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ABSTRACT With the exhaustion of oil resources and the aggravation of environmental pollution, electric
vehicles, as the main force of new energy consumption, have a more and more promising development
prospect. In China, the utilization rate of charging facilities in the public is very low, and there is a large
number of redundant charging stations that waste resources. Charging station congestion, meanwhile, is one
of the reasons why it is difficult to charge for electric vehicles. This paper proposes a data-driven approach
to optimize the existing charging station network by eliminating redundant charging stations, and to identify
the charging station congestion areas in the original charging network to provide suggestions for further
solving the difficulty of charging electric vehicles. Firstly, we infer that the fine-grained charging situation
(consisting of the waiting time and the visiting rate) at different stations. Using a 3D tensor, we model
the charging behavior of the electric vehicle, in which the three dimensions represent stations, hours,
and days respectively. Secondly, for times and stations with sparse data, we use a context-aware tensor
collaborative decomposition method to estimate the situation. For charging stations in a specific period of
time, we separately set up a queue system for them to estimate their visiting rate and detect the distribution
characteristics of EV charging hotspots in the city. Finally, we introduce a flexible scoring function to
evaluate the usage benefits of charging stations and propose a heuristic network expansion algorithm to
optimize the network. Applying the data-driven approach to Wuhan city, the results show that using our
method can eliminate redundant sites while increasing utilization and find charging station congestion area
to guide the government to further charging station planning. Our approach can be adapted for other optimal
problems such as chain supermarket layout, public facility planning, and resources configuration using
trajectory data.

INDEX TERMS Charging station layout, data mining, electric vehicles, tensor decomposition.

I. INTRODUCTION
In China, the government has invested a lot of money to build
the infrastructure of charging stations [1], and improving the
charging infrastructure system is the key to the large-scale
implementation of electric vehicles [2], [3]. According to data
released by China EV100 Forum in 2018, the utilization rate
of the public charging facilities in China is less than 15%,
and many charging stations even become zombie stations.
The reason behind this phenomenon is that the layout of the
charging stations network lacks rationality. More and more
scholars began to study the optimization of site selection of
charging stations for electric vehicles.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

The optimal planning of EV charging stations has been
studied from different perspectives. From EV charging
demand, several methods have been proposed and utilized.
In [4], a modeling framework for positioning multi-type BEV
charging facilities is proposed to minimize public social costs
and meet the demands of different types of BEV. Tu et al. [5]
modeled the interaction between demands for electric taxis,
electric taxis, and charging stations. To optimize the layout of
charging stations for electric taxis, a spatial-temporal demand
coverage method is proposed, which realizes a high-quality
tradeoff between ET service level and charging service.
To optimize charging stations, some studies have also begun
to focus on the location and size of charging stations [6],
[7]. Jian and Zhang [8] established a BASS model to predict
the permeability and number of charging stations of electric
vehicles in different years. Then, according to the queuing
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theory, the optimal model of EV charging station location is
proposed, which the total cost of the EV charging station is
minimized by considering the constraint conditions such as
charging station capacity. To enhance charging station’s uti-
lization and save corresponding investment costs by incorpo-
rating coordinated charging, Zhang et al. [9] proposed a new
charging spot model, namely single output multiple cables
charging spot (SOMC spot). The layout of charging stations
for electric vehicles is a problem of location optimization, and
many studies have revealed the optimal location of charging
stations [10], [11]. Srinivasa et al. [12] proposes a two stage
Grasshopper Optimization Algorithm (GOA) based Fuzzy
multiobjective approach to determine the optimal location of
EV charging stations and the number of vehicles at charg-
ing stations. Fortunately, the big data era has brought us
unprecedented data in urban areas, providing complementary
information for pinpointing the location and size of charging
stations. Therefore, there are more and more data-driven
methods in charging station planning, such as [5], [13], [14].
To improve the positioning strategy, a variety of data-based
driving behavior and travel behavior analysis methods are
adopted. In [15], the search behavior, navigation behavior,
and usage patterns of charging related to electric vehicle
users are analyzed and modeled, and a charging demand
evaluation method based on Bayesian reasoning is proposed.
Ge et al. [16] proposed a dynamic traffic simulation-based
optimization planning technology for EV charging station in
expressway network, aiming at the problem that the existing
research could not consider the travel demand of vehicle
space and time change. Some factors should be considered
for network optimization of charging stations include:

(i) Charging behavior regularity. The optimization of the
charging station network is directly affected by the charging
behavior of EV. By analyzing the charging behavior of the
whole city, the active degree of EV in each charging station
can be mastered, and the distribution of charging hot spots of
EV in the city can be found, which is the core of the charging
station network.

(ii) The relationship between charging stations. When EV
is in a lower state of charge, there is a certain competitive
relationship between charging stations within the charging
distance acceptable to electric vehicle users, because EV will
choose the most suitable charging station within the range.
Although the competitiveness strong charging station will
attract more users to charge, once many users go to the station
to charge for the same period of time (peak), the electric car
charging needs to wait for a long time. At this time, nearby
charging stations are often needed to relieve the charging
pressure, and these charging stations will form a dependency
relationship.

(iii) Required by the government. Figure 1 shows a local
view of several charging stations. The size of the stations
indicates the drivers’ average arrival rate. We can see from
figure 1(a) that charging stations are very dense in this area
even though very few drivers have visited there (colored
green). Therefore, the government could consider closing

FIGURE 1. A local view of charging station.

some of them to reduce waste. On the contrary, figure 1(b)
indicates that a large amount of EVs has charged in the
area, thus these charging stations have long waiting times
(colored red). It might be worthwhile to consider building
a new charging station nearby to relieve charging pressure.
The government hopes to design an interactive optimization
system based on the existing network, which users can set
different tuning parameters according to the real require-
ments, discover and eliminate redundant charging stations,
and identify the congestion area of the charging station to
guide the next step of charging station planning.

There are prominent phenomena such as ‘‘zombie charging
station’’ and ‘‘charging difficulty.’’ From the above literature
review, it is obvious that the location optimization of charg-
ing stations has been discussed from many different angles.
Few research results have fully solved the optimization of
the actual charging station network under the background
of charging station overflow, charging station competition,
government requirements, and charging behavior. This is an
important aspect of achieving a sustainable transport system.
To better solve the above problems, this paper proposes a
complete data-driven method to optimize the charging sta-
tion network. The sources data explored include the driving
trajectory of ET, POIs data, the distribution of charging sta-
tions, and various local features. Our main contributions are
summarized as follows:

I Citywide EV’s chargingmodeling: EVsGPS trajectories
not only indicate the popularity of charging stations
but also reflect the charging behavior of drivers during
different periods of a day. We use a 3D tensor to model
the correlation of time spent among different stations,
the hourly period and the daily period.

I Dealing with data sparsity: Electric vehicle trajectory
data is sparse, resulting in a sparse tensor. Due to the
sparse limitation of data, it lacks the accuracy to fill
the missing data only based on the non-zero component.
To deal with tensor sparsity, we propose a context-aware
tensor collaborative decomposition method to recover
the time spent situation of different stations in urban
areas by feeding the feature set during the tensor decom-
position process. To solve the sparsity problem inside a
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charging station, we estimate the total visiting rate by
modeling each charging station as a queue system.

I New charging station usage benefit measurement
method: We consider the charging station network opti-
mization problem with various constraints and put for-
ward a flexible charging station scoring function to
evaluate the usage benefit of different stations with the
distance and characteristics of the relationship of the
charging stations (competition and dependence).

I Optimization method of charging station network: We
propose a novel heuristic network expansion algo-
rithm based on EVs’ charging hot spots to solve
the optimization problem of the existing network by
eliminating redundant charging stations and identify the
congestion areas of charging stations in the original net-
work to guide the government in further charging station
planning. To achieve better effectiveness, we also pro-
pose two different approaches to initialize the network
expansion algorithm, which work well for less charg-
ing stations and more charging stations, respectively.
We also design two different network expansion algo-
rithms based on whether there is a quantity constraint of
charging stations.

II. RELATED WORK
Data-Driven Urban Planning. The era of big data has
arrived with the availability of massive amounts of mobil-
ity from vehicles, peoples, and transportation systems, and
exploring urban movement regularity has gradually become
an emerging and attractive field. Massive mobile data play an
important role in urban planning, which can reflect the activ-
ity characteristics and various travel demands of people in the
real world, and discover urban anomalies and human move-
ment patterns [17], [18]. For example, based on the check-in
and check-out data of users using shared bikes, the movement
patterns of users are mined, and a hierarchical prediction
model is proposed to predict the check-in and check-out
situation of each station in the future, to accurately allocate
the number of shared bikes at each site in advance [19].
According to taxi tracks, traffic patterns and POI distribution
characteristics are mined to find different functional areas
of the city [20]. In this paper, we focus on providing a
data-driven method to optimize the existing charging station
network, which is a more effective and economical planning
method.

Charging station layout optimization. As a green trans-
portation tool with low pollution, zero-emission, and high
energy efficiency, electric vehicles are attracting more and
more attention. Since the performance of electric vehicles
will have a significant impact on future urban traffic behavior,
a traffic model for charging demands needs to be considered.
Mainul et al. [21] proposed a method to optimize the location
of a quick charging station with comprehensive considera-
tion of transportation loss, power grid loss, and construction
cost, so as to meet the travel needs of travelers as much
as possible. Ahmed et al. [22] focus on incorporating two

important features into the optimization problem modeling:
the level of decision-making over multiple time periods and
the uncertainty of charging demands, including the number
of electric vehicles charged and the long-distance travel set
to be covered. Its goal is to determine the charging sta-
tions to be opened at each time period so as to maximize
the expected value of the satisfied recharging demand over
the entire planning horizon. In [23] and [9], EV charging
behavior is divided into destination charging and emergency
charging. According to the historical data of EV parking
behavior, the specific charging demand corresponding to each
charging behavior is predicted, and the prediction method
is essentially a Monte Carlo simulation method [24]. The
deployment of EV public charging stations can alleviate the
range anxiety of EV drivers and ensure that the EV maintains
its current activities. Pan et al. [25] developed a positioning
model for electric vehicle public charging stations with the
goal of maximizing the maintenance of the existing activities
of electric vehicle drivers. First, the deterministic process
of electric vehicle charging selection is proposed to simu-
late the electric vehicle driver’s charging selection behavior.
Secondly, an electric vehicle public charging station cover-
age positioning model is proposed to maximize the existing
activities of electric vehicle drivers. Based on real trajectory
data, Ahn et al. [26] analyzed the driving patterns of elec-
tric taxis under different constraints. Luo et al. [27] studied
the interaction between travel patterns, EV driver behav-
ior, urban road network, power grid network, and charging
station layout, and proposed a multi-stage charging station
layout method with different EV penetration rates. Many
scholars proposed various optimization objective functions
based on the moving data of vehicles to study the optimal
location of urban charging stations [5], [13], [14], [28]. How-
ever, most of these optimization work ignored the existence
of real charging stations to optimize the charging station
network. On the contrary, our optimization work is based
on the existing network, charging behavior characteristics
of electric vehicles, and the relationship between charging
stations (competition and dependency). We provide urban
planners with a more economical and feasible optimiza-
tion plan to eliminate redundant sites and reduce resource
waste.

Tensor decomposition for urban computing. The prob-
lem of sparse data or the absence of any data is inevitable
in the field of urban computing, where tensor decomposi-
tion methods containing multiple data sets have been widely
applied [17]. Previous studies have proved the advantages
of tensor decomposition in solving multidimensional data
input [29]–[32]. In [33], noise data, user check-in data, road
network, and POIs data were combined with a tensor decom-
position algorithm to identify the noise distribution and noise
composition of each region of the city. [34], [35] use a
context-aware tensor decomposition that contains additional
information (such as historical correlations between items,
geographic and spatial-temporal characteristics) for estima-
tion and recommendation. In this article, we use a similar

118574 VOLUME 8, 2020



Y. Yang et al.: Data-Driven Approach for Optimizing the EV Charging Stations Network

approach, our goals are different from theirs, and we include
more data sources (for example, charging station data).

III. PROBLEM FORMULATION
In this section, we will clarify some definitions and terms
used in this paper, and define the optimization problem of
the charging station network, and outline our solution frame-
work.

A. DEFINITIONS
Definition 1 (Road Network): A road network RN = {V ,E}
(where the vertex set V represents intersections and the edge
set E represents all relevant road segments.), and each road
segment e ∈ E has a level e.level (e.g., a highway or a street),
a length e.len.
Definition 2 (POI): A point of interest POI is a venue

(like a school and shopping mall) in the physical world. It is
described by a name, a latitude, a longitude, address, and
category.
Definition 3 (Trajectory): A spatial trajectory Tr

is a sequence of time-ordered spatial points, Tr =

{p′1, p′2, . . . .., p′n}, where each point p′ is composed of a
latitude, a longitude, and a timestamp.
Definition 4 (Charging Station (CS)): S={s1, s2, . . . .., sk}

represents the set of charging stations. Charging stations
are mainly divided into two levels, the parent level, and
the child level. Comparing two charging stations in pairs,
we define the parent charging station with higher usage bene-
fit, while the smaller one is the child charging station. A par-
ent charging station has many child charging stations, and
similarly, the child charging stations also belong to multiple
parent charging stations. This is a many-to-many existence
relationship.
Definition 5 (Charging event (CE)): A charging event

describes the phenomenon of an EV charging at charging sta-
tions, which consists of arrival time aT , the selected specific
charging station sj and departure time dT ,CE = {aT , sj, dT }.
The difference between arrival time and departure time rep-
resents the duration of the charging event.
Definition 6 (Recording Cell and Recording Cube): A

recording cell W (i, j, k) is a spatial-temporal division for
charging events, which stores the total number of charging
events (who fall in this cell) of the timestamp of hour hi and
the timestamp of day dk . The recording cell is a fine-grained
charging situation, and we can use it to analyze the charging
behavior of urban EVs. We only focus on the charging events
that fall within the cell and the two indicators (i.e., time spent
and visiting rate). Time spent refers to the average charging
time of an electric vehicle in this cell during a certain period.
The visiting rate indicates how many drivers have visited
the cell. All recording cells are combined to form a cube,
as shown in figure 2.

B. NAVIGATING EV CHARGING ON SOC
Weuse the lossmodel which is a simple linearmodel based on
the maximum range know from data sheets of manufacturers,

FIGURE 2. Recording cube and recording cell.

e.g., according to the performance of used EV BYD e6 in an
urban area, 100% capacity can travel about 250 km. To ensure
the service life of the battery, the depth of discharge (DOD)
cannot be too large, so the safe state of charge needs to
be reserved Ssafe. We assume that all-electric cars have the
same capacity, and the full charge state is denoted by E ′.
The maximum range of electric vehicle is Dmax at the full
state of charge, so when the electric vehicle is in Ssafe state,
the distance EV can continue to drive is

Drm =
Ssafe · Dmax

E ′
(1)

C. PROBLEM STATEMENT
Problem definition. Given a set of charging station S =
{s1, s2, . . . .., sk} with overflow status, the shortest distance
matrix D ∈ Rk×k , K charging hotspots, a tuning parameter
γ , and a total optimal number of stations P. Our data-driven
optimization solution is designed to identify a subset of sites
S ′ ⊆ S, that follows two criteria: (i) quantity constraint of
stations, (ii) maximum usage benefit.

Quantity constraint of charging stations (P). The con-
struction and operation costs of charging stations are high.
However, there is a large number of redundant charging
stations in the actual CS network, resulting in a great waste
of resources. At the same time, the government planning
department has the overall budget constraint, here we convert
the budget constraint into the quantity limit of CS to control
the cost output and the range of the quantity of CS in the
network optimization scheme.

Maximumusage benefit (U ). The goal here is to make the
best use of the deployed charging stations in a limited number
of charging stations, which should follow three criteria: (i) In
the process of network optimization, the charging pressure of
each charging station must be considered. We regard a station
as the overflow station when the peak visit and the average
visit of the station deviate from the overall average visit of
charging stations by 75%. The overflow status of a charging
station is represented by 0 or 1, where 1 represents overflow
and 0 indicates that there is no overflow at the charging sta-
tion. It is worth noting that the size of the deviation value can
be set according to the specific requirements of the experts.
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TABLE 1. Nomenclature and symbol.

If the charging station is prone to overflow during the charg-
ing peak period, we should keep the charging station nearby
as much as possible to relieve the local charging pressure
in the optimization process. This kind of overflow problem
that can be solved by the nearby charging station is a pseudo
overflow that caused by the charging habits of EV users.
(ii) As much as possible to provide charging convenience for
more users, which requires the charging station to be built at a
site with high visit (a competitive site), covering more users’
charging demands. (iii) As long as possible, continuous travel
routes of drivers are covered. Note that in charging station
planning, continuous travel route coverage is critical as it can
directly affect the driver’s user experience.

D. USAGE BENEFIT SCORING FUNCTION
In this paper, charging stations that are preferentially
expanded to the network are regarded as parent charging
stations, and those that are not expanded or later expanded
are called child charging stations. We put parent charging
stations into the result set S ′. The unselected child charging
stations related to parent charging stations were put into the
candidate setC as the new candidates. In order to better judge
the usage benefit of child charging stations, we propose a
flexible scoring function.

Usij = γ
±

sij·l
min(S·l) × V (sij), γ > 1 (2)

where Usij represents the usage benefit score of the jth child
charging station sij of the parent station si. U is the function
to calculate the score of each station, where sij·l

min(S·l) normal-
izes the distance between all child stations and their parent
stations (where min(S.l) is the shortest distance between all
charging stations), with the guarantee that its value is no
less than 1. sij.l is the driving distance between the parent
charging station si and its child charging station sij. V (sij) is
the visit of the child station sij. γ is a tuning parameter to set

the preference on the distance between parent and its child
charging stations. The reason for designing a score function
using the exponential function of the normalized length is that
when γ > 1 and the parent charging stations in the result set
overflows, We give priority to solving the overflow problem
of the parent charging station, that is, to keep the charging
station nearby the parent charging station as far as possible
to expand the network, ease the local charging pressure, and
improve the service quality of charging stations. So, the child
charging stations within the scopeDrm of the overflow parent
charging station get higher scores than other child charging
stations outside the scope Drm (i.e., the maximum charging
distance acceptable for EV), that is, with the exponential

function γ−
sij .l

min(S.l) . When γ > 1 and the parent charging
station in the result set has no overflow phenomenon, we pre-
fer to cover more users and more continuous travel routes.
Therefore, the child charging station with higher visiting rate
outside the range Drm of the parent charging station will get

higher scores, that is, this term γ
sij .l

min(S.l) will be added in the
calculation. Since the parent charging station is sufficient
to meet the local charging demands, we should prefer the
more popular child charging station far away from the parent
charging station to expand the network to meet the charging
demands of more EVs and more continuous travel routes.

E. FRAMEWORK
Figure 3 gives an overview of our system, which consists of
two main components:

(i) Pre-processing. This component takes ET trajectories,
road network, POIs and station data and performs three
main tasks: 1) Trajectory data parsing that removes the out-
liner GPS points and trajectory map-matching that projects
the drivers-generated trajectory onto the corresponding road
segment to identify charging events. 2) Context-aware
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FIGURE 3. An overview of system.

TABLE 2. The format of taxi GPS data in the city of Wuhan, China.

tensor collaborative decomposition, which estimates thewait-
ing time at charging stations when data is sparse. 3) Queue
system, which calculates the overall arrival rate at the charg-
ing station from the inferred waiting time during a period.

(ii) CS Layout Optimization Planning. This component
takes charging hotspots and urban planner’s parameters (e.g.,
a value P and tuning parameter γ ) and outputs the charg-
ing stations layout recommendation results. This component
contains three main components: 1) Charging hotspots detec-
tion. We compute average visits of stations by aggregating
the record cells corresponding to the same charging station
together and using these cells’ average. Then, we rank all
stations with their visits and extract the highest visit stations
as charging hotspots for electric vehicles. Finally, we briefly
analyze some realistic constraints and requirements of gov-
ernment planning departments that affect the layout of the
charging station network. 2) A hotspots-based heuristic net-
work expansion, where we propose a flexible charging station
scoring function. And we initialize the greedy-based net-
work expansion with the charging hotspots and continuously
expand to select the station with the highest usage benefit
score until the stop constraint condition is satisfied.

IV. WAITING TIME LEARNING
We detect charging events according to the change of charg-
ing status of electric vehicles. Each ET has been installed
with a smart terminal connected with a GPS receiver, which
records data concerning the vehicle identification, time,
speed, position, charging status, the state of Charge (SOC),

longitude, and latitude, and its sampling interval is 10 sec-
onds. Table 2 describes the GPS format of ETs and examples.
Figure 4 shows the two cut edges of cube W in the charg-
ing station dimension. If there are enough CEs contained,
we can use their average duration to estimate the waiting time
(including both waiting time for charging and service time)
of the cell. The shades of color represent different numbers
of charging events (CE). Some cells with sparse data and
the reason behind this may be due to the lack of trajectories
data. Tensor factorization is applied to the high dimensional
prediction problem [33], [36], [37]. To predict the expected
waiting time (i.e., time spent) of the cells with sparse data
accurately, we propose a context-aware tensor collaborative
decomposition method to solve the data sparsity problem.
The value of each entry in tensor W is normalized to [0,1]
for decomposition.

A. CONTEXTUAL FEATURES EXTRACTION
To deal with the data sparsity problem, we first extract three
categories of features of charging stations, geographical fea-
ture, traffic feature and area feature.

(i) Geographical feature fG. Feature fG is extracted from
POIs falling in a region near to stations. To detect the cor-
relation between POI categories C and charging stations,
we applied the standard proposed by Jensen et al. [38], which
is given as

FC =
#t_location{C, S}

#C
(3)
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Algorithm 1 Context-Aware Tensor Collaborative Decomposition
Input: tensorW , matrix F , an error threshold ε.
Output: S, H , D, Z .

1 Initialize z ∈ RdH×dS×dD , S ∈ Rs×dS , H ∈ Rh×dH , D ∈ Rd×dD , U ∈ RdS×R with small random values;
2 while Lossl − Lossl+1 > ε do
3 foreachWijk 6= 0 do
4 Yijk=Z ×H Hi∗ ×S Sj∗ ×D Dk∗;
5 Hi∗←Hi∗-ηλ2Hi∗-η(Yijk −Wijk )× Z ×S Sj∗ ×D Dk∗;
6 Sj∗←Sj∗ − ηλ2Sj∗ − η(Yijk −Wijk )× Z ×H Hi∗ ×D Dk∗ − ηλ1(Sj∗ × U − Fj∗)× U ;
7 Dk∗← Dk∗ − ηλ2Dk∗ − η(Yijk −Wijk )× Z ×H Hi∗ ×S Sj∗;
8 Z← Z − ηλ2z− η(Yijk −Wijk )× Hi∗ ⊗ Sj∗ ⊗ Dk∗;
9 U← U − ηλ2U − ηλ1(Sj∗ × U − Fj∗)× Sj∗;

10 Return H, S, U, D, Z.

FIGURE 4. Detected CEs’ heatmap in two charging stations

where #tlocation(C, S) denotes the frequency of co-location
for category C with the charging station, and #C refers to the
individual frequency. According to statistics, the top 5 discov-
ered POIs are {Transportation Facilities, Shopping, Food&
Dining, Home& Family, Education&Arts, Vehicle Service}.
The geographical feature of the charging station is given as

fG(Si) =
∑
C

f (C, Si) · FC (4)

where f (C, Si) represents the frequency of category C near to
the specific charging station Si.
(ii) Traffic feature fT . The traffic feature depends on

the traffic flow and competition around charging stations.
We estimated the traffic flow on the road near to the charging
station by mapping a mass of trajectories data generated by
ETs to the road network. The influence of traffic flow on the
surrounding station is measured by referring to the method
defined in [39].

TF(e→ si) = TFe ·
1

dist(e,si)∑
sj 1
dist(e,sj)

(5)

where dist(e, si) represents the distance between the road
segement e and charging station si. TFe represents the traffic
flow in the road segement e. Finally, the traffic feature of the
charging station is

fT =
∑
e

TF(e→ Si) (6)

(iii) Area feature fA. The area feature of the charging station
will directly affect its passenger capability, thus affecting the
waiting time at the station. We get the area of each charging
station by manual marking.

Ultimately, by putting together the geographical feature,
traffic feature, and area feature of the station into a vector,
we formulate a matrix FS×R (R denotes the dimension of
contextual features and S is the number of station) that incor-
porates the similarity among different stations. Intuitively,
stations with similar contextual features could have a similar
waiting time situation.

B. CONTEXT-AWARE TENSOR COLLABORATIVE
DECOMPOSITION
We model the time spent at each station using a tensor,
W h×s×d with three dimensions denoting h hour time slots, s
charging stations, and d day time slots, respectively.W (i, j, k)
stores the time spent of stations. A common way to fill in
the missing tensors is to decompose W into the product of
some (low-rank) matrix and a core tensor, based on W ’s

118578 VOLUME 8, 2020



Y. Yang et al.: Data-Driven Approach for Optimizing the EV Charging Stations Network

non-zero entries. For example, we can decompositionW into
the multiplication of three matrices, H ∈ Rh×dH , S ∈ Rs×dS ,
D ∈ Rd×dD and a core tensor Z ∈ RdH×dS×dD , using a tucker
decompositionmodel [40].We can recover themissing values
in W by equation 7.

W = Z ×H H ×S S ×D D (7)

The Symbol ‘‘×H ’’ denotes the matrix multiplication,
where the subscript stands for the direction, e.g., T = Z×HH
is Tijk =

∑dH
i=1Zijk×Hij.

Economists have found that competition among charging
stations is influenced by both external and internal factors
(e.g., location, nearby traffic flow, and its area, etc.). There-
fore, these factors may affect the time spent on charging
stations in a certain period. To achieve a higher accuracy of
filling in the missing entries ofW , we decompositionW with
contextual feature matrices F collaboratively. Matrix F can
be factorized into themultiplication of two low-rankmatrices,
F = S×U , where S ∈ RS×dS and U ∈ RdS×R. The objective
function control the error of the decomposition is defined as
equation 8:

L(Z ,H , S,D,U ) =
1
2
||W − Z ×H H ×S S ×D D||2

+
λ1

2
||F − SU ||2

+
λ2

2
(||Z ||2 + ||H ||2 + ||S||2 + ||D||2)

(8)

where || · || denotes the l2 norm. ||W −Z ×H H ×S S×DD||2

is to control the error of decompositionW . ||Z ||2 + ||H ||2 +
||S||2+||D||2 is a regularization penalty to avoid over-fitting.
||F − SU ||2 is to control the error of factorization F . λ1 and
λ2 are parameters controlling the contribution of each part
during the collaborative decomposition. By minimizing the
objective function, we can get optimized H , S and D. In our
model, W and F share matrix S. The dense representation
of F contributes to the generation of a relatively accurate S,
which reduce the decomposition error of W . In other words,
the knowledge from geographical features, traffic features,
and area feature is propagated into tensor W . Equation 8 is
to guarantees our model could reconstruct the value as accu-
rately as possible. Algorithm 1 shows the pseudocode of the
context-aware tensor collaborative decomposition. We use
stochastic gradient descent to find a local optimization.

V. VISITING RATE CALCULATION AND CHARGING
HOTSPOTS
We want to know how many EVs have visited the CS, form
which we can analyze urban EVs charging behavior and
obtain their charging hotspots. However, our data cover only
about 800 electric taxis, a small fraction of the total number of
electric vehicles in the city. To solve the problem of sparsity
inside the charging stations, we regard the charging station of
each cell as a queue system to estimate the visiting rate.

Queue System. There is a great deal of randomness when
EVs enter a CS for charging. Literature [41] shows that this
process conforms to the M/M/c queue system. To reduce
the complexity of the system, we made some simplifications.
First, we assume that a CS is a queue system, ignoring the
transmission from one queue to another. Moreover, when a
vehicle arrives at the charging station, if there are idle charg-
ing piles, the vehicle always joins the queue immediately for
charging. If no idle charging piles are available, the EV enters
the waiting state. In each cell, the arrival flow of vehicles in a
queue satisfies a homogeneous Poisson process N (t, λi) in
the period [0,t]. For the ith queue Qi, we assume it has ci
servers. In the queue system, given the random process of
vehicles’ arrival and the allocation of server service time, The
equilibrium indicators, waiting time, system time and other
equilibrium indicators can be obtained as follows:

Ws =

λ
ci
i

µci+1(ci−1)!

(1− λi
ciµ

)2
· [
ci−1∑
k=0

1
k!
(
λi

µ
)k

+
1

ci! −
λi(ci−1!)

µ

(
λi

µ
)ci ]−1 +

1
µ

(9)

where λi is the the ith queue’s average visiting rate, and
1
µ

is average service time expressed as the average of the
top 800 shorted duration. Ws is the equilibrium system
time (incorporating both the waiting time and service time),
the length of time the vehicle is expected to stay, and we use
each cell’s expected time spent to denote it. Intuitively, once
given µ, ci, and Ws, it is easy to calculate the visiting rate
(i.e, arrival rate) of each cell directly by numerical algorithms,
such as the Newton method. Finally, we calculate the arrival
rate λi of the charging station within a certain time through
equation 9. Finally, charging stations are sorted in descending
order according to visit, and those near to the top are regarded
as urban EV charging hotspots.

VI. NETWORK EXPANSION ALGORITHM
Main idea. The intuition of the heuristic network expansion
algorithm is to expand a set ofK starting charging hot spots in
the station network. This is inspired by the charging behavior
characteristics of EVs, namely, spatial charging hot spots and
star-shaped mobile modes.

Spatial charging hot spots. The charging hot spots of
EVs are formed by the higher visitor volume of the station.
Figure 5 shows the charging hot spot with the higher visit,
where illustrates a popular shopping mall. The reason behind
the observation is simple: because the site is located between
three different urban functional areas (Entertainment, Busi-
ness to Business and Food&Dining), where the higher pas-
senger flow which indicates the higher charging demand.

Star-shaped mobility patterns. We further studied the
travel patterns of electric vehicles after charging at the
hotspot, and found that EVs will start from the same start-
ing point and reach different destinations, and present a
star-shaped mobility pattern, as the red arrows in figure 5.
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Algorithm 2 The Network Expansion Algorithm Based on Spatial Hotspots

Input: charging station set S, charging station visits set V , matrix D, a value K , the tuning parameter γ and a value P.
Output: Optimal station set S ′ and redundant charging station set I .

1 //Initialization;
2 Parent station set S ′← K starting spatial hot spots;
3 Candidate set C ← select child charging stations of parent charging stations in S ′;
4 Remaining number of station P← P - S ′;
5 //Network Expansion;
6 while number of station P > 0 do
7 snext ← φ,C ′← φ;
8 if an overflow site exists in the result set S ′ then
9 Retrieve the child stations of all overflow parent stations form C and insert them into the set C ′;
10 for sij ∈ candidate set C ′ do
11 Get the usage benefit score U (sij) by equation (2);
12 List L← sij and its usage score;

13 Traverse L to find the maximum value of the usage benefit score and the corresponding child station snext ;
14 S ′← S ′ ∪ snext ;
15 P← P− S ′;
16 C ← C∪ none-selected child station of snext ;
17 Calculate the visit of snext after users charging at the none-selected stations within the scope Drm of snext and

overflowed users of the parent station are allocated to the new site snext ;
18 if snext don’t overflow then
19 I ← child stations within the scope Drm of snext ;

20 else
21 for sij ∈ candidate set C do
22 Get the usage benefit score U (sij) by equation (2);
23 List L← sij and its usage score;

24 Traverse L to find the maximum value of the usage benefit score and the corresponding child station snext ;
25 S ′← S ′ ∪ snext ;
26 P← P− S ′;
27 C ← C∪ none-selected child station of snext ;
28 Calculate the visit of snext after the users charging at the none-selected stations within the scope Drm of snext ;
29 if snext don’t overflow then
30 I ← child stations within the scope Drm of snext ;

31 I ← (S − S ′) ∪ I ;
32 //Termination;
33 Return S ′, I .

In this section, we have designed two network expansion
algorithms to achieve the optimization of the charging station
network in different situations.

A. THE NETWORK EXPANSION ALGORITHM BASED ON
SPATIAL HOTSPOTS
Based on the observation of charging hotspots and
star-shaped mobility patterns of EVs, and the quantity con-
straint of charging stations, a network expansion algorithm
based on spatial hot spots is proposed to optimize the network
of charging stations. The algorithm starts from charging
hotspots and expands greedily the optimal site, until reach
the stop condition. The algorithm actually extends the incre-
mental network in the road network, e.g., [42].

Algorithm Design. Algorithm 2 gives the pseudo-code of
the network expansion method with the quantity constraint of
charging stations P. In the initialization stage, the algorithm
first selects K charging hot spots into the result set S ′ and
they will become parent charging stations. Put the unselected
child charging stations corresponding to the parent charging
stations into the candidate set C . Then, we update the value
of P by P − S ′ (Lines 2 − 4). In each iteration of network
expansion, when P > 0, we iterate over the result set S ′ to
determine whether there is an overflow site. If there is an
overflow site in S ′, we put all the child charging stations
of overflow sites into the set C ′ and calculate their usage
benefit score based on equation 2 and then put the calculated
results into the list L. We traverse the list L and select the
child charging stations snext with the maximum usage benefit

118580 VOLUME 8, 2020



Y. Yang et al.: Data-Driven Approach for Optimizing the EV Charging Stations Network

FIGURE 5. Spatial hot spot and star-shaped mobility pattern.

score and inserted it into the result set S ′. Then we put the
unselected child charging stations of snext into the candidate
set C (Lines 6−16). As shown in lines 17−19, we calculate
the overflow status of the newly expanded optimal site snext ,
after the users charging at the unselected sites within the
scope Drm of snext and overflowed users of the parent station
are redistributed to snext . If snext is no overflow, the unselected
charging station within the scope Drm can be overwritten by
snext . We insert these stations into the redundant site set I .
If snext overflow occurs after redistribution, it means that
the charging station within the scope Drm cannot be covered
by snext . If there are no overflow parent sites in the result
set S ′, we directly calculate the usage benefit score of all child
charging stations of candidate set C , expand the site with the
maximum use benefit score to the charging station network,
and insert its unselected child charging stations into candidate
set C as new candidates (Line 21 − 23). Lines 24 − 30 are
processed in the same way as lines 13− 19. Update the value
of I by (S − S ′) ∪ I (line 31). When P == 0, the loop is
terminated and the site set S ′ with overflow status is returned
as the optimization scheme and the redundant charging set I
(Line 33).

Update the overflow status of CS. The overflow status
is mainly divided into two types: (1) true overflow status.
At this time, the charging station overflow is mainly caused
by the overall lack of piles in the area. Such overflow is
irreversible, unless the government planning department adds
a new station in the area to relieve the local charging pressure.
(2) pseudo overflow status. At this time, the overflow of
charging station is mainly caused by the habits of EV users.
The users there can completely go to other charging stations
in the area for charging. This overflow is reversible and there
is no need to add new stations. During the expansion process,
if the parent charging station overflows and there is a child
charging station within the range Drm that can relieve the
charging pressure, then the overflowed users transfers to the
child charging station to charge and updates the overflow
status of the parent charging station to be 0, otherwise to 1.

FIGURE 6. Forest structure of the charging station network.

Update the visiting rate of CS. With each expansion,
the algorithm greedily selects the most usage benefit charging
station snext to expand the network, and updates the visit-
ing rate of snext . There are two ways to update the visit-
ing rate of the new site snext : 1) No overflow occurred at
the parent charging station of the new site snext . We cal-
culate the overflow status of snext when users charging at
none-selected stations within the scope Drm of snext to charge
at snext . If overflow occurs at the new site snext , it means that
none-selected stations within the scope cannot be covered
by the new site, and the visiting rate of snext doesn’t need
to be updated. If no overflow occurs at the new site due to
redistribution, it indicates that none-selected stations within
the scope Drm can be covered by snext , and all users charging
at none-selected stations within the scope will be allocated
to the new site snext , and then update the visiting rate of
snext . 2) Overflow occurred at the parent charging station
of the new site snext . We calculate the overflow status of
snext when users charging at none-selected stations within the
scope Drm of snext and overflowed users in the peak period
of the parent charging station to charge at snext . If overflow
occurs at the new site snext , it means that the new site cannot
cover none-selected stations within the scope Drm and solve
the overflow problem of its parent charging station, so its
visiting rate will not be updated at this time. If no overflow
occurs at the new site due to redistribution, it indicates that
none-selected stations within the scope Drm can be covered
and the overflow problem of the parent charging station can
be solved. At this time, the overflow of the parent charging
station is regarded as pseudo overflow, and its overflow status
is updated to 0. Overflowed users and the users charging at
none-selected stations within the scope Drm are all assigned
to the new site snext , and the updated visiting rate of snext is
also provided.

The representation of the parent-child relationship. In
the optimization process of EV charging station network,
in order to better demonstrate the parent-child relationship
between charging stations in the optimal network and show
the distribution area of parent and child charging stations,
we adopted the forest structure to represent the relationship
(figure 6). The forest is made up of some trees, and the
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Algorithm 3 The New Network Expansion Algorithm
Input: charging station set S, charging station visits set V , matrix D, a value K and the tuning parameter γ .
Output: Optimal station set S ′ and redundant charging station set I .

1 //Initialization;
2 Parent station set S ′← K starting spatial hot spots;
3 Candidate set C ← select child charging stations of parent charging stations in S ′;
4 S ← S − S ′;
5 //Network Expansion;
6 while S! = φ do
7 snext ← φ,C ′← φ;
8 if an overflow site exists in the result set S ′ then
9 Retrieve the child stations of all overflow parent stations form C and insert them into the set C ′;
10 for sij ∈ candidate set C ′ do
11 Get the usage benefit score U (sij) by equation (2);
12 List L← sij and its usage score;

13 Traverse L to find the maximum value of the usage benefit score and the corresponding child station snext ;
14 S ′← S ′ ∪ snext ;
15 C ← C∪ none-selected child station of snext ;
16 Calculate the visit of snext after users charging at the none-selected stations within the scope Drm of snext and

overflowed users of the parent station are allocated to the new site snext ;
17 if snext don’t overflow then
18 I ← child stations within the scope Drm of snext ;
19 S ← S − snext − I ;
20 else
21 S ← S − snext ;

22 else
23 for sij ∈ candidate set C do
24 Get the usage benefit score U (sij) by equation (2);
25 List L← sij and its usage score;

26 Traverse L to find the maximum value of the usage benefit score and the corresponding child station snext ;
27 S ′← S ′ ∪ snext ;
28 C ← C∪ none-selected child station of snext ;
29 Calculate the visit of snext after the users charging at the none-selected stations within the scope Drm of snext ;
30 if snext don’t overflow then
31 I ← child stations within the scope Drm of snext ;
32 S ← S − snext − I ;
33 else
34 S ← S − snext ;

35 //Termination;
36 Return S ′, I .

root node of each tree is regarded as the charging hotspot of
network expansion algorithm. The upper layer of each tree
represents the parent charging station, and the lower layer
is the child charging station. By analogy, the parent-child
relationship between charging stations can be obtained.

B. THE NEW NETWORK EXPANSION ALGORITHM
Algorithm 2 realizes the optimization of the existing charging
station network under the constraint of the number P of
charging stations. To get the optimal network of the entire
original charging station network, we develop the new net-
work expansion algorithm shown in algorithm 3. The main

difference between algorithm 3 and algorithm 2 is the differ-
ent termination conditions for network expansion.

Algorithm Design. Algorithm 3 gives the pseudo-code of
the new network expansion algorithm. In line 2, select K
charging hotspots as the starting sites of the algorithm, and
plug them into the network optimization set S ′ to become
the parent charging stations. Then, we put unselected child
charging stations of the parent charging station of S ′ into
the candidate set C , and update the charging station set S
by S − S ′ (lines 3 − 4). In each iteration, lines 7 − 16 of
algorithm 3 are processed in the same way as lines 7 − 17
of algorithm 2. As shown in lines 17 − 21, we calculate the
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TABLE 3. Statistics of datasets.

overflow status of the newly expanded optimal site snext , after
the users charging at the unselected sites within the scopeDrm
are redistributed to snext . If snext is no overflow, the unselected
charging station within the scope Drm can be overwritten by
Snext . We insert these stations into the redundant site set I
and then update set S by removing these stations and snext
from S. If snext overflow occurs after redistribution, it means
that the charging station within the scope Drm cannot be
covered by snext , and the update S by S − Snext . If there are
no overflow sites in the result set S ′, we directly calculate the
usage benefit score of all child charging stations of candidate
set C , expand the site with the maximum use benefit score to
the charging station network, and insert its unselected child
charging stations into candidate set C as new candidates
(Lines 23 − 29). Lines 30 − 34 are processed in the same
way as lines 17− 21. When S == ∅, the loop is terminated
and the optimal charging station set S ′ with overflow status
is returned as the optimization scheme of the entire charging
station network and the redundant charging set I (Line 36).

C. INITIALIZATION METHODS
It is worth noting that the selection of initialization sites
has a great influence on the recommended result, so how to
choose an efficient initialization method becomes the key of
the network expansion algorithm. Hence, we will discuss the
two available initialization methods.

Top-k based initialization. The most direct method is
top-k initialization, which essentially selects charging sta-
tions (i.e., charging hotspots) where EV charging is frequent
as the starting sites for the network expansion. The reason
behind the method is that charging hotspots should always
be included in the optimization scheme to cover more users,
ensuring that the algorithm does not miss any charging sta-
tions with the highest usage benefit. However, most of the
top-k ranked stations may be very close in spatial distribu-
tion, which may cause some important areas to be missed,
especially when P is relatively small.

Clustering-based initialization. In order to include more
spatially diverse starting sites in the initialization phase and
more effective when the number of charging stations is small,
we adopted the spatial clustering method to select starting
sites. The intuition behind the spatial clustering-based ini-
tialization is from the observation of the charging heat map
(i.e., figure 9), which visually has some cluster over the space.
In this study, we adopted the clustering method based on the
hierarchical clustering, because it does not need to adjust the
clustering parameters, and always produces relatively stable

results. Then, we select the highest-ranked charging station
in each cluster as the starting site. Compared with the results
generated by the top-k initialization method, the clustering-
based method has significantly better diversity and user cov-
erage when the number of charging stations P is small. The
main reason is that after the spatial clustering step, the starting
site is no longer a site with a high overflow rate, which can
only expand with the charging station near to the site with
lower visit to relieve the local charging pressure.

VII. EXPERIMENT
In this section, we conducted extensive experiments to eval-
uate the performance of our proposed method. This study is
based on the area of about 290 square kilometers in Wuhan,
which mainly includes the central area of Wuhan (like Jian-
gan district, Wuchang district, Qiaokou district and Hanjiang
district).

A. DATASET AND SYSTEM SETTING
Table 3 summarizes the information of four data sources.
The transportation data set includes the data about the station
system and the road network inWuhan, China. EVs’ charging
behavior has two important indicators: time spent and visiting
rate. We set 1 hour as a time slot, the size of the tensor
is 24 × 156 × 22, where 24 is the number of hours in a
day, 156 the number of charging stations, and 22 the number
of days. By feeding the trajectory data of 22 days and the
detected charging events into the tensor, we can obtain 6.39%
non-zero entries (i.e., the entry’s value >= 1) as showed
in table 4. However, it is not reliable for a charging station
to have only one charging event within a recording cell,
which may be an incorrect record. Setting a high threshold
to determine non-zero entries can improve the quality of the
value of a single entry, but it will lead to worse data sparsity.
Consider the trade-off, we set threshold = 2 here. Whenever
a recording cell covers more than 2 detected CEs, we regard
W (i, j, k) as being observed and use the CEs’ (who fall in
this recording cell) average duration to denote its waiting
time. Thus, 80786 record cells need supplementing by the
inference.

TABLE 4. The sparseness of the tensor with different thresholds.

System Settings. Our model is executed in Python,
MatLab and ArcMap 10.3. All the experiments are performed
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TABLE 5. Results of Context-aware learning w.r.t. baselines.

in a 3.4 GHz Titan Cluster with 96 GB memory. The system
allows users to interact with it using different parameters and
get charging station layout suggestions in a short time.

B. EXPERIMENTS FOR EXPECTED WAITING TIME
There are total number of 82368 cells (24 hours ×
156 stations × 22 days) in the recording cube, and each
cell contains 0.643 charging events average, which indi-
cated the number of cells was lack of enough detected
CEs to estimate the expected waiting time. We evaluate
the context-aware collaborative tensor decomposition model
in the approach. We first randomly remove 30% of the
non-zero entries from the tensor and use our proposed
context-aware tensor co-decomposition model to fill in these
entries. We then evaluated the model using the original values
of these entries as the ground truth to measure inferred values.

Baseline methods. Table 5 shows the results of the per-
formance comparison of different methods. We compare our
model with four baselines: 1) AWD (Average within Day)
fills a missing entry with the average expected duration of the
same day timestamp. 2) AWH (Average within Hour) finds
the same hour timestamp and fills in a missing entry with
their average expected durations. 3) AWS (Average within
Station) is similar to the previous two methods, which uses
the average value within the same charging station. 4) Kriging
interpolates the durations of amissing entry with the non-zero
entries geospatially nearby. We also study the contribution of
matrix F in helping supplement the missing entries. To show
the effectiveness of the proposed model, we use two metrics:
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE), where n is the number of instances; yi is the ground
truth and ŷi is an inference.

RMSE =

√∑
i(yi − ŷi)2

n
(10)

MAE =

∑
i |yi − ŷi|
n

(11)

C. EXPERIMENTS FOR ARRIVAL RATE CALCULATE
In this subsection, we discuss the experiment with the cal-
culation of the recording cells’ arrival rate, then we sorted by
the arrival rate of the stations and found the charging hotspots
of EVs. During the experiment, we set up a queue system for
each charging station in the cell, and the number of servers in
the queue is expressed as ci. We selected the top 800 shortest
durations among all the detected CEs to estimate 1

µ
, and

FIGURE 7. Performance of in-the-field study.

FIGURE 8. Stations’ distribution of the central area of Wuhan, China.

finally obtain µ = 1.42 hours. We make use of each cell’s
expected duration to estimateWs (time spent), and equation 9
is used to calculate the arrival rate of each charging station
in a certain period. To better evaluate the performance of the
queue system,we perform an in-the-field study in 30 charging
stations in Wuhan, collecting the real arrival rate. We then
rank these charging stations in terms of the real arrival rate
and the inferred values respectively, measuring the close-
ness of the two ranks using NDCG (Normalized Discounted
cumulative gain). Figure 7 presents the performance of the
NDCG evaluation approach, where our method outperforms
the method only using ET trajectory data. The higher NDCG
is better ranking performance is. Experimental results verify
the performance of the queue system to predict the arrival rate
of different charging stations in the same period.
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FIGURE 9. Spatial distribution of charging behavior of electric taxis and electric vehicles.

In the previous experiment, we obtained expected time
spent (expected waiting time) and arrival rate of different sta-
tions. These information reveals ET drivers charging behavior
and at the same time shows the whole city’s charging behav-
ior from spatial prospective. For the entire city’s charging
behavior, we combined all the corresponding cells according
to the dimension of charging station direction and used their
average waiting time and average visiting rate to represent
the time spent and visits of the corresponding charging sta-
tions. Figure 8 depicts the spatial distribution of charging
stations in the central area of Wuhan city, and the locations
of charging stations are shown in red and blue solid circle
(156 charging stations). The red solid circle indicates that
the charging station overflow during the peak period, while
the blue circle indicates that the charging station does not
overflow. Figure 9 the upper side presents the spatial distri-
bution of ETs time spent and the distribution of their visits.
Redder color refers to longer time spent or higher visit. The
low side describes the time spent and the visiting rate of
EVs in the study area. Most areas frequented by EVs have
been granted longer time pent. However, although taxi drivers
rarely visit the charging stations in area A, they still need a

long time spent, which means that there are many other types
of vehicles charging here. According to our survey, charging
stations in area A are close to urban highways, so many
private EVs choose to charge here. ETs are often charged in
prosperous areas. For instance, charging hotspots area B is
near to recreational areas where have a great advantage in
attracting taxis. Many ETs serve customers in these places,
and they are likely to charge at nearby charging stations.
At last, we sorted the visits of all urban charging stations in
descending order and selected the topK charging stations that
ranked the front as the spatial hotspots for EV charging in the
area.

D. EXPERIMENTS FOR CS LAYOUT NETWORK
OPTIMIZATION
In this subsection, we study the effects of different parameters
in our optimization system. Note that we didn’t compare the
effectiveness of other related works ([5], [28]) because of
the differences in constraints and optimization target. For
example, an optimal solution of the charging infrastructure
is derived based on mean trip times of electric vehicles [14].
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FIGURE 10. Effectiveness evaluation.

1) OPTIMIZATION RESULTS OF CHARGING STATION
QUANTITY CONSTRAINT
In order to evaluate the effectiveness of our method, we did
a lot of experiments to study the impact of three factors
to the optimization results, including the different number
of station P, the different number of charging hot spots K
and the value of γ . Unless mentioned explicitly, the default
parameters used in the following experiments are P = 100,
K = 25, and γ = 1.03. For the sake of solution algorithms
comparison, we also apply the genetic algorithm (GA) to
solve the optimal problem. Before using GA to optimize the
CS network, the parameter setting method of Coy et al. [43]
was used to conduct indepth experiments to determine the
parameter values of the genetic algorithm, such as population
size p, selection rate a, mutation rate b.
Different K Values. Figure 10 (a,b) illustrate the total

user coverage rate of choosing different numbers of starting
sites (i.e., K value). As a result, we make the following

observation: 1) In most cases, the top-K initialization method
gets a higher user coverage rate, and also gets a lower over-
flow rate. 2) when K is in the range of 5 to 20, the over-
flow rate of the two initialization methods remains the same,
but the user coverage rate of top-k is much larger than the
clustering-based initialization method, up to 3%. 3) when K
value is small, two methods are similar. This is because in
these cases the starting charging stations of top-k results are
the same as clustering.

Different number of stations (P). Figure 10 (c,d) illustrate
the total user coverage and overflow rate with the different
number of stations P, from 50 stations to 110 stations. From
these two figures, we can see that the proposed optimal algo-
rithms outperform the GA approach for both performance
metrics. And then, we make the following observations:
1) the top-k initialization method performs better when the
optimal number of stations P is larger. 2) when the value
P is small clustering-based method is better than the top-k
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FIGURE 11. Effect of P values.

FIGURE 12. Effects of γ values.

method. This because, when the number of stations is small,
the best strategy is to ensure that users in every major area
have a charging station to charge (essentially the intuition
of clustering-based). 3) As can be seen from figure 10(d),
the overflow rate of the top-k method remains unchanged
within the range of 90-110, and the user coverage rate con-
tinues to rise. Figure 11 shows the optimized layout results of
P = 90 (blue solid circle) and P = 110 (yellow solid circle),
in which the black solid circle represents the distribution
of redundant charging stations under different conditions.

As can be seen from figure 10(d), under the condition of
P > 90, the overflow rate is basically unchanged. In order
to continue to optimize the charging station network, we can
only improve the user coverage rate and cover more continu-
ous user travel routes by selecting charging stations with the
higher visit.

Different γ values. Figure 12 provides the results with
different γ settings, with the top-k method, where the red
stars is the starting sites and the blue stars is the recommended
network layout of charging stations. When γ = 1, intuitively,
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FIGURE 13. The optimal charging station network for Wuhan central region.

it is that the result of an expansion goes further always on
heavily visited charging stations, they don’t take into account
overflow problems of charging stations and users’ continuous
trip coverage. When γ > 1, if the charging station is in
an overflow status, the algorithm will give priority to the
more popular charging stations near to the overflow charging
station to relieve the local charging pressure and achievemore
user coverage. If the overflow status of the current charging
station has been basically stable without a downward trend,
the higher usage benefit score is given for the station covering
more users and more continuous user trips.

2) RESULT OF THE OPTIMAL CHARGING STATION NETWORK
There are 156 charging stations in the original station net-
work of Wuhan central region, the average utilization rate of
charging station is about 61.04%. The original network has
32 overflow sites. The utilization rate of charging station in
one day (24 hours) is an intuitive indicator to measure the
usage of the entire charging station network. The calculation

formula of the average utilization rate of charging stations is
as follows:

AU =

∑k
j=1 CT (sj)

24

Num(S)
(12)

where
∑k

j=1 CT (sj) is the total charging duration of all sta-
tions in one day. Num(S) is the total number of charging
stations in the network.

The optimal network of charging stations is shown in
figure 13, where the number represents the charging station
ID. Table 6 shows the experimental results of the optimized
network, in which the utilization rate of the charging station
is 7.72% higher than the previous one, and the user cover-
age rate is as high as 97.63%. Compared with the original
network, there are 21 fewer overflow sites in the optimized
network. The reason is that some areas are just caused by the
user’s charging habit, which can be alleviated by other charg-
ing stations in the area, and the overflow of these 21 charging
stations is a pseudo overflow. However, in the case of regional
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TABLE 6. Result of the optimal network.

FIGURE 14. The parent-child schematic diagram for the optimal network.

overall charging pile shortage, the government could only
relieve the pressure of local charging by adding new sites in
the region, and the overflowwas irreversible. The 11 overflow
charging stations in the optimized network are distributed
in the region overall charging pile shortage. It can be seen
from the optimization results that there are charging station
congestion problems (occurring in zone C , zone D, zone E ,
zone F and zoneG) and charging station redundancy problem
(occurring in 13 stations, i.e., site 15, site 62, site 81, site
82, site 84, site 93, site 100, site 109, site 131, site 139, site
144, site 146, and site 148) in the downtown area of Wuhan.
The government could add new stations in areas with con-
gestion to meet local EVs’ charging demands. Then remove
redundant sites to reduce waste of resources, thus improv-
ing the utilization of charging stations. Figure 14 shows the
parent-child relationship between charging stations in the
optimal network. The upper layer represents the parent charg-
ing station and the lower layer represents the child charging

station. The root nodes of trees (i.e., 32, 121, 110, 67, 47,
35, 155, 33, 138, 58, 16, 18, 134, 98, 9, 10, 78, 52, 6,
141, 103, 133, 65, 66 and 128) regard as the starting sites
of the expansion algorithm, and expand them as individual
trees. The starting stations are usually located in the area
frequently visited by EVs. The algorithm regards them as
the parent charging stations and calculates the usage benefit
score of other charging stations not selected into the opti-
mized network (calculated by formula 2) according to parent
stations situations (overflow status), and greedily selects the
optimal charging station to expand the network. For example,
if there is an overflow station in the parent charging station,
the algorithm will give priority to the overflow problem,
and expand the popular child charging station near to the
overflow parent station as much as possible to alleviate the
local charging pressure. Until all overflow sites are traversed,
themore popular charging stations, which are further from the
parent stations, are expanded to cover more users and more
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FIGURE 15. Optimization results of different situations.

continuous travel routes. The algorithm continuously selects
the optimal charging station in a cycle until it has traversed
all charging stations, and returns the current network opti-
mal scheme and the overflow charging stations to guide the
government planning department in the next step of charging
station planning.

Case analysis. Different from the traditional charging sta-
tion optimal location problem that decides whether to build
the station in each candidate location, our problem further
considers the overflow problem of charging station in the
peak period, and at the same time considers more user cover-
age and more continuous travel routes for the overall network
optimization, which is based on the actual charging station
layout. To understand the effectiveness of our charging station
planning recommendations, we carried out case analysis on
the demand surplus (figure 15(a)) and the lack of demand
zone C (figure 15(b)), as these two areas appeared in our
recommendation, regardless of parameters.

Figure 15 shows the optimization results of these two
cases, where the sites in the red rectangle are redundant
stations, which will be removed during the network opti-
mization of charging stations. Intuitively, the area shown
in figure 15(a) is very dense with charging stations, although
there is rarely visited by drivers (colored green). There are
many redundant sites (i.e., S2, S5, and S6) in this area, which
is the reason for the low utilization rate of the original charg-
ing station network. We use the top-k initialization method
to expand the network. First, two initial sites are selected
(i.e., S1 and S7), and all unselected sites are put into the
candidate set as their child charging stations. In the network
expansion stage, we calculated the usage benefit scores of the
child charging stations of S1 and S7 respectively according
to equation 2 (as shown in 16) and selected the optimal
site with the highest scores to expand the network, which
is S4. Then put the remaining unselected charging stations

FIGURE 16. Greedy network expansion example.

FIGURE 17. At different number P of stations, the overflow rate of the
case with a lack of demand.

(i.e., S2, S3, S5, and S6) as the child of S4 into the can-
didate set as new candidates and recalculate their usage
benefit scores. The algorithm terminates when P is equal
to 4 (because there are no redundant sites in this area),
the optimization scheme is obtained (S1, S3, S4, S7) and the
redundant sites are S2 (i.e., site 148), S5 (i.e., site 109), and
S6 (i.e., site 100).
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With a similar algorithm operation, we can get the opti-
mization result of lack of demand, as shown in figure 15(b).
There are no redundant sites in theC zone with overall charg-
ing pile shortage. As can be seen from figure 17, the overflow
rate of the C zone is very high, and it is not until the network
expands to the last site S8 in this region that the overflow rate
has a downward trend. The government may consider adding
some new charging stations in area C to ease the local charg-
ing pressure. As a result, based on our analysis, we conclude
that the current network layout of charging stations is not
reasonable enough. With the real EV track and data-driven
analysis, we suggest that some sites should be built in areas
with high charging pressure to relieve the charging pres-
sure and reduce unnecessary charging stations to avoid the
waste of resources. The experimental results show that our
optimization algorithm can effectively eliminate redundant
charging stations and improve the utilization rate of charging
stations, identify the congestion areas of the network, and
give suggestions to the government for further improvement
of charging station planning.

VIII. CONCLUSION
In this paper, we propose a data-driven approach to opti-
mize the layout of the existing charging stations network.
Our method can address the optimization problem of charg-
ing station layout in a more realistic way, considering the
constraints and requirements from the government planning
department’s perspective: 1) charging station quantity con-
straint, 2) overflow, and 3)utilization. We also present a
framework for discovering urban charging behavior regu-
larity using four data sources: ET trajectory dataset, POIs,
station data and road network data. Our work currently relies
solely on the trajectory of the electric taxi, however, other
vehicles can be seamlessly integrated into our system. During
the charging events detection phase, we actually only rely on
the detected CEs’ time spent, which is the result of charging
event detection and is independent on whether this vehicle is
an ET or not. We model citywide charging behavior with a
3D tensor, filling in the missing entries of times and stations
with sparse data using a context-aware tensor collaborative
decomposition approach to estimate the time spent at station,
and develop queue systems to calculate the visits among dif-
ferent stations. The two indexes not only reflect EV charging
regularity but also the popularity of stations.

With the research of electric vehicle charging behavior
characteristics of the city, the relationship between stations
and geographical location, we can develop a flexible usage
benefit score function to adjust and measure the usability
between charging stations. In the course of our research,
we found two extreme phenomena: 1) lack of demand, and
2) demand surplus. These phenomena show that in the actual
charging station layout, there is an imbalance phenomenon
for the charging stations, that is, supply exceeds demand and
demand exceeds supply. Therefore, We propose a heuris-
tic network expansion algorithm based on spatial charging
hot spots to address the network optimization problem. The

experimental results show that our method can effectively
remove the redundant charging stations and identify the con-
gestion areas of the charging stations. Therefore, our next
research work is how to add a new charging station in the
case of regional overall charging pile shortage.

REFERENCES
[1] L. Zhe and M. Ouyang, ‘‘The pricing of charging for electric vehicles in

China—Dilemma and solution,’’ Energy, vol. 36, no. 9, pp. 5765–5778,
2011.

[2] C. E. Hatton, S. K. Beella, J. C. Brezet, and Y. C. Wijnia, ‘‘Charging
stations for urban settings the design of a product platform for electric
vehicle infrastructure in Dutch cities,’’World Electr. Vehicle J., vol. 3, no. 1,
pp. 134–146, 2009.

[3] T. Sweda and D. Klabjan, ‘‘An agent-based decision support system for
electric vehicle charging infrastructure deployment,’’ inProc. IEEEVehicle
Power Propuls. Conf., Sep. 2011, pp. 1–5.

[4] H. Liu and D. Z. W. Wang, ‘‘Locating multiple types of charging facil-
ities for battery electric vehicles,’’ Transp. Res. B, Methodol., vol. 103,
pp. 30–55, Sep. 2017.

[5] W. Tu, Q. Li, Z. Fang, S.-L. Shaw, B. Zhou, and X. Chang, ‘‘Optimiz-
ing the locations of electric taxi charging stations: A spatial–temporal
demand coverage approach,’’ Transp. Res. C, Emerg. Technol., vol. 65,
pp. 172–189, Apr. 2016.

[6] S. Davidov and M. Pantoš, ‘‘Planning of electric vehicle infrastructure
based on charging reliability and quality of service,’’ Energy, vol. 118,
pp. 1156–1167, Jan. 2017.

[7] A. Awasthi, K. Venkitusamy, S. Padmanaban, R. Selvamuthukumaran,
F. Blaabjerg, andA. K. Singh, ‘‘Optimal planning of electric vehicle charg-
ing station at the distribution system using hybrid optimization algorithm,’’
Energy, vol. 133, pp. 70–78, Aug. 2017.

[8] J. Ma and L. Zhang, ‘‘A deploying method for predicting the size and opti-
mizing the location of an electric vehicle charging stations,’’ Information,
vol. 9, no. 7, p. 170, 2018.

[9] H. Zhang, Z. Hu, Z. Xu, and Y. Song, ‘‘Optimal planning of PEV charging
station with single output multiple cables charging spots,’’ IEEE Trans.
Smart Grid, vol. 8, no. 5, pp. 2119–2128, Sep. 2017.

[10] L. Luo, W. Gu, S. Zhou, H. Huang, S. Gao, J. Han, Z. Wu, and X. Dou,
‘‘Optimal planning of electric vehicle charging stations comprising multi-
types of charging facilities,’’ Appl. Energy, vol. 226, pp. 1087–1099,
Sep. 2018.

[11] J. A. Domínguez-Navarro, R. Dufo-López, J. M. Yusta-Loyo,
J. S. Artal-Sevil, and J. L. Bernal-Agustín, ‘‘Design of an electric
vehicle fast-charging station with integration of renewable energy and
storage systems,’’ Int. J. Electr. Power Energy Syst., vol. 105, pp. 46–58,
Feb. 2019.

[12] S. R. Gampa, K. Jasthi, P. Goli, D. Das, and R. C. Bansal, ‘‘Grasshopper
optimization algorithm based two stage fuzzy multiobjective approach for
optimum sizing and placement of distributed generations, shunt capaci-
tors and electric vehicle charging stations,’’ J. Energy Storage, vol. 27,
Feb. 2020, Art. no. 101117.

[13] Y. Dong, S. Qian, J. Liu, L. Zhang, and K. Zhang, ‘‘Optimal placement
of charging stations for electric taxis in urban area with profit maximiza-
tion,’’ in Proc. 17th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw.
Parallel/Distrib. Comput. (SNPD), May 2016, pp. 177–182.

[14] A. Hess, F. Malandrino, M. B. Reinhardt, C. Casetti, K. A. Hummel, and
J. M. Barceló-Ordinas, ‘‘Optimal deployment of charging stations for elec-
tric vehicular networks,’’ in Proc. 1st Workshop Urban Netw. (UrbaNe),
2012, pp. 1–6.

[15] J. Li, X. Sun, Q. Liu, W. Zheng, H. Liu, and J. A. Stankovic, ‘‘Plan-
ning electric vehicle charging stations based on user charging behavior,’’
in Proc. IEEE/ACM 3rd Int. Conf. Internet Things Design Implement.
(IoTDI), Apr. 2018, pp. 225–236.

[16] S. Ge, L. Zhu, L. Hong, L. Teng, and L. Chang, ‘‘Optimal deployment of
electric vehicle charging stations on the highway based on dynamic traffic
simulation,’’ Trans. China Electrotech. Soc., vol. 33, no. 3, pp. 91–101,
2018.

[17] Z. Yu, C. Licia, W. Ouri, and Y. Hai, ‘‘Urban computing: Concepts,
methodologies, and applications,’’ACMTrans. Intell. Syst. Technol., vol. 5,
no. 3, pp. 1–55, Sep. 2014.

VOLUME 8, 2020 118591



Y. Yang et al.: Data-Driven Approach for Optimizing the EV Charging Stations Network

[18] L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou, ‘‘Detecting urban black
holes based on humanmobility data,’’ in Proc. 23rd SIGSPATIAL Int. Conf.
Adv. Geographic Inf. Syst. (GIS), 2015, pp. 1–10.

[19] Y. Li, Y. Zheng, H. Zhang, and L. Chen, ‘‘Traffic prediction in a bike-
sharing system,’’ in Proc. 23rd SIGSPATIAL Int. Conf. Adv. Geographic
Inf. Syst. (GIS), 2015, pp. 1–10.

[20] J. Yuan, Y. Zheng, and X. Xie, ‘‘Discovering regions of different functions
in a city using human mobility and POIs,’’ in Proc. 18th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining (KDD), 2012, pp. 186–194.

[21] M. M. Islam, H. Shareef, and A. Mohamed, ‘‘Optimal location and sizing
of fast charging stations for electric vehicles by incorporating traffic and
power networks,’’ IET Intell. Transp. Syst., vol. 12, no. 8, pp. 947–957,
Oct. 2018.

[22] A. A. Kadri, R. Perrouault, M. K. Boujelben, and C. Gicquel, ‘‘A multi-
stage stochastic integer programming approach for locating electric
vehicle charging stations,’’ Comput. Oper. Res., vol. 117, May 2020,
Art. no. 104888.

[23] H. Zhang, Z. Hu, Z. Xu, and Y. Song, ‘‘An integrated planning framework
for different types of PEV charging facilities in urban area,’’ IEEE Trans.
Smart Grid, vol. 7, no. 5, pp. 2273–2284, Sep. 2016.

[24] H. Zhang, W. Tang, Z. Hu, Y. Song, Z. Xu, and L. Wang, ‘‘A method for
forecasting the spatial and temporal distribution of PEV charging load,’’ in
Proc. IEEE PES Gen. Meeting Conf. Exposit., Jul. 2014, pp. 1–5.

[25] L. Pan, E. Yao, Y. Yang, and R. Zhang, ‘‘A location model for electric
vehicle (EV) public charging stations based on drivers’ existing activities,’’
Sustain. Cities Soc., vol. 59, Aug. 2020, Art. no. 102192.

[26] Y. Ahn, C. Jun, and H. Yeo, ‘‘Analysing driving patterns of electric taxi
based on the location of charging station in urban area,’’ in Proc. IEEE Int.
Smart Cities Conf. (ISC), Sep. 2016, pp. 1–6.

[27] C. Luo, Y. Huang, and V. Gupta, ‘‘A consumer behavior based approach to
multi-stage EV charging station placement,’’ CoRR, vol. abs/1801.02135,
pp. 1–6, Oct. 2018.

[28] Z. Yi and P. H. Bauer, ‘‘Optimization models for placement of an energy-
aware electric vehicle charging infrastructure,’’ Transp. Res. E, Logistics
Transp. Rev., vol. 91, pp. 227–244, Jul. 2016.

[29] X. Chen, Z. He, and L. Sun, ‘‘A Bayesian tensor decomposition approach
for spatiotemporal traffic data imputation,’’ Transp. Res. C, Emerg. Tech-
nol., vol. 98, pp. 73–84, Jan. 2019.

[30] K. Tang, S. Chen, Z. Liu, and A. J. Khattak, ‘‘A tensor-based Bayesian
probabilistic model for citywide personalized travel time estimation,’’
Transp. Res. C, Emerg. Technol., vol. 90, pp. 260–280, May 2018.

[31] K. Takeuchi, H. Kashima, and N. Ueda, ‘‘Autoregressive tensor factoriza-
tion for spatio-temporal predictions,’’ inProc. IEEE Int. Conf. DataMining
(ICDM), Nov. 2017, pp. 1105–1110.

[32] Y. Wang, Y. Zhang, X. Piao, H. Liu, and K. Zhang, ‘‘Traffic data recon-
struction via adaptive spatial-temporal correlations,’’ IEEE Trans. Intell.
Transport. Syst., vol. 20, no. 4, pp. 1531–1543, Apr. 2019.

[33] Y. Zheng, T. Liu, Y. Wang, Y. Zhu, Y. Liu, and E. Chang, ‘‘Diagnosing
new york city’s noises with ubiquitous data,’’ in Proc. ACM Int. Joint
Conf. Pervas. Ubiquitous Comput. (UbiComp Adjunct), Seattle, WA, USA,
Sep. 2014, pp. 715–725.

[34] Y. Wang, Y. Zheng, and Y. Xue, ‘‘Travel time estimation of a path using
sparse trajectories,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining (KDD), 2014, pp. 25–34.

[35] K. Tang, S. Chen, and A. J. Khattak, ‘‘Personalized travel time estimation
for urban road networks: A tensor-based context-aware approach,’’ Expert
Syst. Appl., vol. 103, pp. 118–132, Aug. 2018.

[36] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, ‘‘Multiverse
recommendation: N-dimensional tensor factorization for context-aware
collaborative filtering,’’ in Proc. 4th ACM Conf. Recommender Syst. (Rec-
Sys), Barcelona, Spain, Sep. 2010, pp. 79–86.

[37] F. Zhang, D. Wilkie, Z. Yu, and X. Xing, ‘‘Sensing the pulse of urban
refueling behavior,’’ inProc. 2013 ACM Int. Joint Conf. Pervas. Ubiquitous
Comput., 2013, pp. 13–22.

[38] P. Jensen, ‘‘Network-based predictions of retail store commercial cate-
gories and optimal locations,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 74, no. 3, Sep. 2006, Art. no. 035101.

[39] D. L. Huff, ‘‘Defining and estimating a trading area,’’ J. Marketing, vol. 28,
no. 3, pp. 34–38, Jul. 1964.

[40] T. G. Kolda and B. W. Bader, ‘‘Tensor decompositions and applications,’’
SIAM Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009.

[41] S. Bae and A. Kwasinski, ‘‘Spatial and temporal model of electric vehicle
charging demand,’’ IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 394–403,
Mar. 2012.

[42] J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, ‘‘Efficient evaluation of
k-range nearest neighbor queries in road networks,’’ inProc. 11th Int. Conf.
Mobile Data Manage., Kanas City, MO, USA, May 2010, pp. 115–124.

[43] S. P. Coy, B. L. Golden, G. C. Runger, and E. A.Wasil, ‘‘Using experimen-
tal design to find effective parameter settings for heuristics,’’ J. Heuristics,
vol. 7, no. 1, pp. 77–97, 2001.

YU YANG was born in 1994. She received the
master’s degree from the School of Electronic and
Information Engineering, Liaoning Technical Uni-
versity, China. Her research interests include urban
computing and data mining.

YONGKU ZHANG was born in 1974. He received
the master’s degree from Liaoning Technical Uni-
versity. His research interests include database sys-
tems and data mining.

XIANGFU MENG was born in 1981. He received
the Ph.D. degree from Northeastern University,
China, in 2010. He is currently a Full Professor
and the Ph.D. Supervisor with Liaoning Technical
University, China. His research interests include
spatial data management, ecommender systems,
and Web database query.

118592 VOLUME 8, 2020


