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ABSTRACT With the availability of a large amount of user-generated online data, discovering users’ sequen-
tial behaviour has become an integral part of a Sequential Recommender System (SRS). Combining the
recent observed items (i.e., short-term preferences) with prior interacted items (i.e., long-term preferences)
has gained increasing attention in recent years. However, the existing methods mostly assume that all the
adjacent items in a sequence are highly dependent, which may not be practical in real-world scenarios due
to the uncertainty of customers’ shopping behaviours. A user-item interaction sequence may contain some
irrelevant items which may in turn lead to false dependencies between items. Moreover, current studies
usually assign a static representation to each item when modeling a user’s long-term preferences. Therefore,
they cannot differentiate the contributions of the items. Specifically, these two types of users’ preferences
have been separately modeled and then linearly combined, which may fail to model complicated user-item
interactions. In order to overcome the above mentioned problems, we propose a novel Deep Attention-based
Sequential (DAS) model. DAS consists of three different blocks, (i) an embedding block: which embeds
users and items into low-dimensional spaces; (ii) an attention block: which aims to discriminatively learn
dependencies among items in both users’ long-term and short-term item sets; and (iii) a fully-connected
block: which first learns a mixture of users’ preferences representation through a nonlinear way and
then combines it with users’ embeddings to have a personalized recommendation. Extensive experiments
demonstrate the superiority of our proposed model compared to the state-of-the-art approaches in SRSs.

INDEX TERMS Attention network, dependency modeling, sequential recommender systems.

I. INTRODUCTION
With the rapid growth of online platforms, many compa-
nies have started building their e-commerce websites and
smartphone applications to encourage their customers to
keep interacting with products and services. These platforms
can be extremely helpful for users to narrow down their
options, while a huge amount of interaction information can
be generated. For instance, around 62 million trips with
Uber1 have been recorded in July 2016 [1]. By analyzing the
huge amount of information about users’ historical sequential
behaviour, Sequential Recommender Systems (SRSs) can
predict the next interacted items. This can help users, with
their decision-making process as well as increasing business
profits for companies.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .
1https://www.uber.com/au/en/

Compared to the classic Recommender Systems (RSs),
new challenges have emerged in SRSs. First, an aggregated
form of user-item interaction in SRSs is a type of implicit
feedback, (e.g., check-in behaviours and purchased items).
It is also quite hard for approaches based on the implicit data
to predict whether a user is not interested in unpurchased
items or just is not aware of them. Therefore, a traditional
RS which treats recommendation as a prediction task and
only optimizes one-class prediction score (i.e., ‘1’ or ‘0’) may
not be appropriate [1], [2]. Second, although a user’s sequen-
tial behaviour (i.e., short-term preferences) reflects recently
observed items, a user’s general taste (i.e., long-term prefer-
ences) also plays an important role in forming a user’s pref-
erences [3]. However, the existing studies either do not take
both two types of users’ preferences into account or mostly
combine them linearly. As an example, Factorizing Person-
alized Markov Chain (FPMC) proposed by Rendel et al. [4],
integrates Markov Chain (MC) as a commonly-used method
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in SRSs tomodel sequential behaviours andMatrix Factoriza-
tion (MF) for modeling users’ long-term preferences. FPMC
just utilizes a linear aggregation function to combine these
two different types of users’ preferences. The Hierarchical
Representation Model (HRM) partially solves the problem of
modeling high-level user-item interactions through adopting
a nonlinear aggregation function [5]. However, these methods
have the same overly strong assumption that each item is
contextually dependent on the next one and has the same
contribution in predicting the next target item. Therefore,
they underestimate the impact of irrelevant items in depen-
dency modeling and neglect the context of each item in a
shopping basket, which can be defined by selecting a set
of items in a transaction. Moreover, the current approaches
mainly learn users’ long-term preferences through a static
low-dimensional representation, which means that a user’s
general taste always remains the same. However, this is not
practical in many real-world cases.

Consider the following example to explain the mentioned
problem. Assume S1 = {burger, coke, chips} is a customer
shopping list, which at the last minute of shopping, a shampoo
is added to S1 = {burger, coke, chips, shampoo}. While the
first three purchased items are strongly correlated, the last
item is pretty much irrelevant to them and may generate
interference for the next predicted items. In this example,
the customer may be more willing to buy a ketchup sauce
as the next item which is contextually dependent on burger,
coke, and chips. In this transaction history, if we consider the
first three purchased items as a context, a shampoo has no
correlation with them and does not share a similar context.
The existing methods that may not distinguish the irrele-
vant items within a contextual sequence may recommend a
conditioner as a next item due to being highly correlated
to the last purchased item. This example can demonstrate
the importance of identifying irrelevant items in a trans-
action for next-item recommendation task. Hence, this can
explain that user-item interaction sequences may not follow
a strict order and shopping behaviours may contain noisy
items which are not contextually dependent on the previous
items.

In order to handle the problem of user-item interaction
sequences with noise in long- and short-term item sets,
we propose a novel Deep Attention-based Sequential rec-
ommender system (DAS). DAS consists of three different
blocks: (i) an embedding block: in this block, we aim to
take raw user-item and item-item interactions as inputs and
embed them into low-dimensional spaces; (ii) an attention
block: here, we use two attention networks to differentiate the
importance of each item in both long- and short-term users’
preferences. The main purpose of using the attention network
is to assign different weights to the items. This can emphasize
those strongly context-relevant items and downplay weakly
correlated ones in a user-item interaction sequence; and (iii)
a fully-connected block: in this block, we employ two deep
network structures, which we first feed the combination of
the outputs of the two attention networks to the first deep

network in order to learn a mixture of users’ preferences.
Next, we combine the learned users’ mixture preferences with
the users’ embedding vectors and project them to the second
deep network to produce a personalized recommendation.

In particular, the contributions of our work are summarized
as follows:
• Introducing an attention network to discriminate the
importance of items in long- and short-term users’
preferences;

• Designing a deep network structure consisting of three
different blocks to generate a mixture of long- and
short-term users’ preferences; and

• Conducting empirical evaluations on two real-world
datasets. The results demonstrate the superiority of our
method compared with the state-of-the-art methods in
terms of AreaUnder Curve (AUC), Precision, Recall and
novelty evaluation metrics.

II. RELATED WORK
RSs have been known as the filtering tools which help
customers with their decision making process and provide
them with the relevant items in which they may inter-
ested. Generally speaking, there are two different types of
RSs in the literature, general recommender systems and
sequential recommender systems. The first type of systems
mainly focuses on modeling users’ long-term preferences
from user-item interactions item set, while the second type
of systems leverages users’ short-term preferences. In the
following, we use users’ long-term preference or general
taste and users’ short-term preference or sequential behaviour
interchangeably.

A. GENERAL RECOMMENDER SYSTEMS
General recommender systems can be roughly categorised
into two main categories: collaborative filtering [6], [7]
and content-based models [8]. Matrix Factorization (MF)
is one of the most widely used methods in general rec-
ommender systems, where users’ preferences are learned
through user-item latent vectors [9]. MF-based methods use
two different types of data: explicit feedback and implicit
feedback. Models that focus on explicit feedback deal with
the rating prediction problem where users explicitly express
their preferences through providing ratings to the specific
items [9].While approaches based on implicit feedback, (e.g.,
clicks) aim to formulate recommendation as a ranking prob-
lem, which highly depends on the selection of an objective
loss function to optimize [10]. Despite the great success of
MF-based methods in RSs, they may fail due to the data spar-
sity problem, where there is a lack of available information
regarding user-item interactions.

Although general recommender systems have shown the
advantages of capturing users’ long-term preferences, their
performance may decrease as the users’ short-term prefer-
ences are ignored. Therefore, it is hard for general recom-
menders to recommend items which comply with the recent
user-item interactions.

178074 VOLUME 8, 2020



S. Yakhchi et al.: Towards a Deep Attention-Based SRS

B. SEQUENTIAL RECOMMENDER SYSTEMS
Different from general recommender systems, SRSs use the
current user-item interaction sequences in order to model
users’ sequential behaviours. MC has been known as a
straightforward method to model sequential dependency in
SRSs. For instance, Shani et al. [11] examine the relation
between a pair of items and then predict the probability of
the next set of items for interaction. Attention mechanism is
also applied in SRSs, FDSA for instance, use this technique
to utilize transition patterns between features of items [12].

Recently, Recurrent Neural Networks (RNN), have been
known as one of the most used deep learning-based methods
in SRSs. Following this, Zhang et al. [13] proposed a novel
RNN-based model is proposed to capture users’ sequential
behaviours for click prediction. Different from traditional
RNN, several works have been introduced to modify classic
RNN in order to better capture the whole historical user-item
interaction sequences [14], [15].

C. UNIFIED RECOMMENDER SYSTEMS
Recently, a few studies focused on building a unified rec-
ommender by taking both users’ general preferences and
sequential behaviours into account. Inspired by the great
capability of the MF technique to model users’ long-term
preferences, FPMC is proposed to fuse classic MF with
first-order MC to better capture both users’ long-term and
short-term preferences [4]. Following that, we havewitnessed
the rising trend of taking the both types of users’ preferences
into account. Inspired by the word embedding technique [16],
Prod2Vec is proposed to utilize information from a sequence
of interacted items to improve MF performance [17]. HRM
with a hierarchical structure partially solves the problem of
modeling abstract user-item interactions through adopting a
non-linear aggregation function, while they may lose much
information due to employing the max pooling function as an
aggregation function [5]. However, one of the shortcomings
of MC-based approaches is that they can only model local
sequential patterns between two sequences.Moreover, as they
consider a fixed-weight for different items, they may fail to
capture complex user-item interactions.

Inspired by Convolutional Neural Networks (CNNs),
Caser [18] has been introduced as a sequential recom-
mender which treats user-item interactions as an image
and then learns sequential patterns as local features of
the image by using convolutional filters. Furthermore,
RNNs also have attracted more attention in modeling
sequential dependencies in SRSs [14], [19]. For instance,
SLi-Rec improves the classic RNN structure such as Long
Short-Term Memory (LSTM) by proposing time-aware and
content-aware controllers to fully exploit user modeling and
then attention-based framework is applied to combine general
and sequential recommenders [20]. Due to the great suc-
cess of both CNN and RNN in capturing local sequential
patterns and complex long-term dependencies, respectively,
Xu et al. [21] have proposed a novel Recurrent Convolutional

Neural Network model (RCNN) to better generate the
recommendation.

Apart from basic RNNs, improved architectures such as
Gated Recurrent Unit (GRU) [22] and Long-Short Term
Memory (LSTM) [23] have been developed to model sequen-
tial dependencies. Although, both GRU and LSTM have
shown great success in SRSs, they have difficulties to model
long-range dependent patterns.

Lately, researchers have employed an attention mecha-
nism due to its powerful capability in focusing on selec-
tive parts [24]. Although incorporating an attention network
presents the superior performance in context learning in the
work by Wang et al. [25], this model ignores users’ general
taste. Instead, a two-layer hierarchical design called, SHAN,
has been proposed by Ying et al. [1] as an attention-based
SRS to incorporate both users’ general tastes and short-term
preferences in a unifiedmanner. Themain difference between
our work and SHAN can be be highlighted from three dif-
ferent aspects: firstly, in modeling each of a user’s long and
short-term preferences, SHAN calculates the attention score
which is guided by the user embedding. Therefore, it may not
completely discover the contributions of each item, and it may
not be able to find noisy items. Secondly, SHAN ignores the
context of users’ shopping basket, which in turn can play an
important role in predicting the next-item recommendation.
Thirdly, unlike SHAN, we add the user’s embedding vector
at the final layer which as stated in [26], can improve the
model performance through using the pre-training model’s
parameters.

To sum up, most of the existing studies assume that there
is a rigid order between two adjacent items in a sequence.
However, this may not be true in many real-world cases and
there may be some noisy items in a sequence which generate
fake dependencies.

III. DEEP ATTENTION-BASED SEQUENTIAL
RECOMMENDER SYSTEM (DAS)
In this section, we formulate our problem and define notations
used throughout the paper and then explain the details of our
model.

A. PROBLEM STATEMENT
Let U = {u1, u2, . . . , u|u|} denote the user set and V =
{v1, v2, . . . , v|v|} indicate the item set, where |u| and |v| are the
total number of users and items, respectively. For a given user
u, Qu = Gut−1 ∪ S

u
t represents the total users’ sessions, where

Gut−1 and Sut are explained as follows. At a certain times-
tamp t , Sut = {v1, v2, . . . , vi} is u’s sequential behaviour,
where i ∈ V , reflecting the user’s short-term preference.
Following that, Gut−1 = {S

u
1 , S

u
2 , . . . , S

u
t−1} is a set of inter-

acted items at timestamp t − 1 (e.g., purchasing history,
clicked items, and check-in behaviours), which represents a
user’s general taste (i.e., long-term preference). In this paper,
for simplification, Gut−1 and Sut represent the u’s long-term
and short-term interacted item sets, respectively.
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FIGURE 1. The architecture of DAS, which learns sequential dependencies attentively and discriminatively over user-item interaction
sequences.

B. THE NETWORK ARCHITECTURE
As it is shown in Figure 1, our attention-based model,
DAS, consists of three main blocks with different purposes.
From the left to the right, (i) an embedding block: takes
raw user-item and item-item interactions data as inputs and
embeds them into low-dimensional spaces. (ii) An atten-
tion block: includes two attention networks to identify the
most relevant items simultaneously in both long-term and
short-term users’ item sets based on the embedded user-item
interactions. The main idea behind employing an attention
mechanism is to pay more attention to the relevant items and
less attention to those items that are irrelevant. The atten-
tion mechanism by assigning different weights to different
items is able to focus more on contextual items in order
to make a user’s preferences more personalized, and (iii) a
fully-connected block: which consists of two deep network
structures to first learn a mixture of a user’s preferences
through one fully-connected network. Then, a concatenation
of a user’s mixture preferences with a user embedding vector
is passed to the second fully-connected network to design a
personalized SRS.

C. EMBEDDING BLOCK
In SRSs, predicting the next interesting items in a session
is similar to predicting a relevant word in Natural Language
Processing (NLP), in which the size of the items and the size
of the vocabularies are too large. Inspired by NLP techniques,
if we consider words as items or users, which are indexed by
meaningless IDs, we need to transform them from IDs space
to a more informative representation space rather than IDs.

Therefore, a fully connected layer is employed to embed user
and item IDs (i.e., one-hot representations) into two continu-
ous low-dimensional spaces as U ∈ Rk×|u| and V ∈ Rk×|v|,
where k is the latent dimension of embedding spaces.

1) ITEM EMBEDDING
Given the original one-hot encoded item set as an input
(where in this vector, item i (i ∈ V ) at position i equals to 1,
and the rest of the positions are set to 0 ) may limit derived
information. Therefore, in DAS, we use the embedding block
to map these sparse vectors into an informative representa-
tion. We have a vector with length |v|, which represents the
context of each item. We use hi ∈ Rk to represent the context
of item i, where k is the latent dimension, namely:

hi = σ (W 1
:,i), (1)

whereW 1
:,i ∈ Rk×|v| is a weight matrix, and the ith column of

matrixW 1
:,i endows one-hot vector item i to its embedding hi.

Here, we use logistic function σ (.) as our activation function
to better model the non-linearities.

2) USER EMBEDDING
Similar to item embedding, we take user j’s one-hot vector
(j ∈ U ) at this block to embed it into hj ∈ Rk . Formally:

hj = σ (W 2
:,j), (2)

where W 2
:,j ∈ Rk×|u| is a weight matrix and the jth column

endows one-hot vector of user j to its embedding hj. Due
to the simplification, we set the same size for user and item
embedding.
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D. ATTENTION BLOCK
Inspired by a great success of attention networks in many
tasks, such as machine translation [27], image caption-
ing [28], and recommendation [29], we use an attention net-
work to discriminate the contributions of different items in
predicting the next items. Despite the fact that most of the
existing studies assume all items are contextually dependent
and there is no noise in a session, in this block we employ two
attention networks to identify the highly context-dependent
items in both long- and short-term users’ preferences. The
attention network automatically assigns different weights to
different items to downplay the impact of irrelevant items
which may overwhelm the impact of the relevant ones.

1) LONG-TERM USER’S PREFERENCE REPRESENTATION
A set of interacted items in the long-term item set Gut−1 can
reflect a user’s general taste. However, the consideration of
a fixed weight for modeling a user’s general taste may not
reflect the user’s real preferences due to a simple assump-
tion that each item plays an equal role in long-term users’
preferences. To fulfill the above requirements, for a given
user u, we first measure the alignment of item vi’s embedding
vector, hi, with respect to the context matrix W α . Then we
compute the attention score αip through Equation 3, which
indicates the level of contribution of contextual item vi in
the occurrence of item vp in a long-term interacted item set.
Then, the softmax function is applied to normalize the atten-
tion score αip, where the higher score represents the more
item contribution. Finally, a weighted sum over the attentive
context embeddings in a long-term item setGut−1 is computed
to build a user’s long-term representation. Formally;

αip =
exp(e(hi))∑

p∈Gut−1
exp(e(hp))

(3)

e(hi) = W αhTi (4)

u(r,long) =
∑
i∈Gut−1

αiphi w.r.t
∑
i∈Gut−1

αip = 1, (5)

whereW α is a shared weight over the first attention network
which is randomly initialized and then will be learned during
the training process. Similar to the work by Wang et al. [25],
we consider W α as an item-level context matrix shared by
all the items to find the more informative items among a set
of items like the one used in memory network [30]. Finally,
the long-term users’ preference representation, u(r,long), can
be calculated with the help of attentive context which is
represented by Equation 4.

2) SHORT-TERM USER’S PREFERENCE REPRESENTATION
Rather than long-term users’ preferences, the most recent
interacted items in a session, which form short-term users’
preferences, are also important for predicting the next items.
Therefore, similar to users’ long-term item sets, an attention
network has been applied here to more focus on key items in

users’ short-term item sets.

βsn =
exp(e(hs))∑
n∈Sut

exp(e(hn))
(6)

e(hs) = W βhTs , (7)

where similar to the long-term users’ preferences, we first
measure the similarity weights of each item vs embedding
as hs, with the context matrix W β , to find the most relevant
items in users’ short-term item set. Then, we normalize this
attentive context through the softmax function to find the
level of contribution of item vs’s context with regards to
the target item vn [31]. Finally, to form a user’s short-term
representation, u(r,short), a weighted sum over contextual item
embedding in short-term item set Sut is computed, where the
weights can be inferred from the attention network.

u(r,short) =
∑
s∈Sut

βsnhs w.r.t
∑
s∈Sut

βsn = 1 (8)

E. FULLY-CONNECTED BLOCK
In this block, we adopt two deep network structures; one
for learning a mixture of users’ preferences and the other
for making a personalized item recommendation. Unlike
most of the existing studies that linearly combine long-
and short-term users’ preferences, which may limit model
performance [4], [32], we concatenate the outputs from the
attention block and feed it to the first deep network in order
to learn a mixture of users’ preferences.

umixture = φa(W
[
u(r,long)

u(r,short)

]
+ b), (9)

where φa is an activation function, W ∈ Rd×2d and b ∈ Rd

are the weight matrix and bias, respectively, and d is the
dimension of hidden layers. We call umixture ∈ Rd the mixture
of long- and short-term users’ preferences, which encodes
two types of users’ preferences in user-item interaction item
set Qu. Next, when umixture is ready, we combine it with a
user’s embedding vector hj and project it into the final output
network with |I | number of nodes, to capture the high-level
representation of user uj, namely:

R(i,t) = W ′
[
umixture

hj

]
+ b′, (10)

where W ′ ∈ R|I |×2d and b′ ∈ R|I | are the weight matrix and
bias in the final deep network, respectively. At this layer,R(i,t)

denotes the probability that a user will interact with item i at
time t . Similar to the work by Tang and Wang [18], we add
the user’s embedding vector hj at the final layer for two main
reasons: (1) to make a more personalized recommendation;
and (2) to improve model performance by using pre-training
model’s parameters, which is stated in [26].

F. NETWORK TRAINING
Since in this work we focus on implicit feedback, (e.g.,
check-ins and purchase transactions), our goal is to provide a
ranked-list over items [2]. Therefore, after computing users’
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mixture preferences, we propose to use a pair-wise ranking
objective function to rank observed entries higher than unob-
served ones [18]. To do so, we transform the output of our
final deep network, R(i,t), to the probabilities score.

p(Sut |S
u
1 , S

u
2 , . . . , S

u
t−1) = σ (R

(i,t)), (11)

where σ is sigmoid function, σ = 1/(1 + e(−x)). For each
positive pair (u, i), in I+(u,t) = {i|R

(i,t)
= 1}, we randomly keep

one item in each session as an unobserved item at time t which
need to be predicted by our model I−(u,t). Then, we update the
binary cross-entropy loss function as:

l = −
∑
(u,t)

( ∑
i∈I+(u,t)

logσ (R(ui,t))
∑
i′∈I−(u,t)

log(1− σ (R(ui
′,t))
)

+ λui||2ui||
2
+ λat ||2at ||

2, (12)

where 2 = {2ui, 2at , 2d , b, b′} is the set of model
parameters, 2ui = {W 1,W 2 } is the set of weights for item
and user embeddings, respectively, and 2at = {W α,W β

}

is the set of weights in attention networks. Further, 2d =

{W ,W ′} is the set of weights for two deep networks, and λ =
{λui, λat } is a set of our regularization parameters. We also
adopt Stochastic Gradient Descent (SGD) for updating our
parameters. Algorithm 1 presents the details of our proposed
model.

1) RECOMMENDATION
We feed our network with the user’s embedding vector hj and
user-item interaction set Qu = Gut−1 ∪ S

u
t . Next, we predict

R(i,t), which is the probabilities of the user’s interaction with
item vi at timestamp t . Then, N items with the highest values
will be recommended to this user. Therefore, the complexity
of our model for making a recommendation to all users is
O(|U ||I |d).

IV. EXPERIMENTS AND EVALUATION
In this section, we introduce the datasets, evaluation
metrics and baseline methods used in our experiments.
Next, we discuss the impact of different hyper-parameters on
our proposed model, DAS.

A. EXPERIMENTAL SETUP
1) DATASETS
We evaluate our model on two real-world datasets,
Gowalla [33] and Tmall [34], to compare the performance of
DASwith the baseline approaches. Gowalla aggregates users’
check-ins information from location-based social networking
website, Gowalla. While Tmall records users’ transactions
in the largest online shopping website in China, where each
session (transaction) consists of multiple items.

2) DATA PREPOSSESSING
Note that, similar to the work by Ying et al. [1] in both the
datasets, we only consider the data in the last seven months
and remove the sessions with only one item and items with

Algorithm 1 DAS Algorithm
Input: long- and short-term item sets{Gut−1, S

u
t }, learning

rate η, λ, K
Output: a set of parameter2 Initialize2ui,2d with Normal
Distribution N (0, 0.01)

Initialize 2at with Uniform Distribution[−

√
3
K
,

√
3
K
]

while convergent do
for ∀ u ∈ U do Randomly pick an item i from Qu

hi, hj← arrange embeddings (Equation 1,2)
compute a user’s long-term representation u(r,long) based
on the Equation 3-5
compute a user’s short-term representation u(r,short) based
on the Equation 6-8
compute a user’s mixture of preferences representation
umixture based on the Equation 9
R(i,t)←σ (umixture.Concat hj) based on the Equation 10-11
update 2 with gradient descent

end for
end while
return 2

less than 20 observations. Then, to better represent users’
sequential behaviours (i.e., short-term preferences), transac-
tions in one day are considered as one session. After the pre-
possessing step, the characteristics of our datasets are shown
in Table 2. As in the relevant works [34] and [1], we randomly
divide our datasets into 20% and 80% for tests and training,
respectively. To better evaluate DAS, we randomly keep one
item in each session to be predicted by our model.

3) PARAMETER SETTING
We set the size of the item and user embedding to 100,
which are initialized randomly with Normal distribution
N (0, 0.01) and the weight parameters in attention network

are initialized from the uniform distributionU (−

√
3
K
,

√
3
K
).

We use Stochastic Gradient Descent (SGD) as our optimiza-
tion technique to update our parameters, the learning rate η
is set to 0.001, and the training’s epoch size is 10. We also
empirically set the batch size to 50 and consider λuv =
{0.01, 0.001, 0.0001} as our user and item embedding reg-
ularization, and λa = {0, 1, 10, 50} as our attention network
regularization.

4) EVALUATION METRICS
We test the performance of DAS in terms of the recom-
mendation accuracy and novelty. Therefore, we use three
widely adopted metrics for measuring the recommendation
accuracy in SRSs such as Recall@N, Precision@N and AUC,
where the larger value indicates better performance. Recall
and Precision evaluate the ability of our model to find all the
relevant top-N items within a dataset, where N ∈ {5, 100},
while AUC shows how well our model can rank ground truth
items.

178078 VOLUME 8, 2020



S. Yakhchi et al.: Towards a Deep Attention-Based SRS

FIGURE 2. Performance comparison on the Gowalla and Tmall datasets in terms of AUC.

FIGURE 3. Performance comparison on the Gowalla and Tmall datasets in terms of Recall@N.

5) BASELINES
Here, we introduce the baseline methods for compari-
son, including classic next item recommendation, combin-
ing long- and short-term users’ preferences in SRSs and
attention-based SRSs. For our evaluations we use the same
datasets as SHAN, FPMC, Caser, Fossil and HRM. So, for
implementing these approaches we consider the correspond-
ing experimental setup as explained in their papers. Further-
more, for implementing BPR and Top approaches we tune
them in a way to reach their best performance in order to have
a fair comparison.
• SHAN: This is a state-of-the-art method in SRSs, which
combines sequential behaviours with users’ general taste
through a hierarchical attention-based structure [1].

• FPMC: Linearly combines MF and MC model to learn
users’ preferences [4].

• BPR: This is a state-of-the-art method for the next item
recommendation with a pairwise ranking loss through
implicit feedback [35].

• Top. Recommends the top popular items which have
been determined during training.

• FOSSIL: This method uses the high-order MC and the
similarity model for modeling sequential behaviour and
user’s general preference, respectively. Then it linearly

combines them to make the next item recommenda-
tion [32].

• Caser: This is a state-of-the-art model, which uses CNN
for sequence embedding [18].

• HRM: Introduces a hierarchical representation to
learn both the users’ general taste and sequential
behaviour [5].

B. PERFORMANCE EVALUATION
Based on Figures 3 and 2 and Table 1, we have the following
findings: (i) DAS significantly and consistently outperforms
all the compared approaches with respect to Precision, Recall
and AUC evaluation metrics in both Gowalla and Tmall
datasets. From the results we can see the superiority of
DAS compared to the SHAN which is the state-of-the-art
method in SRSs. There may be two reasons behind this
result. First, as we stated in Section III-D we employ the
attention mechanism in DAS to measure the importance of
each item as the similarity of its embedding with the item
level context vector which is shared by all contextual items.
While SHAN computes the attention score as the similarity
between the embedding of item and user. Therefore, unlike
SHAN, our model which treats all the contextual items as a
whole may better model the complex dependency relations.
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TABLE 1. Performance comparison on the Gowalla and Tmall datasets in terms of precision.

TABLE 2. Statistics of our datasets.

Second, we add the embedding of user at the final fully con-
nected layer to make a more personalized recommendation.
Therefore, compared with SHAN which is the second-best
model, DAS has shown 21.5% and 35.5% improvements
on the Tmall dataset with regards to Recall@20, and Preci-
sion@10, respectively. We also observe that on the Gowalla
dataset, DAS shows promising results, where it achieves
37.5% and 0.35.4% improvements in terms of Recall@20 and
Precesion@10, respectively. According to Table1, where the
best result in each row is highlighted in boldface, DAS
has shown the best performance compared to the others.
This demonstrates the effectiveness of DAS in capturing the
most important and relevant items in long- and short-term
users’ preferences through employing an attention mech-
anism; (ii) compared to the other hybrid methods (e.g.,
HRM, FPMC, Caser and Fossil) which combine long- and
short-term users’ preferences, after DAS, SHAN outper-
forms others like HRM, FPMC, Caser and Fossil, with a
performance improvement of around 16%, 27% compared
to the HRM at Recall@50 in Tmall and Gowalla datasets,
respectively. These observations demonstrate that selecting
an attention mechanism as an aggregation function performs
well despite using a simple max pooling operation. Com-
pared to the HRM, the performance of FPMC is limited,
due to the use of a linear aggregation function. The perfor-
mance of Caser and Fossil are close, but Caser has shown a
slight improvement with regards to the Precision and Recall
evaluation metrics, which may be because of using vari-
ous convolutional filters. DAS achieves better performance
compared to the all the mentioned approaches, indicating
the superiority of DAS in truly capturing users’ preferences;
and (iii) among all the compared methods, those approaches
which combine users’ sequential behaviours with their gen-
eral taste (e.g., DAS, SHAN,HRM, FPMC, Caser and Fossil),

generally outperform the traditional methods which ignore
users’ short-term preferences (i.e., BPR and Top). This can
indicate the importance of users’ sequential data. Surpris-
ingly, on the Tmall dataset, the Top method achieves better
performance than BPR with respect to Recall, especially
when N starts increasing from 60. According to Figure 2,
a minor improvement is recorded for BRP compared to the
FPMC in terms of AUC. This indicates the trend of purchas-
ing popular items in online shopping. In contrast to the Tmall
dataset, Top achieves the lowest Recall in different N s on
the Gowalla dataset, possibly because of the property that the
Gowalla dataset has more personalized information. Finally,
based on Table 1, our approach surpasses all the compared
baselines in terms of Recall, Precision and AUC on both of
the Gowalla and Tmall datasets.

C. EVALUATING USER-ITEM INTERACTION SEQUENCES
WITH NOISE
1) THE EFFECT OF SESSION LENGTHS
Here, we examine the performance of DAS compared to
the other baselines to show the advantages of our model to
handle user-item interaction sequences with noise in different
sequence lengths. To do so, we test our model under the
different size of session lengths, which we call SLen for
simplicity, which denotes the number of existing items in
one session. For example, SLen-5 denotes that there are five
contextual items in a session. The longer session lengths
may contain more irrelevant items which in turn can reduce
recommendation accuracy, if those items are not recognized.
According to Figure 4, we can observe that DAS consistently
outperforms the other approaches under different session
lengths. Moreover, increasing the session lengths results in
better recommendation accuracy, where SLen-5 achieves the
best results with respect to evaluation metrics Recall@10 and
Precision@10. We only test the effect of different session
lengths on DAS and SHAN, which are sensitive to the session
lengths and leave other models out as they mostly model
first-order dependencies. Moreover, we only examine the
effect of session lengths on the Gowalla dataset, which clearly
from Table 2, on average has longer session lengths.

2) THE EFFECT OF DISORDER ITEMS
DAS is able to capture attentive context and thus focus more
on the most important items in a session and ignore irrelevant
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FIGURE 4. The effect of different session lengths.

ones regardless of their order. To evaluate this, we make the
Tmall dataset disordered and test the performance of DAS
under this condition. To do so, similar to [25], we randomize
the default item order on the Tmall datasest to create a new
disordered dataset. Table 3 demonstrates the superiority of
DAS on the new dataset. Based on Table 3, unlike DAS,
the performances of the rest of the compared methods are
decreased on a disordered dataset, indicating the strong abil-
ity of DAS to emphasize on the important items no matter
where they are in a transaction.

TABLE 3. Performance evaluation on disordered Tmall.

3) NOVELTY EVALUATION
Except for the mentioned evaluation metrics, we also com-
pare DASwith the existing approaches in terms of the novelty
metric. Considering that recommending items similar to those
that a user has already purchased, may not be satisfactory
and users may be more willing to be recommended by new
items. Hence, similar to the work byWang et al. [25], we con-
sider novelty metric as another evaluation parameter to show
the capability of our model in recommending novel items.

The novelty metric is able to measure the difference between
contextual items in a shopping basket and a set of recom-
mended items, where the larger difference can represent the
novel items [36]. Our proposed model by discovering an
attentive context andmeasuring the contributions of each item
in both long- and short-term item set, can provide users with
new unseen items and avoid recommending duplicated items.

4) MCAN@K
In our model, items which are purchased in the context c
can be used for recommendation R. An increasing between
recommended and purchased items, means the less novelty.
Subsequently, the novelty measures the mean of unseen items
corresponding to the context c over allN top-K recommended
items.

MCAN =
1
N

N∑
i=1

(1−
|Ri ∩ ci|
|Ri|

) (13)

Figure 5 demonstrates the performance of DAS compared
to the other methods in terms of the novelty metric on both
the Tmall and Gowalla datasets. From the Figure 5 we can
see that both Tmall and Gowalla datasets show a similar
trend. Among approaches that only consider users’ long-term
preferences (e.g., BPR and Top), Top recommends the top
popular items to a user and hence it is more likely that those
items have been already observed by the user. Thus TOP
achieves the lowest novelty score. Although FPMC take both
types of users’ preferences into account, it can not well learn
the parameters on such sparse datasets. Therefore, the recom-
mended itemsmay be relatively random ones and accordingly
users can not experience a novel item by FPMC method,
resulting in low novelty score. Except SHAN, compared to
the hybrid methods which combine both types of preferences,
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FIGURE 5. The evaluation under novelty metric.

TABLE 4. Impcat of different type of preferences at Recall@20.

HRM reports a high level of novelty may be due to using dif-
ferent aggregation functions as well as optimization criteria.
After DAS, SHAN has a higher novelty score compared to
the all aforementioned methods due to employing attention
mechanism that considers dynamic properties in users’ long
and short-term preferences. To sum up, the experimental
results indicate that DASmay better capture the most influen-
tial and contextual items through the attentive context in both
long- and short-term users’ preferences, and thus represent a
promising result in SRSs.

D. IMPACT OF DIFFERENT TYPE OF PREFERENCES
In this section, we aim to evaluate the impact of each of
long- and short-term users’ preferences on the next item
recommendation problem, separately. Therefore, we consider
a version of DAS, called DAS-long, for situations in which
only a user’s long-term preference is modelled and another
version, called DAS-short, which only considers the user’s
short-term preference. We compare the performance of DAS
with DAS-long and DAS-short in Table 4. Compared to the
approaches which only model user’s general taste, DAS-long
performs better than BPR by 17% and 13% with respect to
Recall@20 on the Tmall and Gowalla datasets, respectively.
This can explain that employing an attention mechanism can
truly identify a set of context-relevant items in the user’s
general taste, leading to better present user’s mixture of
preferences. In both the datasets, DAS-short achieves better

performance than DAS-long, indicating the importance of
sequential behaviours in the next item recommendation prob-
lem. Remarkably, DAS-short represents a better performance
than SHANon both the datasets, as SHANachieves 0.778 and
0.901 AUC on the Tmall and Gowalla datasets, respectively.
This may explain that although the main focus of DAS-short
is on identifying the most important items in a short-term
interacted item set, a part of the user’s general taste is learned
during the training process.

To short, Table 4 indicates the superior performance of
DAS compared to the DAS-long andDAS-short. This demon-
strates that considering both types of users’ preferences can
result in a better users’ preference modeling and increasing
recommendation accuracy accordingly.

E. IMPACT OF HYPER-PARAMETER
In this section, we investigate the impact of hyper-parameters
on the performance of DAS. Similar to the work by
Ying et al. [1], we demonstrate the results just under
Recall@20. The sizes of the item and user embeddings are
the same and set to 100.We also empirically set the batch size
to 50. We consider λuv = {0.01, 0.001, 0.0001} as our user
and item embedding regularization, and λa = {0, 1, 10, 50}
as our attention network regularization. As shown in Table 5,
the performance of DAS gradually is improved when λa start
moving from 0 to 50 on both the Tmall and Gowalla datasets,
whichmeans that employing an attentionmechanism can help
us to better discover users’ preferences.
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TABLE 5. Impcat of different regularization at Recall@20.

V. CONCLUSION
In this paper, we have proposed a Deep Attention-based
Sequential model, DAS, for the next item recommendation
problem. We have first embedded users and items into the
latent dimensional spaces and then passed them into two
attention networks to discriminate the contribution of each
item in both long-and short-term users’ preferences. Next,
we have combined these two types of users’ preferences to
learn a mixture of users’ preference through a deep network.
Finally, we have fed a concatenation of a learned users’
mixture preferences with users’ embedding to the final deep
neural network tomake a personalized item recommendation.
Specifically, our method was able to model complex and
abstract user-item interactions through the nonlinear aggre-
gation function. Extensive experiments on two real-world
datasets have demonstrated the superiority of our model
compared to the state-of-the-art methods in terms of defined
evaluation metrics.
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