
for fault detection as shown in TABLE 2. For the fault
batches, the feeding process is divided into 4-time interval
and the fault will start in any time interval. In order to
ensure statistical representability of monitoring results, each
combination of time interval and fault type will be repeated
50 times, so each fault type have 200 batches. The training
dataset consists of 200 normal batches which dimension is
200× 17× 1201. The test dataset is divided into five groups
according to the fault type and each group is constituted with
the other 200 normal batches and 200 batches per fault type,
the dimension of which is 400× 17× 1201.

Since the trajectory of all variables do not have obvi-
ous periodic characteristic, the B-splines basis function is
used to construct the trajectory function. In the work, the
50 B-splines of the fourth order are selected as basic func-
tions and the integrated squared functions is chosen as
the roughness with the smoothing parameter η =1. Other
hyper-parameters of algorithms are chosen via the general-
ized cross-validation approach that uses the mean squared
error measure as loss function. Here, the hyper-parameters of
FLKPCA, FKPCA and FKLPP methods include number of
principal components P∈ {1,2, . . . , p} (p is the total variables
number), and the kernel parameter of the radial basis kernel
S∈ {10−3,10−2, . . . ,107}. Then evaluate all possible combi-
nations of parameters in grid space and get the best param-
eters combination based on the generalized cross-validation
approach. The optimal parameters and detection results of
FLKPCA, FKPCA and FKLPP for the penicillin cultivation
process are shown in TABLE 3. The results show that the
performance of FLKPCA is superior to the FKPCA and
FKLPP in TABLE 3. Although FLKPCA has a higher false
alarm rate than FKPCA and FKLPP, its false alarm rate is
within a reasonable range. Meanwhile, both the control charts

TABLE 3. The optimal parameters and detection result of FLKPCA, FKPCA, FKLPP for the penicillin cultivation (%).
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TABLE 4. The optimal parameters and detection result of ICA, TPCR, LKPCA for the penicillin cultivation (%).

FIGURE 4. Control charts with 95% confidence limits based on FLKPCA and FKPCA for fault 1:(a) FKLPCA;(b) FKPCA.

of T 2 and SPE based on FLKPCA can clearly distinguish the
normal and abnormal batch, whereas FKPCA and FKLPP can
only get good results in one aspect. To summarize, LKPCA
that considering both local and global data information show
better performance of feature extraction. Besides, the results
of FKLPP and FLKPCA which consider the local structure
are superior to FKPCA which only consider the globe struc-
ture in all fault types.

Furthermore, compared with those algorithms which
unfold three-way tensor into a two-way matrix, such as total

principle component regression (TPCR) [45], independent
component analysis (ICA) and LKPCA, the testing results are
shown in TABLE 4. According to TABLE 4, the ICA, TPCR
and LKPCA can distinguishmost of the fault samples. But the
performances of ICA, TPCR and LKPCA for all fault types
are worse compared with FLKPCA. In a word, FDA can be
considered as an effective tool to deal with batch process data.

In the Fig 4, the T 2 and SPE statistics control charts of
FKPCA and FLKPCA for fault 1 have been exhibited. From
the result of fault 1, the best monitoring result of FLKPCA
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FIGURE 5. The variable trajectory of fault 2.

is the FDR of 100%, which is better than the best of FKPCA
and FKLPP. In order to show the fault pattern pictorially, the
trajectories of feed rate based on fault 2 are shown in Fig 5
where the blue lines represent the normal batches and the
red represent the abnormal batches. In Fig. 5, the feed rate
of fault batches is significantly different from the normal
batches and the change starts at between 200 and 400 of

TABLE 5. Variables table of head width narrow of hot rolled strip.

sample. Likewise, the control charts of fault 2 are shown
in Fig 6, and themonitoring results of FLKPCA are also better
than FKPCA and FKLPP. In order to effectively evaluate

FIGURE 6. Control charts with 95% confidence limits based on FLKPCA and FKPCA for fault 2:(a) FKLPCA; (b) FKPCA.
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FIGURE 7. The variable trajectory of fault 4.

capabilities of fault detection, the fault 4 (reactor temperature
sensor drift) is analyzed in detail here. According to those
trajectories of the reactor temperature that is shown in Fig 7,
among all the test batches, only 6 abnormal batches of
data were significantly different from normal batches, while
other abnormal have little change compared to the normal.
Base on fault 4, the FLKPCA still has good performance of
fault detection and can clearly distinguish between abnormal
and normal batch. The testing dataset detection charts of

fault 4 and 5 based on FLKPCA are shown in Fig 8. Mean-
while, the testing dataset detection charts of ICA, TPCR and
LKPCA have been show in Fig 9.

B. HEAD WIDTH SHRINKAGE OF HOT ROLLED STRIP
During hot rolling, the steel slabs are heated to the tem-
perature above recrystallization and rolled to the required
thickness. The hot rolling line can be divided into the fol-
lowing main parts, including heating furnaces, a roughing
mill, several finishing mills, cooling area, and coilers. The
flowchart of hot rolling process which is involved in the
section is shown as Fig 10. In this production line, the steel
slabs, as raw material, are reheated target temperature about
1200∼1300 ◦C in the heating furnace firstly. Then, the slabs
will pass through the roughing mills and the finishing mills
in turn. In the roughing mill, the reheated slabs are reduced
to a thickness of 25–50 mm, then the resulting sheet slabs are
transported to the finishing mill, where it is further reduced
to the final thickness.

Afterwards, the rolled strip is cooled continuously in the
cooling area based on the process specification to meet the
microstructure properties requirements. Lastly, the strip is
packed into steel coils by the coiler for the convenience of
transportation. In the hot strip rolling process, the increasing
demands on product quality give different kinds of challenges
in optimal control and process monitoring areas, particularly

FIGURE 8. Control charts with 95% confidence limits based on FLKPCA for fault 4 and fault 5: (a) Fault 4; (b) Fault 5.
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FIGURE 9. The test-set control charts of ICA, TPCR and LKPCA for fault 4: (a) ICA; (b) TPCR; (c) LKPCA.

FIGURE 10. Layout drawing of hot rolling process.

the along the length, et.al [46]. One of the most important
quality is the width accuracy because width deviation needs
a larger width tolerance margin to be trimmed along the
full length of the coil. The causes of head width shrinkage
include: tapered cast slab along length, local temperature
deviation of slabs during reheating, width shortage in mill
operation, inter-stand tension jump during finishing rolling,
and width contraction during the coiling process [47]. It is

critical to fault detection of width shrinkage, because the
width of steel strips cannot be measured online and the shape
control only depends on the mathematical model. In this
study, the width shrinkage is only considered due tomill oper-
ation and other reasons have been ignored. Base on expert
knowledge, a total of 55 process variables which may impact
the width of steel strips has been selected to construct model
and shown in TABLE 5.
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TABLE 6. The optimal parameters and detection result of FLKPCA, FKPCA, FKLPP for head width narrow (%).

FIGURE 11. Control charts based on FKLPP and FKPCA for hot strip rolling process: (a) FKLPCA; (b) FKPCA.

The hot rolled strip data are collected from the actual pro-
duction process of one steel mill in China. Here, the training
dataset consists of normal data with 150 batches. Besides,
the testing dataset includes 115 fault batches and 32 normal
batches. Since the width shrinkage of steel strip appears on
the head area, the first 1500 samples in each strip would be
selected as model data to fault detection. In sum, the training
dataset is a three-way data array with dimensions of 150 ×
55× 1500, and the size of test dataset is 147× 55× 1500.
Similar to the section 4, the mesh parameters can be orga-

nized by the number of principal component P∈{1,2,. . . , p}
(p is the total variables number) and the RBF kernel parameter
S∈{10−3,10−2,. . . ,107}, then the best parameters combina-
tion has been selected via the generalized cross-validation
approach. The optimal parameters and detection results of

FLKPCA, FKPCA and FKLPP for the head width shrinkage
are shown in TABLE 6. As shown in TABLE 6, it can be
easily found that both the control chart based on T 2 and
SPE statistics of FKPCA can hardly distinguish between
normal and fault batches. Comparing the results of FKPCA,
FLKPCA and FKLPP, the detection performance of FLKPCA
is superior to FKLPP and FKPCA, where FLKPCA has a
smaller false alarm rate (minimum of FAR is 28.13%) and a
larger fault detection rate (maximum of FDR is 90.47%). And
the control charts of FLKPCA and FKPCA have been shown
in Fig. 11. Further, ICA, TPCR and LKPCA are also used
for fault detection and the results are exhibited in TABLE 7.
From the monitoring results, ICA has poorly fault detection
result in head width shrinkage. That means that the common
linear methods cannot deal with the complex relationship in
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TABLE 7. The optimal parameters and detection result of ICA, TPCR, LKPCA for head width narrow (%).

actual production. Although LPCA and TPCR have a high
fault detection rate (the FDR of LPCA and TPCR are 93.04%
and 92.17%), the high false alarm rate of them (the FAR
of LPCA and TPCR are 46.87% and 34.38%) would make
them difficult to distinguish normal from fault. Meanwhile,
it should be noted that TPCR requires the quality data, which
are difficult to obtain in many industrial processes. In con-
clusion, the proposed FLKPCA-based monitoring method is
more reliable for batch process monitoring.

VI. CONCLUSION
In this paper, a novel method, called functional local kernel
principal component analysis, is proposed to fault detection
in batch process. Different from the traditional batch process
monitoring methods which unfold the three-ways datasets
into matrix, the novel proposed method could transform the
three-ways datasets into two-way function matrixes. LKPCA
based on functional matrixes which integrates the local struc-
ture analysis with kernel principal component analysis is
proposed to build the fault detection model. Meanwhile the
Hotelling’s T 2 and SPE have been used to construct the
control charts for batch process monitoring, and control lim-
its can be obtained based on the kernel density estimation
(KDE). The performance of the proposed FKLPCA method
has been demonstrated through the process monitoring of the
fed-batch penicillin fermentation process and the hot strip
rolling process. The results show that FLKPCA has better
fault detection capability than FKPCA and FKLPP.

Lastly, there are still some open problems to be solved
for future study in the paper. As for the selection of optimal
parameters, the grid search method can be limited by grid
spacing and parameter range, which leads to trap in local opti-
mum. Here, we mainly focus on the problem of end-of-batch
fault detection. How to deal with on-line monitoring is still an
interesting topic in the future. There may be problems such
as unequal length data and detection lag. Further research is
still needed.
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