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ABSTRACT Compressed Sensing (CS) theory breaks the Nyquist theorem through random under-sampling
and enables us to reconstruct a signal from 10%-50% samples. Magnetic Resonance Imaging (MRI) is a
good candidate for application of compressed sensing techniques due to i) implicit sparsity in MR images
and ii) inherently slow data acquisition process. In multi-slice MRI, strong inter-slice correlation has been
exploited for further scan time reduction through interpolated compressed sensing (iCS). In this paper,
a novel fast interpolated compressed sensing (FiCS) technique is proposed based on 2D variable density
under-sampling (VRDU) scheme. The 2D-VRDU scheme improves the result by sampling the high energy
central part of the k-space slices. The novel interpolation technique takes two consecutive slices and estimates
themissing samples of the target slice (T slice) from its left slice (L slice). Compared to the previousmethods,
slices recovered with the proposed FiCS technique have a maximum correlation with their corresponding
original slices. The proposed FiCS technique is evaluated by using both subjective and objective assessment.
In subjective assessment, our proposed technique shows less partial volume loss compared to existing
techniques. For objective assessment different performance metrics, such as structural similarity index
measurement (SSIM), peak signal to noise ratio (PSNR), mean square error (MSE) and correlation, are used
and compared with existing interpolation techniques. Simulation results on knee and brain dataset shows
that the proposed FiCS technique has improved image quality and performance with even reduced scan
time, lower computational complexity and maximum information content.

INDEX TERMS Compressed sensing, compressed sensing reconstruction, interpolated compressed sensing,
magnetic resonance imaging, multi-slice MRI, nonlinear conjugate gradient.

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) is a highly useful med-
ical imaging technique for clinical diagnosis and research
because it generates a very detailed picture of an inside body
organ, without using any damaging ionizing radiations. The
scan time of an MRI acquisition mainly depends on the raw
k-space or Fourier data which are to be acquired to fulfill the
Nyquist criteria [1]. Multiple lines of k-space are required to
generate a single slice and Multi-slice MRI needs hundreds
of such slices for just one MRI scan [2]. The speed of
the data acquisition in MRI is fundamentally slow because
of physical (gradient amplitude and slew-rate) and physio-
logical (nerve stimulation) constraints. This slow imaging
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process of MRI may heighten the feelings of claustrophobia
due to being in an enclosed space for prolonged durations,
especially for pediatric. Secondly, it is very difficult for a
patient to remain motionless and even held their breath for
abdominal and cardiac scans, for that long [2], [3]. This slow
imaging process can be accelerated using multiple coils that
work in parallel called Parallel MRI (pMRI) [4]–[12]. But
multiple coils require parallel imaging techniques, like sen-
sitivity encoding (SENSE) and generalized autocalibrating
partial parallel acquisition (GRAPPA) for the reconstruction
of artifact-free images [9].

A. RELATED WORK
To reduce the scan time of MRI, another technique that has
been evolved in recent years is Compressed Sensing (CS).
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Compressed Sensing enables the reconstruction of an image
from even a fraction of the Nyquist samples, provided
the basic constraints of CS are fulfilled [13]–[17]. For the
implementation of CS, the three fundamental conditions
are that the data must be sparse itself or in some trans-
form domain, under-sampling must be done randomly and
that the reconstruction must be performed using some non-
linear techniques [18]–[20]. The random under-sampling
transforms the CS reconstruction problem to de-noising
because random under-sampling generates noise-like effects
rather than aliasing [19]. CS is successfully applicable on
MRI because MRI satisfies its basic requirements [21].
CS-MRI has the potential to improve patient care by reduc-
ing MRI acquisition times and enabling higher resolution
imaging in clinically-acceptable scan times. With the edge of
this reduced scan time, CS-MRI has additional computational
overhead compared to standard MRI where only inverse
Fourier transform is enough [22].

The CS-MRI trends can be broadly categorized as
methods focused on improving the reconstruction strate-
gies [23], [24], and parallel CS-MRI techniques [25]. For suc-
cessful CS-MRI, the sparse regularization can be achieved in
a specific transform domain or using some dictionary learn-
ing techniques [26]–[31]. The classic CS-MRI uses fixed
sparsifying transforms like total variation (TV) [32], discrete
cosine transforms (DCT) and discrete wavelet transforms
(DWT) [33]. On the other hand, with the rapid development
of deep learning, many CNN-based super-resolution (SR)
methods [34]–[36] have also gained attention in recent years.

In CS-MRI all slices should be equally under-sampled
and are then recovered using some non-linear reconstruction
algorithms [2], [13], [37]. For an efficient reconstruction, the
number of k-space samples should be roughly two to five
times the number of sparse coefficients [19]. Thus for a good
CS-MRI scan, at least 10% of the samples should be acquired
from each slice for efficient reconstruction. In Multi-slice
MRI there is a very narrow inter-slice gap, and therefore
has a very strong inter-slice correlation. This correlation has
been used in the literature to reduce the average samples
per slice. Pang and Zhang [38], [39] exploits this correlation
and introduced a new concept called interpolated Compressed
Sensing (iCS) in MRI.

In Interpolated Compressed Sensing MRI (iCS-MRI),
some of the CS samples are acquired and others and inten-
tionally missed to reduce the average sampling rate, next
the missed sampled are estimated from the samples of
the neighboring slices [38]–[41]. The under-sampling can
be performed using different sampling patterns like Carte-
sian, radial, spiral, and golden-angle [42]–[44]. Similarly,
interpolation for the missing samples in the under-sampled
slices can be accomplished using different interpolation tech-
niques [38], [39], [41], [45], [46]. The last step of iCS can
be carried out using one of the CS reconstruction techniques
like Non-linear Conjugate Gradient (NCG) [19], Wavelet
Tree Sparsity (WaTMRI) [47]–[49], Fast Composite Splitting
Algorithm (FCSA) [50], and Iteratively weighted Wavelet

Tree sparsity MRI (IWTMRI) [46]. Recently proposed [51]
CS reconstruction algorithm has improved results with radial
sampling. The CS reconstruction techniques vary in com-
putational complexity, convergence time, and reconstructed
image quality.

Pang and Zhang [39], utilizes 9% average samples.
He reduced the average sampling rate by acquiring some
slice as lightly under-sampled (L slices) and other as highly
under-sampled (H slices). But his proposed interpolation
technique is computationally inefficient with inconsistency in
slice-wise reconstructed image quality. Hirabayashi et al. [52]
use iCS by taking a different under-sampled slices sequence
using fully sampled and CS slices (F and C slices). But his
technique has rather increased the average sampling ratio.

Deka and Datta [10], Datta et al. [45], Datta and
Deka [46], [53]–[55] further explored iCS-MRI with dif-
ferent interpolation and reconstruction strategies. Although
they reduced the computational cost of their interpolation
algorithms [45], [46] but they neither work on reducing
the average sampling ratios nor on the consistency of their
results. They used the same under-sampling strategy in their
work [46] as proposed by pang and Zhang [39], but using a 1D
mask. They also explored iCS for pMRI in [10], [55]. Their
recent work [54] has further reduced the computational com-
plexity but has rather increased the average sampling ratio.
The sampling and interpolation strategy adopted in [39], [46]
takes three consecutive slices with a specific under-sampling
pattern of different sampling ratios and repeats that pattern
after every three slices. The sampling pattern is such that
the central slice is always lightly under-sampled and the
two neighboring (Left and Right slices) are highly under-
sampled. The main drawback of this non-uniform sampling
strategy is that every three consecutive slices are more likely
to be identical to the centered slice, after reconstruction.
Hence in every three consecutive slices, the centered slice will
always dominate the two neighboring slices. Secondly, this
non-uniform sampling strategy loss most of the information
in two out of the three consecutive slices. Different sampling
strategies [37], [42], [44] have also been explored in iCS, but
they neither reduced the scan time nor the average sampling
ratio.

B. OUR CONTRIBUTION
In this work, the authors use a novel Fast Interpolated Com-
pressed Sensing (FiCS) technique using 2D-VRDU sampling
and a fast interpolation scheme. The proposed FiCS technique
reduces the average under-sampling ratio, thus decreases the
acquisition time. The proposed technique shows improved
results with even 5% average samples thus reduces the sam-
pling ratio and scan time. Secondly, the interpolation tech-
nique is computationally efficient with only a set difference
and addition operation. The main advantage of the proposed
FiCS technique is that for reconstruction consecutive under-
sampled slices retains maximum samples of the original
slices. Thus the resulting reconstructed images have maxi-
mum correlation with the original images. In the previous iCS
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techniques [39], [46] most of the slices are more correlated to
their neighboring slices, rather than their original ones.

The main contributions of this work are a reduction in
scan time by employing higher under-sampling rates while
improving image quality and consistency by applying a more
uniform under-sampling strategy in each slice.

C. PAPER OUTLINE
The rest of the paper is organized as follows. In Section II
interpolated Compressed Sensing is discussed, in Section III
the proposed algorithm is explained, in Section IV simulation
and results are presented followed by discussion and conclu-
sion in Section V and future work in Section VI.

II. INTERPOLATED COMPRESSED SENSING (iCS)
Interpolated Compressed Sensing (iCS) reconstructs images
from under-sampled k-space data with even reduced sam-
pling ratios compared to CS. Interpolated Compressed
Sensing works in three steps; first, it under-samples the
slices, second interpolates the missing samples, and lastly
reconstruction using CS, as shown in Fig. 1.

FIGURE 1. Three steps of iCS.

In the first step, the under-sampling is performed by inten-
tionally missing some of the CS samples. In the second step,

those missed samples are estimated from the neighboring
slices using interpolation to get CS slices. Finally, CS recon-
struction is applied using one of the CS reconstruction
algorithms.

Recent researchers propose iCS with 9% average under-
sampling ratio [39], [46]. Their under-sampling pattern
of the three consecutive slices, which repeats after every
three slices, is shown in Fig. 2. It is clear from the fig-
ure that, in three consecutive slices, the first one is highly
under-sampled (H slice), second is lightly under-sampled
(L slice) and the third is again H slice, for both 1D and
2D-VRDU schemes. Each H and L slice has 1 % and 25%
of the total samples respectively. Therefore the average sam-
pling ratio for this scheme is 9%. The H slice missed samples
are interpolated from the neighboring L slice to get H inter-
polated slice with 25 % samples. Finally, CS reconstruction
is applied to all the H interpolated and L slices.

FIGURE 2. (a) 1D (b) 2D-VRDU sampling patterns for three consecutive
slices.

The main drawback of this non-uniform sampling strategy
is that H slice 1% samples are insufficient to be called an
original image after interpolation and reconstruction. Thus in
every three consecutive slices, the L slice will always dom-
inate their two neighboring H slices. This results in almost
the same imaging information in every three consecutive
reconstructed slices.

Pang and Zhang [39] have worked on 2D-VRDU where
Datta and Deka [46] on 1D-VRDU. The interpolation tech-
nique of both the sampling schemes (1D and 2D) has complex
computational steps of Fourier, Inverse Fourier, matrix divi-
sion, and convolution resulting in increased computational
cost along with inaccuracy in their results. Datta in his recent
work [46] claims improved results, therefore we have com-
pared our proposed FiCS technique with their work for both
1D and 2D sampling schemes.

III. PROPOSED ALGORITHM
The proposed Fast interpolated Compressed Sensing (FiCS)
algorithm works in three steps. Each step is discussed sepa-
rately in subsections.
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A. 2D-VRDU SAMPLING SCHEME
The original k-space or Fourier data of multi-slice MRI
sequence has maximum energy points at the center which
resembles a 2D-VRDU pattern, as shown in Fig. 3. Therefore
the same 2D sampling pattern is adopted in this research
because it can efficiently under-sample the original k-space
data from a multi-slice MRI sequence.

FIGURE 3. (a) Full k-space data and (b) under-sampled k space data
acquired using a 2D-VRDU mask.

The sampling strategy used in this research takes only
5%, 2D-VRDU samples, from each slice of a multi-slice
sequence. First two such masks with 5%, samples are gener-
ated using 2D Gaussian PDF. Then these masks are used for
under-sampling of two consecutive slices and repeated after
every two slices. Two such masks are shown in Fig. 4.

FIGURE 4. The proposed sampling pattern for two consecutive slices.

Two fully sampled original multi-slice MRI data sets
are used in this research. Before applying the proposed
FiCS technique, the multi-slice MRI sequence is first
under-sampled into k-space data. For under-sampling of an
ith slice Si, first a down-sampling Fourier operator Fu of the
proposed sampling pattern is generated. Then Fu is applied
on Si, resulting in an under-sampled slice U i, in k space as
represented in (1).

U i = Fu ∗ Si (1)

This step is repeated for each slice of the multi-slice sequence
using the proposed sampling patterns of Fig. 4 for two consec-
utive slices and repeated for the whole dataset. As clear from
Fig. 4, both 2D-VRDUmasks have the same sampling pattern
but different sampling locations. A detailed examination of
both the under-sampling patterns reveals that any two such
generated masks will always have 72% samples on different
locations and rest 28% on identical locations. The sampling
points on different locations will be exploited for the pro-
posed interpolation scheme in the next step.

B. PROPOSED FAST INTERPOLATION SCHEME
The proposed fast interpolation technique estimates the miss-
ing samples in each under-sampled sliceU i of the multi-slice
MRI sequence. This scheme works by taking two consecutive
slices, in which the first one is called Left slice (L slice) and
the second one is called Target slice (T slice). The T slice
will always be interpolated from its L slice. The proposed
interpolation scheme has two steps. The first step is the set
difference between L and T slices as shown in (2). The
resultant difference between the two slices is called Tnew,
containing the new sampling information which was missed
from T slice.

Tnew = L	 T (2)

where the 	 sign shows set difference operator. Both L and
T slices have 5% 2D-VRDU samples, therefore their set
difference Tnew, will have 3.6% samples. In the second step
these 3.6% samples of Tnew are combined with 5% samples
of T slice resulting in 8.6% samples in the interpolated T
slice called T int as shown in (3), where the ⊕ sign shows set
addition operation.

T int = Tnew⊕T (3)

This two-step interpolation technique is applied on all the
slices of under-sampled multi-slice sequence, considering
each slice as T and its preceding as L slice, to get interpolated
slices, T int . The complete two step approach of the proposed
interpolation technique is shown in Fig. 5. For current clinical
scanners, the same sampling strategy has also been imple-
mented using 1D-VRDU masks.

FIGURE 5. The proposed fast interpolation technique.

As shown in Fig. 5 this interpolation process only
includes a set difference and addition operation. No com-
plex computations of Fourier, Inverse Fourier, convolution
and matrix division are used compared to the recent tech-
niques [39], [45], [46]. Therefore the computational com-
plexity of the proposed algorithm is O(n), compared to O(n2)
in [39] and O(n log n) in [46].
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C. CS RECONSTRUCTION
After interpolation, the next step is to apply CS reconstruc-
tion to get the reconstructed images. The CS reconstruction
algorithm uses a non-linear conjugate gradient (NCG) with
`1-norm and Total Variance (TV) [19] as shown in (4).

x̂ = arg min
x
‖Fux− y‖ 22 + λ1 ‖9x‖1 + λ2 ‖x‖TV (4)

Thus for a given k-space measurement y and a down-sampled
Fourier operator Fu, the function reconstructs the image x
that minimizes the cost function with the given `1-norm and
TV constraints, where9 represents the wavelet operator. The
objective function is `1-norm which is defined as ‖x‖1 =∑

i |xi| and minimizing ‖9x‖1 promotes sparsity. Similarly
the constraint ‖Fux− y‖22 enforces data consistency. Where
λ1 and λ2 are `1 wavelet penalty and TV penalty respectively.
The TV is defined discretely in (5).

‖x‖TV =
∑

i,j

[
(∇1xij)2 + (∇2xij)2

]
(5)

where ∇1 and ∇2 denotes the forward finite difference
operators on the first and second coordinates respectively.
The complete process of the proposed FiCS scheme is shown
in Fig. 6.

IV. SIMULATION AND RESULTS
The proposed Fast iCS (FiCS) has been evaluated on two
different data sets. The knee data set is taken from a free
online database, http://mridata.org. This is a fully sampled
data set acquired from a GE HD 3T scanner with 160×160×
153.6 mm field of view, number of channels: 8, matrix size:

320× 320 with 256 slices, slice thickness 0.6mm, zero inter-
slice gap, TR/TE: 1150/25msec, flip angle 90, and bandwidth
50kHz. The brain data set is of normal aging coronal plane
with 123 slices, matrix size: 256 × 256, and is publicly
available on AANLIB database of Harvard medical school
at http://www.med.harvard.edu/AANLIB/home.html [56].

To evaluate the performance of the proposed FiCS algo-
rithm the simulation results are obtained using MATLAB
2016-a, with 2.6 GHz Intel core i7, 64 bit operating system
and 16 GB RAM.

A. EVALUATION CRITERIA
To assess the quality of the reconstructed images twomethods
are used: subjective and objective. The subjective method
is based on the perceptual assessment of radiologists about
the attributes of the reconstructed data sets, while objective
methods are based on computational models that can predict
perceptual image quality. Similarly, hybrid methods like SIS
(semantic interpretability score) [57] are also very useful for
both subjective and objective assessment.

For subjective assessment we asked some expert radiolo-
gists to assess the reconstructed datasets. The rating is based
on the overall quality and information content of the images.
The images reconstructed using the proposed FiCS shows
lesser partial volume loss compared to iCS.

For objective assessment four assessment parameters
are used to evaluate and compare our proposed FiCS
technique with recent interpolation technique [46] and
CS [19]. These parameters are Structural Similarity Index
Measurement (SSIM) [58], Mean Square Error (MSE) [59],
Peak Signal to Noise Ratio (PSNR) [59] and correla-

FIGURE 6. Proposed FiCS scheme.
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tion (CORR) [60], their mathematical description is given
in (6)-(9).

SSIM (x, y)=

(
2µxµy + c1

) (
2σ xy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) (6)

MSE=
1
mn

m−1∑
i=0

n−1∑
j=0

[x (i, j)− y (i, j)]2 (7)

PSNR= (in dB) = 10log10
(MAXx)2

MSE
(8)

CORR=

∑
i,j
{[
x(i, j)−µx

][
y(i, j)−µy

]}√{∑
i,j
[
x(i, j)−µx

]2}{∑
i,j
[
y (i, j)−µy

]2} (9)

where x and y are the original and reconstructed images of
sizem×n.µx andµy are the mean values, σ2x and σ

2
y denotes

the variances and σ xy represents the covariance of x and y.
c1 = (k1L)

2 and c1 = (k2L)
2 are the variables to stabilize

the division, where k1 and k2 are small constants and L is the
dynamic range of the image.

B. EVALUATION OF THE UNDER-SAMPLING SCHEME
Like CS, our sampling strategy equally under samples all
the slices of multi-slice MRI sequence. This gives us the
main edge of our research that during interpolation most
of the samples are retained from the original slices. Hence
the reconstructed images have maximum information of the
original images as shown in Fig. 7 and 8.

FIGURE 7. Three consecutive (a) original and reconstructed images using (b) iCS-1D and (c) iCS-2D. New information is pointed by the arrow
in a3 which is missed by iCS in both b3 and c3. The three consecutive slices of iCS (b1-b3 and c1-c3) shows similar information to central slice
(b2 and c2) and is the same as in the original centered slice (a2). Secondly, iCS also shows large contrast variation in adjacent slices.
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The benefit of proposed sampling strategy to acquire the
under-sampled T slices is that after interpolation every T int
slice will have 60% samples from T slice and rest 40%
from its L slice. In the previous techniques [39], [46] each
interpolated slice had only 4% samples from their origi-
nal under-sampled slice and rest 96% from its neighboring
slice. Thus their result is that every three consecutive recon-
structed images represent the same information as shown
in Fig.7 (b1-b3 and c1-c3). A Comparison of three consecu-
tive original images with reconstructed images using iCS-1D
and iCS-2D is shown in Fig. 7, while Fig. 8 shows comparison

with FiCS-1D and FiCS-2D. It is clear from Fig.8 that the
each reconstructed slice using FiCS has preserved the original
information of their corresponding original slices. While in
iCS two of the three consecutive slices have missed their
original information and represent information of their neigh-
boring centered slice. In short, the three consecutive slices of
iCS are same in terms of the information content while our
proposed FiCS has retained the information of the original
respective slices.

Assessment of three consecutive slices of both knee
and brain data sets, using the four parameters, are shown

FIGURE 8. Three consecutive (a) original and reconstructed images using (b) FiCS-1D and (c) FiCS-2D. New information is pointed by the arrow
in a3 which was missed by iCS, while FiCS has retained that information in both 1D (b3) and 2D (c3). Similarly, FiCS shows no contrast
variation in adjacent slices while preserving the original information of their corresponding original slices.
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FIGURE 9. Slice-wise assessment of three consecutive slices on both knee and brain data sets. iCS-1D and iCS-2D shows huge variations in values
while our proposed FiCS technique has consistent values in both 1D and 2D like CS and is better than CS.

in Fig. 9. This assessment is performed on iCS-1D, iCS-
2D, FiCS-1D, and FiCS-2D using the same 9% average
samples. As shown in the three consecutive recon-
structed images of Fig. 7 (b1-b3 and c1-c3), iCS shows wide
variation in terms of image quality and contrast. The same
variation is verified through their assessment in Fig. 9,
which shows huge variations in values. The assessment
of FiCS, in Fig. 9, shows no such abrupt changes in
values of three consecutive slices and the same is veri-
fied from Fig. 8 (b1-b3 and c1-c3). The centered slice in
iCS Fig. 7 (b2 and c2) looks good and has improved
assessment on all parameters, as shown in Fig. 9,
because of the fact that it has 25% of the original samples
while the proposed FiCS has only 9% of it. But this uneven
distribution of under-sampling ratios in iCS results in every
three consecutive slices to be same in terms of the imaging
information. Thus iCS shows non-consistent results both
qualitatively and quantitatively where FiCS shows consistent
results.

C. EVALUATION OF THE PROPOSED FAST
INTERPOLATION SCHEME
The proposed Fast interpolation scheme (FiCS) is evaluated
by comparing the assessment parameters of FiCS with recent
iCS [46] and CS [19] techniques for both 1D and 2D-VRDU
masks. Fig. 10 shows the evaluation of all four assessment
parameters using 9% average sampling ratios. For fair com-
parison, the assessment has been done on 9 consecutive
slices and averaged. It is clear from the graph that although
iCS technique with 1D-VRDU mask performed better than
CS, as claimed by its authors [46]. But when the same is
implemented with a 2D-VRDU mask it performs worse even
from CS.

2D-VRDU mask is most capable to acquire the k-space
data of a multi-slice MRI sequence, because of its resem-
blance with the original k-space data. Therefore a good
iCS technique is one that performs better using 2D-VRDU
masks. The proposed FiCS-2D outperforms all the other
techniques on all the four assessment parameters. Although
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FIGURE 10. Four assessment parameters on knee data sets. Comparing CS-1D, iCS-1D, FiCS-1D, CS-2D, iCS 2D and FiCS-2D with 9%
average sampling ratio. The assessment is done on 9 consecutive slices (slice number 74-82) and averaged. It is clear that FiCS-2D
outperforms all on all the assessment parameters.

FiCS-1D also performs far better than iCS-1D on individ-
ual consecutive slices as shown in Fig. 9 but due to the
uneven distribution of sampling ratios in iCS their aver-
age assessment of 9 consecutive slices are almost same
as FiCS-1D.

For fair comparison selected zoomed parts of the original
images of both knee and brain are also compared with the
reconstructed images using CS, iCS and FiCS. The original
image has 100% sampleswhile the reconstructed images have
9% average samples as shown in Fig. 11. It is clear from
the figure that our proposed FiCS technique has more clear
results, compared to all other techniques. It is to be clarified
that the reconstructed images of iCS (c, f and i, l) look
sharper because it has been reconstructed using 25% samples,
in which 1% samples are taken from the original slice and
rest 24% from the neighboring slice. Therefore although
their images look sharper but the information is not original.

Secondly, the redundant Fourier steps in the interpolation
of iCS [46] causes large contrast variation in their adjacent
slices. Thus these extra Fourier steps not only makes their
algorithm computationally complex but also cause huge con-
trast variations in consecutive reconstructed slices as shown
in Fig. 7.

Most importantly the computational complexity of the pro-
posed interpolation algorithm is reduced to O(n), compared
to O(n log n) of iCS [46]. The processing time of the pro-
posed fast interpolation technique is up to five times faster
compared to the current interpolation technique [46].

The Proposed FiCS technique has not only improved per-
formance with the same average sampling ratio (9%) but
also outperforms with 7% and with even 5% sampling ratios
as shown in Table 1. Similarly, the reconstructed images
using 7% and 5% are also better than iCS with even half the
sampling rate as shown in Fig. 12.

TABLE 1. Comparison of proposed FiCS-2D with 9%, 7% and 5% under-sampling ratios.
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FIGURE 11. Comparison of (a) Original brain Image with Reconstructed images using (b) CS-1D, (c) iCS-1D, (e) CS-2D, (f) iCS-2D and
(d) Proposed FiCS-2D with 9% average sampling ratio. Similarly, comparison of (g) Original knee Image with Reconstructed images using
(h) CS-1D, (i) iCS-1D, (k) CS-2D, (l) iCS-2D and Proposed (j) FiCS-2D with 9% average sampling ratio. It is clear that the reconstructed image
using the proposed technique has better quality compared to other techniques.
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FIGURE 12. Comparison of (a) Original image with (b) iCS-1D- 9%, (c) iCS-2D- 9%,
(d) FiCS-1D-9%, (e) FiCS-2D-9%, (f) FiCS-2D- 7% and (g) FiCS-2D-5%. The Proposed FiCS shows
better results even 5% samples.
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D. EVALUATION OF FiCS
The proposed FiCS technique is evaluated on centered
150 slices of knee data set (slice # 51 to 200) as shown
in Fig. 13. It can be seen in the graphs that iCS-1D and 2D
have huge fluctuation throughout the data set while FiCS

follows a uniform pattern like CS, with improved results. The
fluctuations in the graphs of iCS are such that it has peaks
on the centered 25% slices and depressions on 1% (25%
after interpolation) slices. While FiCS has no such biasing in
sampling like CS and therefore has uniformity in their results.

FIGURE 13. Evaluation of the proposed FiCS-2D on 150 slices of knee dataset by comparing it with iCS-1D, iCS-2D and CS-2D using 9%
average sampling ratios. It is clear from the graphs that FiCS-2D has a consistent graph like CS with improved results while iCS-1D and
2D shows huge fluctuation in values.
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V. DISCUSSION AND CONCLUSION
The proposed FiCS technique is implemented using both 1D
and 2D-VRDU masks. Although, 1D mask is more realistic
from the current hardware point of view but 2D is best
suitable to represent the original k-space data of multi-slice
MRI. The 2D under-sampling patterns are not commonly
available on clinical scanners at the present time [37] and as
with any novel technique within MRI practical implemen-
tation requires pulse programming access. There are now
a number of research groups who have implemented pulse
programs which can perform prospective under-sampling
of 2D masks on clinical platforms. For 2D multi-slice MRI,
under-sampling in the frequency-encode direction does not
reduce acquisition time as the readout direction is acquired
very quickly compared to the phase-encode direction.

Our proposed FiCS technique not only preserves the origi-
nal information in every slice but also gives consistency in the
slice wise image quality. The proposed FiCS technique also
reduces the sampling ratio to almost half with even improved
image quality and information content. The proposed algo-
rithm also beats previous interpolation techniques in terms of
computational complexity and processing time. Thus the new
sampling and a fast interpolation strategy not only simplifies
our proposed technique but also improves the results both
qualitatively and quantitatively.

The key findings of this paper are:

• Reduction in scan time, by reducing the under-sampling
ratios.

• Improvement in image quality, by preserving maximum
samples and information from the original slices.

• Lesser partial volume loss in reconstructed images.
• Reduction in computational complexity and processing
time.

• Consistency in slice wise image quality, because of the
uniform under-sampling pattern.

• Improved results with even more inter-slice gap data
sets.

FUTURE WORK
The proposed interpolation technique can be further explored
on different sampling strategies and sampling patterns. The
proposed FiCS technique can also be combined with new
and improved CS reconstruction techniques for even more
improved results and reduced reconstruction time.
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