IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 2, 2020, accepted June 15, 2020, date of publication June 24, 2020, date of current version July 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004609

cRetor: An SDN-Based Routing Scheme for Data
Centers With Regular Topologies

ZEQUN JIA"'12, YANTAO SUN"“12, (Member, IEEE), QIANG LIU“1-2,

SONG DAI“2, AND CHENGXIN LIU*?

!Beijing Key Laboratory of Transportation Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Yantao Sun (ytsun@bjtu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61572220.

ABSTRACT The blooming of cloud computing leads to the rapid expansion of data center networks (DCN).
Conventional link state routing algorithms like OSPF are widely adopted in data center networks, however,
those routing algorithms bring great control overheads and long convergence time. Recently, topology-aware
routing methods are considered to be efficient especially in data center networks with regular topologies.
Lots of topology-aware routing methods (e.g., Fat-Tree and BCube) have been proposed for specific data
center network topologies. This paper first proposes a formalized method to describe regular topologies and a
regular Topology Description Language (TPDL) based on this method. TPDL is well designed to accurately
define regular network topologies in a clear way leveraging their regularities. Based on the Software-Defined
Networking (SDN) technology, this paper also proposes a novel topology-aware routing scheme: cRetor
(controller-side REgular TOpology Routing scheme). Different from other topology-aware routing methods,
cRetor is a TPDL-based general routing method, which means it is expected to work on different kinds of
regular topologies. In this scheme, TDPL files are used as a priori knowledge to build an initial topology
in the SDN controllers, which eliminates the process of topology discovery via Link Layer Discovery
Protocol (LLDP) and hence relieves the bandwidth and processing burdens on controllers. Besides, we also
apply the A-star algorithm to SDN controllers to speed up the routing selection, where TPDL’s distance
formulas act as the heuristic function. The experimental results show that cRetor outperforms LLDP-based
SDN, OSPF and DCell in routing calculation performance, convergence speed, routing overheads and fault
tolerance.

INDEX TERMS Data center networks, regular network topologies, topology description language, software-

defined networks, topology-aware routing algorithms.

I. INTRODUCTION

With the wide application of cloud computing and big data
technologies, the scale of data centers has also increased
rapidly, which leads to a higher demand for both communi-
cation and management capabilities of data center networks.
Numerous approaches have been proposed by researchers
to enhance the performance of DCNs. Among these meth-
ods, topology-aware routing methods are well-known for
their efficiency compared with conventional link state rout-
ing methods like OSPF. A topology-aware routing method
takes into account the physical layout of the network for
calculating routing paths and forwarding packets. In recent
years, topology-aware routing methods have obtained a surge

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han

116866

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of interest from researchers, and lots of related study has
been conducted, from the switch-centric approach (such
as Fat-Tree [1], HHS [2], VL2 [3], Aspen tree [4] and
S2 [5]), to the server-centric approach (like BCube [6] and
DCell [7]).

Most of these topology-aware routing schemes leverage
the regularity hidden in the physical topology structures,
that is, these topologies are usually recursively or iteratively
defined. In [1], M.Al-Fares ef al. have proposed a scalable
data center network architecture and a corresponding rout-
ing technique for Fat-Tree topology. To take advantage of
the structure of the Fat-Tree topology, a specific address-
ing method and the two-level routing tables are proposed.
A clear benefit from the topology-aware methods is that they
deliver scalable traffic at much lower costs. Similarly, as a
representative of server-centric network architecture, routing

VOLUME 8, 2020

https://orcid.org/0000-0002-7144-4448
https://orcid.org/0000-0002-8833-1618
https://orcid.org/0000-0001-5735-8642
https://orcid.org/0000-0003-4619-2362
https://orcid.org/0000-0002-4544-2473
https://orcid.org/0000-0002-6921-7369

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

algorithms in BCube [6] also leverage BCube’s topological
property to achieve higher performance under lower cost.

In addition to the dedicated routing algorithms proposed
along with the new network topologies, many studies on
routing algorithms for these topologies are also conducted.
For instance, as one of the four most common datacenter net-
work topologies [8], Fat-tree has attracted many researchers’
attention since [1]. SADP [9], SAOP [10], DRB [11] and
GRR&IGRR [12] are all efficient packet-based routing algo-
rithms designed for Fat-Tree. Besides, In [13], Zhao et al.
proposed a port-based source-routing addressing (PSRA)
scheme for Fat-tree topology. Based on PSRA, they designed
a simple routing algorithm, which leverages the characteris-
tics of PSRA and the regularity of Fat-tree topologies. These
routing algorithms focus on a certain network topology, try-
ing their best to fully exploit the characters of this topology
structure.

Despite their superior performance and efficiency, all the
previously mentioned methods suffer from a serious limita-
tion. Almost all of topology-aware routing and forwarding
algorithms are designed for a specific network topology,
which causes difficulty in renovating a routing device to
support multiple existing topology-aware routing algorithms.
To the best of our knowledge, there has been little discussion
about a generic topology-aware routing scheme that can be
adopted in multiple data center network structures. Therefore,
as mentioned in [14], there is a need to design an efficient
topology-aware routing protocol for generic DCN topologies.

However, a major problem with generic topology-aware
routing methods is they are highly dependent on the topol-
ogy structures and lack of flexibility in handling temporary
link changes and failures. Fortunately, the emergence and
development of SDN technology bring new opportunities
for enhancing manageability and flexibility in data center
networks. It separates the traditionally bundled control and
data planes, which brings centralized network control, pro-
grammability and reconfigurability in data center networks.
With the help of SDN, it becomes easier to introduce new
networking abstractions, simplify network management and
facilitate network evolution [15].

In the field of data center networking, Google employed
SDN for data transferring and syncing among data centers
at first. In [16] and [17], they introduced B4 to their data
center interconnection for traffic optimization and resource
allocation. In the global layer of B4, the traffic engineering
central server allocates bandwidth and traffic based on the pri-
orities of flows, controlling the OpenFlow switches through
the OpenFlow controller in the middle layer. With centralized
traffic engineering, B4 improved the link utilization ratio
from 30~40% to more than 90%, significantly reducing the
cost of devices.

While inside data centers, traffic engineering and fail-
ure recovery methods also benefit from the introducing
of SDN. The global view on the SDN controller assists
in traffic optimization and failure detection, and the sep-
aration of control and data planes make fine-grained flow

VOLUME 8, 2020

120

100 +

80+

60

Delay (ms)

40

204

J

T T T T T
500 1000 2000 4000 8000
Packet-In Message (Packet/sec)

FIGURE 1. The processing delay of Packet-In messages in an
OpenDaylight SDN controller.

scheduling possible. Hedera [18] performs dynamic flow
scheduling in a data center network with the SDN tech-
nique. Compared with static load-balancing methods, Hedera
delivers up to 113% better bisection bandwidth. In the same
vein, other work such as Afek and colleagues’ work [19],
DevoFlow [20], MiceTrap [21], RepFlow [22], OpenQos [23]
and DIFFERENCE [24] also tried to optimize the data center
network relying on SDN.

In addition, the SDN-based failover mechanism in data
center networks draws more researchers’ attention. For
instance, Li et al. [25] proposed a scalable failover method
using OpenFlow. In their method, only three switches’ flow
table modifications are involved to handle a single link fail-
ure. A fast failure recovery method in load-balanced SDN-
based data center networks is also suggested in [26], where an
active probe mechanism is used to detect and manage failures.
Jin et al. [27] focuses on virtualized SDN environments for
clouds, proposing FAVE, which provides seamless failover
and bandwidth-aware protection by allocating backup routes
carefully. Also, energy consumption is fundamental to cloud-
based data centers. As mentioned in [28], switches are the
most energy consumer that should be controlled. Since the
SDN technology enables the ability of allocating resource by
a need, it’s worth studying to reduce energy consumption in
DCN using SDN technology, e.g. [29], [30] and [31].

Although software-defined networking outperforms con-
ventional distributed routing algorithms in many aspects,
the deployment of SDN in large scale data center networks
is still immature. As mentioned in [25], data center networks
have a high demand for scalability. By contrast, the limitation
in the scalability of centralized control planes in SDN is
obvious. More than thousands of network devices produce
considerable pressure on OpenFlow controllers, which have
a strong probability to be the bottleneck in DCN. Besides,
the most common method of topology discovery, LLDP, tends
to be extremely low-efficient in large scale topology. Accord-
ing to [32], on the widely-used SDN controller (OpenDay-
light), the packet processing delay increases with the growing
of Packet-In messages. As shown in Fig. 1, the processing
delay in OpenDaylight has exceeded 100ms when the speed

116867

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

TABLE 1. Comparison between cRetor and other routing schemes.

Scheme cRetor Fat-Tree / BCube / DCell Conventional SDN OSPF
Path caculation High, A* based algorithm N/A Medium, Dijkstra Medium, Dijkstra
performance
Convergence Fast Fast Medium Medium
Medium, flow entries distributed High, flow entries distributed at
End-to-end delay at the first packet in a flow Low the first packet in a flow Low
Protocol overhead Medium Low High High
Failover Fast and almost no packet loss Relatively slow Slow Fast with fast convergence
enabled, slow otherwise
High, TPDL is adaptive for large
. Low, convergence slows
Scalability scale topglogles, controller Very high Very low, controller tends to be down with Targe scale
workload is much lower than the bottleneck topologies
conventional SDN polog
Medium, mainly for all kinds of
. regular network topology, Low, only for Fat-Tree . .
Generality topology structure required in topology High, for any topology High, for any topology
advance
. . . . High, global view in
Manageability High, compatible \.Vlth all kinds Low controllers; direct control to all Low
of SDN applications switches

of Packet-In messages reaches 8000 packet/second. Although
it is periodic, the cost brought by this topology detection
mechanism is considerable. Furthermore, frequent topology
discovery is unnecessary in a less-changed and low-failure-
rate network like DCN. Therefore, further study on the prac-
tical deployment of SDN in data centers is required.

In view of all that has been mentioned so far, one may sup-
pose that the combination of both efficiency from topology-
aware routing methods and flexibility from SDN seems to be
a new opportunity for high efficiency, scalability and man-
ageability in data center networks. There are two common
solutions when it comes to the blend of SDN and topology-
aware routing methods: 1) the controller-side topology-
aware mode and 2) both-sides topology-aware mode. The
controller-side mode means that topology-aware methods are
only applied in the controllers while SDN switches remain
unchanged or little changed. In this mode, one benefits
from the topology-aware methods without spending much on
upgrading switches (which usually means hardware redesign
and replacement). In contrast, the both-side mode denotes
a complete reform on both controllers and switches for
extreme performance. A switch equipped with a topology-
aware processor forwards packets efficiently in a fault-free
network even without the support of controllers. Accordingly,
the topology-aware controllers only play a role when fail-
ures occur, which critically improves their scalability. In the
present study, we focus on the controller-side mode.

In this paper, we propose an SDN-based topology-aware
routing approach for large-scale data center networks: cRetor.

116868

This scheme takes advantage of the structure character for
efficient topology discovery and path calculation in a regular
network topology. As a result, the controllers’ burden will be
significantly relieved and are able to support more switches.

The comparison among cRetor and other routing algo-

rithms are shown in Table 1. Benefiting from the distance
formula in TPDL, the path calculation performance of cRetor
is superior to traditional Dijkstra-based routing algorithms.
In addition, as a more general topology-aware routing algo-
rithm, cRetor’s performance in convergence, routing protocol
overhead, and scalability are slightly lower than dedicated
routing algorithms like Fat-Tree two level routing and BCube
source routing algorithms and DCell. However, it also has
more advantages than general routing algorithms such as
SDN and OSPF. In terms of generality, cRetor can be applied
to any regular network topology including Fat-Tree and
BCube. While in the aspect of manageability, cRetor fully
inherits the advantages of SDN technology and is fully com-
patible with the upper-layer applications of SDN. Also, cRe-
tor inherits some drawbacks of SDN, such as the relatively
higher first-packet end-to-end delay. In a nutshell, cRetor is
a tradeoff between the traditional general routing algorithm
and the dedicated topology-aware routing algorithms, which
tries to find a balance between efficiency and generality.

The main contributions of this article are as follows:

o A formal method is proposed to define and describe a
regular network topology using an undirected graph of
multi-type nodes. The concept of distance formula is
also proposed for diminishing the overhead of routing

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

path calculation. Furthermore, a topology description
language TPDL is created for network designers to
sketch data center networks especially networks with a
regular topology.

« In cRetor, an A-star-based path calculation method is
used to speed up the routing calculation. This heuris-
tic method is adaptive to a variety of regular network
topologies, utilizing the regularities of network topolo-
gies to speed up the routing calculation.

o We introduce two components in cRetor to take the
place of the lower-efficient LLDP-based topology detec-
tion mechanism. The function of topology detection is
accomplished by TPDL, which provides the controller
with an initial topology. While the other feature of
LLDP, fault detection, is replaced by a proactive failure
reporting manner.

We implemented cRetor and evaluated it on the Mininet
simulation platform. The experimental results show that
cRetor has obvious advantages compared with the traditional
OSPF algorithm and the existing SDN routing method as
well as a DCell implementation in terms of path computation
performance, network convergence speed, routing overheads
and fault recovery capability.

The rest of this paper is structured as follows: section II
presents the formal description method and TPDL; section 111
elaborates the architecture and algorithms in cRetor;
section IV focuses on the experiments and results about
cRetor compared with OSPF, Floodlight and DCell; section V
explores related work; finally, section VI concludes the paper
and mentions directions for future work.

Il. DEFINITION AND DESCRIPTION OF

REGULAR TOPOLOGY

As mentioned above, a data center network topology is usu-
ally regular and can be described either recursively or iter-
atively. Or rather, the locations, addressing and connections
among nodes in data center networks have some regularities.
To make full use of them, a well-defined description method
is the first step.

In this section, a formalized description method of regu-
lar network topologies is presented. With this method, it is
more explicit to illustrate the regularities of topology in
a formalized way. Additionally, a corresponding domain-
specific language TPDL is also designed to obtain more
intuitive and parseable forms of topology description, which
builds a bridge between formalized formulas and routing
programs.

A. FORMALIZED DEFINITION OF REGULAR TOPOLOGY

As we know that a computer network is composed of network
devices (including switches, routers, servers, etc.) and links
among them. In the view of graph theory, an ordinary network
could be regarded as an undirected graph composed of nodes
and edges, which is described by

G=(V,E) ey

VOLUME 8, 2020

where V denotes a collection of nodes, i.e., a collection of
network devices, and E represents a collection of edges, i.e., a
collection of links among network devices.

Howeyver, further information is needed to demonstrate
the structure property of regular topologies. If the nodes are
divided into groups where nodes in the same group share sim-
ilar patterns, one will be capable of clarifying these patterns
in formal symbols. In this way, the regularities are embodied
by an undirected graph with multiple types of nodes, which
is expressed as follows:

G= (ulevt, Uk Uh_, E,t/) 2)
This equation means all nodes in the network can be divided
into k different sets, and the nodes in each set are similar
in respect to their locations and/or connections. Similar to
(1), a multi-type undirected graph is also composed of a set
of nodes and a set of edges. In (2), UleV, represents all
nodes in the entire network, where each V; is a collection of
nodes in the same type. For instance, in a Fat-tree network,
V1 can be defined as the core switches group, while V> is the
aggregation switches. Ule Uf,:t E, is a set of various edges,
and each E; is a set of links between two types of nodes V;
and V. Since there may not be physical connection between
certain types of nodes, E; can be an empty set P.

Taking the typical 4-pods Fat-tree network topology in
Fig. 2 for an example, the nodes in the topology can be
divided into four groups: 1) core switches, 2) aggregation
switches, 3) edge switches and 4) servers. Therefore, the k
in (2) is set to 4.

According to the structure of Fat-tree topologies, every
core switch connects to all pods. Moreover, all core switches
are divided into p;—d groups and the core switches in the
same group connect to the same switch in every pod. In this
case, each core switch is encoded by Vi(x,y) : x is the
group identification and y is the index in its group. Similarly,
aggregation switches are also presented by Va(m, n), where
m is the pod number this switch belongs to and # is the index
in this pod. Now that V| and V; is defined, one can give the
definition of Eq5:

Ep ={< Vi(x,y), Va(m, n) > |x = n}

It means E1; is a link set connecting V| and V, nodes only
when the x attribute of V| node equals to the n attribute
of V> node, i.e., the core switches in the group x connect
all the aggregation switches whose indexes in their pod are
equal to x.

As for edge switches, they are very similar to aggregation
switches, and are defined as V3(p, q) (p for pod and ¢ for
index). The links between aggregation switches and edge
switches are even simpler: they connect to each other inside
a pod. So the following equation indicates the links between
edge switches and aggregation switches:

Eaz = {< Va(m, n), V3(p. q) > |m = p}

At last, the servers in this topology are connected

to edge switches, and each switches has l%d servers

116869

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

Core Switches

Aggregation Switches

Edge Switches

Servers

Pod 1 Pod 2

Pod 3 Pod 4

FIGURE 2. A 4-pods Fat-tree topology where nodes can be divided into four categories: 1) core switches, 2) aggregation switches, 3) edge

switches and 4) servers.

attached.Therefore, V4(r, u, w) is used to indicate servers,
where r is pod, u is the corresponding edge switch’s index
and w is the index in this subnet. Consequently, E34 will be
{< V3, @), Va(r,u,w) > [p=r,q =u}.

In this topology, there is no respective internal connection
in each node groups, so E11, Ez, E33 and E44 are set to @.
In the same manner, E;3, E14, E24, are also @.

In summary, the formalized description of a 4-pods Fat-tree
topology is given below:

G = (ulevt, Uk, U E,,,) k=4, pod = 4

Vi = pod pod
1={V,yll =x =< T,IS)’S T}

d

Va = (V(m, |1 < m < pod, 1 Sngl%}
pod

Vi={Vp,9ll <p=<pod,1<q= T}

d
Vi = (V. w1 SrSpod,lsus’%,

[
l<w= T}

Epn = {< Vi(x,y), Va(m,n) > |x = n}

Exz = {< Va(m, n), V3(p,) > |m = p}

Bz = {< V3, @), Va(r,u,w) > [p=r,q = u}

EnWw=0,En=9,E3=0,E4 =29,

E3=®,E4=P, k=9 3)
where Vj is the core switches set, V, is the aggregation

switches set, V3 is the edge switches set and V4 represents
the set of servers.

B. DISTANCE FORMULAS

A distance formula refers to an inductive form of distance
(usually hops) between any two devices in the entire topology.
Similar to the connections and locations, the distances in
regular topologies also follow the same pattern. It will be

116870

beneficial for designing and implementing more efficient
routing methods if we can describe the regularities explicitly.

Distance formulas and nodes connections are actually
equivalent, but distance formulas are more intuitive to express
the regularities and easier to be leveraged by routing algo-
rithms. More specifically, the distance formulas can be
thought of as a set of rules, each of which defines the distance
of any two types of nodes in the topology under certain
conditions. A distance formula can be expressed using the
following quadruples:

< typesre, typest, condition, distance > 4

It means that when the source node and destination node
respectively belong to types, and typegs, we will check
whether the attributes of them satisfy the condition. If yes,
the distance between the source node and the destination node
is supposed to be distance.

For example, for the distance between servers located in
different Fat-Tree network pods, one could use the following
distance formula:

< 51 € server, s2 € server, sl.pod ! = s2.pod,6 > (5)

It demonstrates that if the source and destination nodes are
both server and their attributes r are not the same, the distance
between them is 6 (hops).

Given any two nodes, the distance between them can
be immediately obtained from distance formulas. Moreover,
since the topologies are regular, it is ensured that a well-
defined set of distance formulas won’t increase rapidly as the
network scale expands.

C. TOPOLOGY DESCRIPTION LANGUAGE TPDL

The formalized method of describing regular topologies has
been introduced, but it’s not sufficient in practical appli-
cations. On the one hand, the formalized description lacks
some significant information for routing like IP addresses.

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

On the other hand, it is very difficult for computer programs to
analyze the formalized description. Therefore, we proposed
TPDL, a declarative domain-specific language.

TPDL involves not only all the components of formalized
description method(like nodes, connections and distance for-
mulas), but also addressing pattern and other information.
Similar to the formalized description method, TPDL mainly
consists of three parts: 1) network devices definitions, 2) links
definitions and 3) distance formulas definitions.

1) DEVICES DEFINITIONS

Network devices such as switches and servers are the main
components of a data center network. In the TPDL, the net-
work devices are defined in groups by device blocks. Each
device block is used to define a set of devices in the same

type.
device AggSwitch {

num: 8

port: 4

address: 0xC0000000

attrs: {
pod = [1..4], O0xOOFFO0000
index = [1..2], 0xOOQOOQOOFF

}

This is a device block for aggregate switches in a Fat-tree
topology. The device keyword indicates that the block is a
device block, where a group of devices named AggSwitch is
defined. The address keyword part is the base IP address of
these nodes. The attrs keyword defines the custom device
attributes pod and index of the device group. The last two
hexadecimal digits are the mask of this attribute relative to
the IP address. A mask is defined to indicate the mapping
between the devices’ attributes and IP addresses. For exam-
ple, the attribute index indicates that if a device belongs to
AggSwitch group, the value of attribute index will be the last
eight bits of its IP address. In reverse, (6) is able to calculate
the IP address of a device with k custom device attributes,
where #zn is a function for counting the number of trailing
zeros of the mask.

Addr = address + Zle[attri.value < tzn(attri.mask)] (6)

2) CONNECTIONS DEFINITIONS

A link block is the minimum unit of links definition, and each
link block contains a simple connection or a loop link defini-
tion. Different from the complicated connections in general
networks, the connections in regular network topologies can
be defined iteratively. Loop definition is supported by TPDL
to define network connections to reduce the complexity of
links definitions. Connections in a Fat-tree topology can be
expressed by only 3 link blocks in TPDL. We use the <- ->
symbol to define the connection between devices.

link {
server[4] <—--> server[7]

}

VOLUME 8, 2020

The link block above shows one of the simplest connection
definitions. The server is a previously defined device type,
and the values in brackets are the values of the custom device
attributes. If there are multiple attributes, they should be list
in the defined order. This link block connects two nodes in
the server device group with custom device attribute values
of 4 and 7.

link: {

for i = 1..2,3 = 1..4,z = 2..3 {
EdgeSwitch[${j}][S${i}] <——>
server [${J}]1[S{i}]1[${z}]

}

This is a link definition with a loop and variables. Variables
in TPDL are identified with ${var_name}, where var_name
is the name of the variable. There are two types of vari-
ables currently supported in TPDL: (1) device variable
${device_id.attr_name} such as number of devices, number
of device ports, etc.; (2) loop variables, which is defined in

the loop statement.

Loop statements are mainly composed of loop variable
definition statements and link statements. The loop variable
is defined like this:

var_name = start..end[step]

Where start and end represent the start and end values of
the loop variable. Step indicates the step size, which can be
omitted when its value is 1. Loop variables can be defined
one or more, and loop variables are separated by a comma.
In TDL, multiple loop variables in a loop mean nested loops.

3) DISTANCE FORMULAS DEFINITIONS

In distance formulas blocks, devices’ custom attributes are
supported in the condition so that the distance formulas can
express complex conditions.

distance server:sl, server:s2 {
// sl and s2 are in the same edge switch
condition: sl.pod == s2.pod &&
sl.edge == s2.edge => value: 2;

// sl and s2 are in the same pod but
// different edge switches
condition: sl.pod == s2.pod &&

sl.edge != s2.edge => value: 4

// sl and s2 are in different pod
condition: sl.pod != s2.pod => value: 6;

To define the distance formulas in TPDL, we first specify
the node type of source node and destination node. In the
example above, s/ and s2 are identifiers referring to devices
of type server. The condition keyword defines a boolean
expression that is expected to be True. Therefore, the first
entry in the distance formula above means: when s/ and s2
are in the same pod and the same side, the distance will be 2.

When the distance between any two nodes is required,
we just look up in the distance formula rules for a matched
rule. In a regular network topology, the distance formula

116871

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

rules are usually not particularly large. For example, only
21 rules are needed to cover all cases for describing a standard
Fat-Tree network.

In summary, TPDL brings together node definitions, con-
nection definitions, and distance formulas in the data center
network to provide a global view of the entire network topol-
ogy for the control plane. In our current work, the TPDL
is generated manually by network designers on the basis of
analyzing the regularity of network topologies. But thanks to
the regularity of data center networks, the size of the TPDL
file is fairly controllable even in a large-scale data center
network. In our experiments, we are able to describe a Fat-
Tree network topology only by a 140-line TPDL file. More
importantly, when a 16-server topology is extending to the
scale of 1024 servers, there is only some modifications of
parameters, but no new line is added. Therefore, we believe
that TPDL is a simple but efficient way to describe regular
network topology. In addition, we are also looking for a more
convenient way to automatically generate distance formulas
using techniques such as machine learning.

1Il. DESIGN AND ALGORITHMS

In this chapter, we elaborate on the architecture of the
TPDL-based routing scheme cRetor, as well as the path cal-
culation algorithm and failover mechanism in cRetor. At first,
the basic framework is introduced, followed by the architec-
ture of controllers and switches in cRetor. Besides, we present
the path calculation algorithm based on A-star and TPDL’s
distance formula. Finally, the fault handling mechanism in
cRetor is shown, including the detection and response to link
failures.

A. FRAMEWORK OF cRetor

CRetor is a TPDL-based SDN routing framework for data
center networks. It focuses on reducing the overheads of
topology discovery and providing a more efficient route
selection scheme to replace the traditional shortest path first
(Dijkstra’s) algorithm.

One of the key ideas in cRetor is to use TPDL as prior
knowledge. By leveraging the information in TPDL, a cRetor
controller can build a basic environment for ensuring that
the whole network works. Other components are attached
to enable cRetor to handle topology changes and failures.
It is by nature that data center networks are more reliable
and less changeable. Considering these features, in cRetor,
most of the static and less changeable topology information
is provided before system running and a small amount of vari-
able information like link failures is obtained during runtime.
Compared to the common LLDP topology detection mecha-
nism in SDN, the overall system overheads are significantly
reduced.

Fig. 3 shows the architecture of a controller in cRetor.
The TPDL parser is responsible for parsing the input TPDL
file and sending the parsed result to the Topology Manager.
The Topology Manager will build a topology in memory
according to the TPDL data and update it while the controller

116872

AN
TPDL

File
v
‘ TPDL Parser ‘
v

r{ Topology Manager H

‘ Routing Calculator ‘ ‘ Fault Processor ‘

] I

‘ OpenFlow Module ‘

cRetor Controller

FIGURE 3. The architecture of cRetor controllers.

is running to keep it consistent with the real state of the net-
works. A distance-formula-based A-star algorithm is imple-
mented in the Routing Calculator, where paths are selected
as its name indicated. When a Packet-In message is received
from the OpenFlow Module, the Routing Calculator finds
an optimal path for this flow. The Fault Processor then noti-
fies the Topology Manager of topology changes immediately
when it gets changes from the OpenFlow Module.

Fault Detector

’ OpenFlow Module Hello Message Processor ‘

l l

’ Packet Processor ‘

cRetor Switch

FIGURE 4. cRetor Switch Architecture.

The architecture of a cRetor switch is shown in Fig. 4.
A Fault Detector (FD) module is added to the general Open-
Flow switches, which will find the failures between the
switches and their neighbors with the help of the Hello Mes-
sage Processor (HMP). The HMP broadcasts Hello message
to all connected ports periodically, where its own identifier is
involved. Also, all received Hello packets will be forwarded
to HMP to keep a record of the neighbors’ information. The
FD tracks the Hello messages from its neighbors to deter-
mine wether a fault occurs between the neighbor node and
itself. When it doesn’t receive a Hello message after a preset
interval, it will send a fault report message to the controller
via the OpenFlow Module. The complete mechanism of fault
detection is discussed in subsection III-C.

In our implementation, we modified the standard Open
vSwitch switches [33] into cRetor switches according to the
proposed architecture. The controllers and switches in cRetor
is compatible with conventional SDN implementaions, which
means cRetor is able to inherit all the existing algorithms and
infrastructures of SDN. For example, the traffic engineering
methods mentioned in [34] or QoS Algorithms mentioned
in [35] are still able to work on cRetor with minor modifi-
cations and they are supposed to benefit from the topology
knowledge in cRetor.

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

B. PATH CALCULATION ALGORITHM

In most traditional SDN controllers, the routing selection
relies on the SPF or CSPF algorithms. A controller obtains
current network topology through the LLDP-based topol-
ogy detection mechanism. Each time the network topology
changes, the controller recalculates one or more shortest
path(s) between nodes. Yen’s k-shortest algorithm is adopted
by most SDN controllers such as Floodlight, where Dijkstra’s
algorithm acts as the shortest path algorithm.

In our system, the controller does not need to perform
topology discovery, because it knows the whole network
topology from TPDL file. An initial network topology can
be built from a TPDL file at startup on the controller, which
is called Basic Topology. On the basis of Basic Topology,
the controller maintains a latest topology, which is updated
in real time according to the fault information reported by the
switches.

Besides, as distance formulas are included in TPDL,
we can get the distance between any two nodes in the network
at low cost, which greatly improves the efficiency of the
path calculating algorithm. Therefore instead of the Dijkstra’s
algorithm, a distance-formula-based A-star algorithm, where
distance formulas act as a heuristic function of the A-star
algorithm, is adopted in our scheme as the shortest path
calculation algorithms. The A-star algorithm introduces a
guess function, which provides a guess for the cost of the
shortest path from current node to the destination node. The
guess values are required to be lower than or equal to the real
coast value to ensure that the algorithm will find the optimal
path. The A-star algorithm with an exact guess function will
directly traverse the shortest path to the destination. While an
A-star algorithm with a guess function of zero corresponds to
the original Dijkstra algorithm [35].

The key of the A-star algorithm is the order of traverse,
which is guided and determined by a cost function f (n). The
evaluation function is as follows:

f(n) = g(n) + h(n) (N

where g(n) is the actual cost (i.e., the distance) from the
source node to current node n. The heuristic function A(n) is
the TPDL distance function (as shown in Algorithm 1), which
indicates the cost from node n to destination node. Therefore
f(n) gives an estimated cost from the source node to the
destination node via the intermediate node n. The traverse
will proceed in the direction of the minimum f (). In other
words, the more accurate the h(n) is, the faster we will find
the shortest path.

The combination of the A-star algorithm and distance for-
mulas is supposed to work efficiently in both failure-free and
partially failed network topologies. We use d(n) to indicate
the actual distance from node 7 to the destination node, and
the details are as follows.

1) FAILURE-FREE NETWORK TOPOLOGIES
In a failure-free network, the distance formulas are functions
that reflect the actual distance, which means that it is the

VOLUME 8, 2020

Algorithm 1 TPDL Distance Algorithm

Input: ng: source node; ny: destination node; list: list of
distance formulas in a TPDL file

Output: distance between node ng and ny

1: for each rule € list do
if types of ng and ny match rule’s requirement then
value < compute rule’s condition expression
with n; and ny

w N

4 if value = true then

5 distance < rule.distance
6: return distance

7 end if

8 end if

9: end for

10: distance <— o0
11: return distance

real cost function, i.e., h(n) = d(n). As a result, it is the
most efficient heuristic function that will guide the A-star
algorithm to find the shortest path in optimal time.

2) NETWORK TOPOLOGIES WITH FAILURESP

In a partially failed network, the actual distance between
source and destination might be larger than shortest distance,
i.e., h(n) <= d(n). In this case, the A-star algorithm works
more time but is able to find shortest path eventually. The
failed devices in a data center network usually account for
only a small fraction of all network components. Hence it
is most likely that there are only one or two link failures on
the original shortest path. With the guidance of the distance
formulas, the A-star algorithms will reach the failure node
along the optimal path. And then it backtraces to bypass cer-
tain failures. Finally it continues to search for the destination
node in the fastest way after bypassing.

C. FAILOVER MECHANISM

In data center networks, the requirements for network avail-
ability and reliability are often higher than those of general
networks. Therefore, fault detection and recovery in data
center networks are always more significant. In the SDN tech-
nology, the LLDP enables the functions of both 1) topology
discovery and 2) fault detection. However, as the TPDL has
been in charge of the topology discovery efficiently in cRetor,
a lightweight fault detection mechanism is expected.

Instead of using LLDP, we adopt the mechanism of periodi-
cally sending Hello packets to detect faults. Each switch node
periodically broadcasts Hello messages to all of its ports.
When a switch receives a Hello message from its neighbor,
it is ensured that the link to the neighbor node works well.
By default, we use 3 times the broadcast interval as the fault
timeout period. That is, if a switch does not receive a message
from a neighboring node for 3 consecutive intervals, it will
mark the corresponding link as failed. Then the switch will

116873

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

cRetor SDN Controller

Ak K LA LI N Ik &

— —Link failure

I S > Secure Channel
Original path

------- Detour path
New path

FIGURE 5. A 4-pod Fat-Tree topology (only two pods are shown). The
original path from Src to Dst is (Src, S1, 52, S3, S4, S5, Dst). After the
link failure between $4 and S5 occurring, the detour path for packets on
the way turns into (S4, S6, S7, S5). New path from Src to Dst becomes
(Src,S1,58,59,S57, S5, Dst).

reports the fault information to the controller through the
secure channel.

A combination of proactive and reactive failover mecha-
nism is designed for cRetor. When a failure occurs, the cor-
responding switch will report it to the controller by the
Port-Status message. The controller will not only update its
Current Topology but also proactively delete flow entries
whose output port connects to the failed link from the cor-
responding switch. In this way, when a new packet arrives at
this switch, a Packet-In message will be triggered because
of the table-miss. After receiving the Packet-In message,
the controller will run the A-star algorithm on the updated
Current Topology to find a new path to avoid failures, and
distribute flow entries to all the switches in the path. Every
time the controller runs the A-star algorithms, it finds a path
from the source node to the destination node of the packet
instead of from the current switch to the destination node,
so that the detoured paths can be avoided. The example given
below reflects this mechanism.

InFig. 5, a4-pod Fat-Tree topology is given (only two pods
are shown). Without failure, the original path of the flow from
Src to Dst is (Src, S1, 82,83, 54, S5, Dst). When the link
failure between S4 and S5 occurs, the cRetor SDN controller
processes the failure as follows:

116874

@ The link failure is detected by S4 and S5 via Hello
messages. S4 and S5 will report this failure to the con-
troller by Port-Status messages.

@ The controller receives the failure information from
S4 and S5 and updates its current topology. Then the
controller distributes Flow-Mod messages to S4 and S5
to delete all flow entries whose outport is the failed port.
@ The packets from Src to Dst reach S4. Since the
corresponding flow entry has been deleted, S4 sends a
Packet-In message to the controller.

@ The controller calculates the shortest path from S4 to
Dst, i.e. (54, 56,57, S5), and tell S4 to forward packets
to S6.

® The controller also calculates the shortest path from
Src to Dst, and distributes flow entry to related switch
S1, that the packets to Dst are supposed to be forwarded
to §8 instead of S2 any more.

In this way, the new path from Src to Dst is modified
to (Src,S1, 88,89,S87,85, Dst). The packets which have
been forwarded to S2 in S1 will arrive at S4 following
the original path, and then be redirected to detour path
(84, 56, 87, 85, Dst). After all packets in S2, S3 and S4
being processed, the data flow completely switches to the new
shortest path.

IV. EXPERIMENTS AND EVALUATIONS

We compare cRetor with different kinds of routing schemes to
demonstrate how cRetor performs. Firstly, OSPF is chosen as
it’s one of the most typical link-state routing algorithms and
is broadly adopted in data center networks [36]. In addition,
Floodlight is involved as the representative of conventional
SDN, because cRetor is based on SDN and SDN is introduced
to data center networks gradually. What’s more, we adopt
DCell topology and its routing algorithm since DCell is a typ-
ical topology-aware topology just like Fat-tree and BCube.

We implemented the TPDL parser using ANTLR [37] and
integrated it into our cRetor controller, which is on the basis of
open-source controller Ryu [38]. The cRetor controller and a
modified Open vSwitch switch are used with our experiments
to verify the feasibility and performance of cRetor. Several
virtual Fat-Tree networks are built with different sizes using
Mininet [39]. We also built standard SDN networks based on
Floodlight and Open vSwitch by Mininet as well as OSPF
networks using the Quagga [40] routing suite. In OSPF net-
works, we run multiple Quagga OSPF processes in different
Linux network namespaces, which is also implemented by
Mininet and very similar to the cRetor and SDN mode.

In addition, an SDN-based DCell implementation is
adopted for comparison. As shown in [41], this implemen-
tation shares very similar results with the original experiment
in DCell [7] in terms of fault tolerance and network capacity.
DCell uses a different topology from Fat-tree in the aspects of
topology structure and nodes number. However, DCell, as a
very typical topology-aware routing algorithm, is also well-
known like Fat-Tree and BCube.

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

The performance of cRetor is evaluated in the following
aspects: 1) path calculation performance, 2) network con-
vergence time, 3) control message overheads and 4) failure
recovery time.

A. PATH CALCULATION PERFORMANCE

We first evaluate the performance of the controller’s core
path computation algorithm, using the A-star algorithm with
distance formulas to compare with the commonly used
Dijkstra’s algorithm.

Different scale Fat-Tree network topologies are adopted for
path computation performance testing, with scales of k = 4,
k = 8 k = 12, and k = 16. The Dijkstra’s algorithm
and the A-star algorithm implementation in NetworkX [42]
are adopted. In cRetor, a distance computation function is
provided for the A-star algorithm in NetworkX as its heuristic
function. The evaluation program runs on an Intel Core i7
3.41 GHz PC with Python 3.7 runtime environment.

3.5

[A 3.08
30 [[_IDikstra o
254
§2.0 -
L
[}
£ 15
[1.26
1.0+
0.5+ 0.42
015 0.36 0.26
0.06 0.04 ’—,—‘
0.0 +H=——"F— T T
k=4 k=8 k=12 k=16
16 servers 128 servers 432 servers 1024 servers
Network size

FIGURE 6. Comparison of routing calculation time of the Dijkstra’s
algorithm and cRetor’s A-star algorithm in different network scales.

1000 pairs of source and destination nodes are chosen
randomly as input parameters of the Dijkstra’s and A-star
algorithms. It is shown in Fig. 6 that when the network size is
small, the calculation time of the two algorithms is very close,
and the Dijkstra’s algorithm even costs less time than A-star
algorithm. With the increase of the Fat-Tree network sizes,
it can be clearly seen that the time cost of the A-star algo-
rithm with distance formulas is much less than the Dijkstra’s
algorithm. Furthermore, it is also illustrated in the figure that
with the expansion of the network scale, the calculation time
of Dijkstra’s algorithm grows faster than that of the A-star
algorithm. For a large-scale data center network, this near-
linear growth rate is preferred.

The path calculation time in the Fat-Tree network (k = 12
and k = 16) with failures is also evaluated. As shown in
Fig. 7, with the increase of link failure rate in the network,
the time cost of the A-star algorithm with distance formulas
growths. On the contrary, the time costs of the Dijkstra’s
algorithm tends to decrease. The reason is as follows, as the
failure rate in the network increases, the errors in the pre-
diction of the heuristic function will increase. Therefore the
backtracking process needs to be performed more times and
cost more time. While in Dijkstra’s algorithm, higher link

VOLUME 8, 2020

—=— K=12 Dijkstra
—a—K=12 A*
—e— K=16 Dijkstra
301 —v—K=16 A*
2.5
82.0 -
[
<
[}
£ 1.5
[
1.0 4
0.5 - ‘_*/—.—//‘——‘”A
0.0 T T T T T T T
0% 1% 2% 5% 10% 15% 20%

Link Failure Rate
FIGURE 7. Comparison of routing calculation time of the Dijkstra’s
algorithm and the cRetor’s A-star algorithm in different link failure rates
when k = 12 (432 servers in total) and k = 16 (1024 servers in total).

failure rate means less edges, and as a result, the calculation
time reduces. It should be noted that in this experiment, even
if the link failure rate has been as high as 20%, the time
cost of A-star with distance formulas is still less than the
Dijkstra’s algorithm. In actual networks, especially the data
center networks, it is almost impossible to find a scenario
where there are 20% link failures at the same time.

B. NETWORK CONVERGENCE TIME
Secondly, we analyzed the network convergence time of
cRetor and compared it with the LLDP-based SDN, tradi-
tional OSPF routing protocol and DCell. Mininet is utilized to
build network topologies of different sizes for comparison of
network convergence time. Because of the different topology
structures, we use the closest network size for Fat-tree and
DCell (16 servers and 128 servers for Fat-tree, 20 servers
and 132 servers for DCell). The network convergence time
is analyzed in the following four implementations: 1) Ryu-
based cRetor controller and modified Open vSwitch switches,
2) Floodlight SDN controller and original Open vSwitch
switches, 3) Quagga’s OSPF routing algorithms and virtual
Linux switches by Mininet and 4) DCell routing scheme
based on POX controller and Open vSwitch switches.
Different convergence time measurement methods are cho-
sen for cRetor, Floodlight and OSPF on the same principle:
the time that the any two nodes are able to communicate
with each other since the simulation starts. For the distributed
OSPF routing algorithm, the time from the running of the
network to the establishment of all the routing table entries
in all switches is counted as the network convergence time.
For the Floodlight SDN network, the time from the startup of
the network to the time that the Floodlight controller detects
all the links in the network through LLDP, i.e., the time when
the Floodlight controller obtains the topology of the whole
network, will be counted as its convergence time. For cRetor
and DCell, as long as the switch establishes a connection
with the controller, the network can be considered to have
converged. Therefore, we choose two nodes in the network
that are located in different Pods as the source and destination

116875

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

cRetor
OSPF
Floodligh
ez | pca
504 50.27
39.9640.65
840 B P
@
L
)
£ 30
[t
204
10 4 8.63
0 0.93 0.88 0.20
A A
7 ‘9’);.@ <% %// 4’06/)% 3 Y
a@/z © &@’L %, & \,\@/7/
c~=,:P @’o\ ’L%‘ @,&

Network Size
FIGURE 8. Comparison of network convergence time of cRetor, OSPF,
Floodlight and DCell in different network sizes.

nodes. The time from network startup to the first packet
reaches the destination node will be regarded as cRetor’s
convergence time.

It is demonstrated in Fig. 8 that in Fat-Tree networks of
k = 4 and k = 8, the convergence time of cRetor is much
smaller than the traditional link state protocol OSPF and
LLDP-based SDN network. During the experiment, cRetor
can complete the transmission of the first packet in less than
1 second. In comparison, both OSPF and Floodlight take tens
of seconds to complete the detection and synchronization
of the network topology. As for the DCell, in a small-sized
network, it converges as long as the cRetor does. While in
a larger network it takes much more time similar to the
Floodlight.

The scalability of these three routing algorithms is also
worth discussing from the convergence time with different
scale of networks. For cRetor, when the network size is
expanded from k = 4 to k = 8§, there are only some
fluctuations in the convergence time and basically no major
changes occur. This is due to the fact that the main overhead
in cRetor’s convergence stage is the establishment of secure
channels between switches and the controller, which is less
performance-consuming. For OSPF, Floodlight and DCell,
the convergence time increases as the network scale expands,
because the exchanged information among switches and the
controller (e.g. LSAs and DBs in OSPF and LLDP packets in
Floodlights and DCell) will increase rapidly as the network
scales up. Especially for Floodlight and DCell, the topology
detection mechanism has pretty high-performance require-
ments for SDN controllers, hence the SDN controller is very
likely to become a bottleneck in the entire network.

C. END-TO-END DELAY

In a typical SDN network, when the first packet of a flow is
sent, the controller is supposed to find a forwarding path and
establish it by distributing flow entries. Therefore, the delay
of the first packet reflects the processing performance of
the controller. While the delay of subsequent packets of this

116876

flow depends only on the network topology structure and
the forwarding capability of switches. As a result, in the
end-to-end delay evaluation, the delay of the first packet is
selected as the evaluation criterion.

The Ping command is used to measure the first packet
delay in Mininet network for both cRetor, Floodlight and
DCell. We used different traffic models to evaluate the per-
formance: One-to-One, One-to-All, and All-to-All, which are
representative inter-data center traffic scenarios. The network
for cRetor and Floodlight is a Fat-Tree topology with k = 4,
that is, the numbers of flows in different traffic models are
1, 15 and 240, respectively. In DCell, a 20-server DCell
network is used, with flow numbers of 1, 19 and 380. After
convergence, the node(s) in the network will send out the first
packet of the flows at the same time. The returned routing trip
time (RTT) is divided by 2 to get the end-to-end delay. The
results are as follows:

cRetor
Floodlight
DCell

300 4

250

200 +

>.150

Delay (ms)

100

50

PO I s

T
One-to-One

T T
One-to-All All-to-All

Traffic Pattern
FIGURE 9. First packet end-to-end delay of cRetor and Floodlight (in a
16-server Fat-tree network), as well as DCell(in a 20-server DCell
network).

We can find in Fig. 9 that the end-to-end delay in cRetor is
lower than both Floodlight and DCell under all three different
traffic modes, even they share the same SDN platform. One
of the reasons is cRetor’s LLDP-based A-star path calcula-
tion algorithm performs better than the Dijkstra algorithm in
Floodlight. Also, the protocol overhead of cRetor is lower
than the traditional SDN technology (As shown in the next
evaluation). And the SDN version of DCell also inherits this
topology discovery mechanism. Therefore, compared with
conventional SDN solutions, cRetor performs better in first-
packet end-to-end delay. Of course, the first packet delay
of cRetor is still relatively high compared with Fat-Tree
two-level routing, BCube source routing, and OSPF algo-
rithms. This is because the forwarding decisions of these
algorithms are determined on switches without interaction
between switches and the controller. We leave this an open
problem for future work to eliminate this kind of delay.

D. CONTROL MESSAGE OVERHEAD

We also use TCPDump to collect the control message over-
heads of the three routing algorithms for the first 120 seconds.
The results are shown in Fig. 10 to Fig. 12. For OSPF, all
the types of control messages specified in the OSPF spec

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

—— cRetor Packets
3500 o —— OSPF Packets
—— Floodlight Packets
—— DCell Packets

3000

2500

2000

1500 4

Traffic (packet/s)

1000

500

Rt
20 40 60 80 100 120

Time (sec)

FIGURE 10. Control messages overheads in packet number of the
4 routing algorithms (16 servers for cRetor, OSPF and Floodlight,
20 servers for DCell).

are taken into account. Floodlight and DCell control packets
include OpenFlow messages and LLDP messages between
nodes. OpenFlow messages and Hello messages are counted
for cRetor.

From the perspective of packets number in Fig. 10,
the DCell sends the most packets both at convergence
stage and stable stage with the highest speed of more
3000 packets/s. Although the server number of the DCell
network is a little more than that of the Fat-tree network,
the packet number is much higher than other routing algo-
rithms. The reason is that it sets a smaller LLDP discovery
interval (1 second) for a faster failure recovery time, which is
smaller than that in Floodlight(15 seconds).

In OSPF and Floodlight, it takes tens of seconds for the
control messages number to peak, which is corresponding to
their convergence process (OSPF converges in about 50s and
Floodlight converges in about 10s). After the convergence is
complete, both OSPF and Floodlight are in a stable state. The
corresponding topology detection packets (OSPF Hello for
OSPEF, Packet-In and Packet-Out of LLDP for FloodLight)
are sent at regular intervals. As shown in Fig. 10, the Hello
packet interval of OSPF is 10s and the LLDP detection
interval of Floodlight is 15s. It should be noted that even
our experimental scenario is a small Fat-tree topology with
k = 4, the control packets reach 200 packets per flooding. For
a k pod Fat-tree topology, the number of Packet-In messages
will be:

3
Npacket—in = Nswitch X Nport — Nserver = k (8)

where Ngyiren is the number of all switches, Npo,s is port
number per switch and Ny, 1 the number of servers. Hence
for a common k = 48 topology, the number of Packet-In
message will be 110592, which is likely to lead to higher
processing delay as mentioned in section I. It is also worth
noting that there is an LSA update every 30 minutes which
also raises many packets in OSPF.

For cRetor, the number of cRetor control messages fluc-
tuates very little during the whole time, because there is no
convergence process. Most of the control messages in cRetor

VOLUME 8, 2020

—— cRetor Bytes
7000 o —— OSPF Bytes
—— Floodlight Bytes
—— DCell Bytes

6000 -

5000

4000

3000

Traffic (KByte/s)

2000

1000 +

0 T y T T T T
0 20 40 60 80 100 120

Time (sec)

FIGURE 11. Control messages overheads in bytes of the 4 routing
algorithms (16 servers for cRetor, OSPF and Floodlight, 20 servers for
DCell).

are Hello messages. In the experiment, the hello message
interval is set to 1 second, so the total number of Hello
messages in cRetor is higher than the other two algorithms.
However, unlike the LLDP detection packets in Floodlight,
the Hello packets in the cRetor are among switches and won’t
be forwarded to the controller, so that there is no extra load to
the controller. As a result, it consumes less CPU and network
resources of switches and controllers.

From the perspective of bytes of control messages in
Fig. 11, the total number of control messages of Floodlight
during convergence is much larger than cRetor, OSPF and
DCell. The data from 30s to 120s in Fig. 12 demonstrates
the comparison among OSPF, cRetor and DCell more clearly.
The traffic of DCell is still the largest even in the same
topology discovery as cRetor. It also can be seen that the
control message traffic in the OSPF convergence process is
also much larger than the cRetor Hello packet traffic.

—— cRetor Bytes
160 —— OSPF Bytes
—— Floodlight Bytes
140 - —— DCell Bytes
120
0
S 1004
>
)
< 80
L
=
2 60 ||
404
20 4
0 T T T T T
40 60 80 100 120

Time (sec)

FIGURE 12. Control messages overheads in bytes of the 4 routing
algorithms (16 servers for cRetor, OSPF and Floodlight, 20 servers for
DCell).

Therefore, from the perspective of the control messages
overhead, cRetor produces a relatively smooth and pre-
dictable control packet traffic and rarely has bursty control
traffic. And the higher frequency of Hello packets enables
cRetor to discover network failures faster.

116877

IEEE Access

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

E. FAILOVER TIME

Finally, we evaluated cRetor’s failover capabilities and com-
pared it to OSPF, Floodlight and DCell. A pair of hosts in
different pods of the experiment network are selected as the
source and destination nodes. On the source node, a client
program runs, which sends a UDP packet to the server every
1 millisecond, with an incremental sequence number in it.
On the destination node, a server program is running, which
will listen to the specific UDP port. It will store the sequence
numbers in received packets and interval between this packet
and the last packet.

The other equivalent path from the source node to the
destination node is disconnected in advance, leaving only one
shortest path. In other words, the routing algorithms have to
find a longer feasible path for new packets after the failure
occurs.

In our experiments, data flow could not be recovered in
Floodlight. It could be found that the default idle age of the
flow table entries sent by Floodlight is 5 seconds, which
means, if no packet hits this flow table entry within 5s,
the flow table will be deleted automatically. In this way,
Floodlight can handle situations where the link is down and
the data flow stops as well. However, in our experiments,
the UDP data flow never stops and the data packets will
always hit the invalid flow table entry, causing the flow
entry cannot be deleted and the data transmission cannot be
resumed.

In the experiment for OSPF, the OSPF Fast Convergence
feature has a great impact on the experimental results. In the
case where Fast Convergence is not enabled by default,
the delay of the SPF Timer is 5s, while the initial value of
the SPF Timer is 50ms after that feature being turned on.
According to Cisco’s documentation [43], the Fast Conver-
gence feature will turn on by default since Apr 2017 (I0S
Release 16.5.1). So we conducted our experiments with both
this feature on and off.

[]Recovery Time

55 [JPacket Loss 2800
504 5.017 2684 - 2700
2607, 2600 =
E"é, 4.5 %
©
g 42500 &
i 4.04 »
w
> 375 3
g - 2400 3
§ 35]
©
14 - 2300 &
3.0
0.04 J20
14
8:8250.017 ’&'—‘ T1o
0.01
0.00 | 0 0

T
cRetor OSPF OSPF DCell
(Fast Convergence)

FIGURE 13. The recovery time and lost packet number of UDP flow.
cRetor, OSPF and OSPF with fast convergence enable are in a 16-server
Fat-tree network, while DCell is in a 20-server DCell network.

As shown in Fig. 13, the OSPF algorithm with Fast Con-
vergence off has a flow recovery time of 5 seconds, during

116878

which more than 2,600 packets are lost. As for the DCell,
it takes more than 3 seconds to reconfigure the switches to
forward the flow again. And similar to the OSPF, more than
2600 packets are lost during reconfiguration. While for the
OSPF with Fast Convergence enabled, the flow recovery time
is greatly reduced, and the reconvergence is completed in
about 20ms. But in the process, a small number of packets
are still lost. The recovery time of cRetor outperformed the
OSPF algorithm. The link switching delay is only 17ms, and
no packet loss occurs during the handover.

V. RELATED WORK

The emergence of the SDN leads to the revolution of network-
ing programmability from user configuration of routers and
FPGA-based hardware programming to the new OpenFlow-
based diagram with decoupled control and data plane as well
as centralized controllers. This improvement of networking
programmability makes the network more dynamic, robust
and able to experiment with new ideas and protocols [44].

In recent years, programmability in the control plane
of networks is moving from low-level languages such as
OpenFlow to higher-level languages. High-level program-
ming languages can be powerful tools for implementing
and abstracting different important functions of SDN such
as network-wide structures, distributed updates and virtual-
ization [15]. NetCore [45] is a high-level, declarative lan-
guage for defining packet-forwarding policies on SDNs.
FatTire [46] focuses more on the degree of fault tolerance
required, though it is also used to specify the forwarding
rules of packets in the network. In contrast, TPDL pays more
attention to the network topology itself instead of forward-
ing strategies for packets. TPDL itself is a tool for network
topology description, which provides support for upper-layer
network forwarding decisions.

The existing software-defined networking scheme enables
the programmability of the networking control plane, while
the forwarding process is still burned in the switch chip. As a
result, there is increasing concern over the extensibility in
new protocols and actions supporting. The updates of new
protocols and features rely heavily on hardware redesigns by
networking vendors, which also means higher cost and longer
update period. Consequently, P4 [47] is proposed to allow one
to program packet parsing and forwarding, setting more open
networking and devices in motion. Instead of being created as
areplacement of P4, TPDL works in the control planes, lever-
aging the data plane programmability brought by P4 to lay the
foundation for more efficient forwarding schemes. Moreover,
as mention in section I, TPDL parser could be embedded into
switches for higher-performance. In that situation, one can
make use of the capacities of P4 for implementing switch-side
routing scheme, like storing distance formulas and neighbor
table looking up.

VI. CONCLUSION AND FUTURE WORK
In this paper, an SDN-based topology-aware routing scheme
cRetor for regular network topologies is proposed, which

VOLUME 8, 2020

Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

IEEE Access

leverages the regularities of topology in the data center
networks to achieve efficient topology description and dis-
tance calculation. A formalized topology description method
and corresponding topology description language are cre-
ated, so that network operators can describe the topology
of the entire network in a simple way. Then we designed
and implemented a routing scheme based on TPDL and
SDN technology, as well as an efficient routing calculation
method and fault handling mechanism based on the A-star
algorithm and TPDL. The experimental results show that
compared with the OSPF, the conventional SDN network
with Floodlight controller and DCell, the route calculation
of the cRetor is faster, the network convergence time is
shorter, the control message overheads are more stable and
predictable, and the fault recovery performance is also excel-
lent. It is believed that cRetor can exploit the potential of
data center networks better and improve the efficiency of the
network.

Further research on TPDL and cRetor are also in process,
such as 1) TPDL application in both controllers and switches
and 2) automatic generation of distance formulas by machine
learning algorithms. There are also many open problems in
the framework of cRetor, e.g., 1) adaptability to network
dynamic changes, 2) load balancing using the global view
of SDN and the equal-cost multipath feature in data center
networks, and 3) integrate additional information (such as
bandwidth, etc.) into the distance formulas to get a more
accurate cost.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. ACM SIGCOMM Conf. Data Com-
mun., 2008, p. 63.

[2] S. Azizi, N. Hashemi, and A. Khonsari, “HHS: An efficient network
topology for large-scale data centers,” J. Supercomput., vol. 72, no. 3,
pp. 874-899, Jan. 2016.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Labhiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible data
center network,” in Proc. ACM SIGCOMM Conf. Data Commun., 2009,
p.51.

[4] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen trees: Balancing
data center fault tolerance, scalability and cost,” in Proc. 9th ACM Conf.,
New York, New York, USA, 2013, pp. 85-96.

[5] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible, and high-
performance data center network,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 11, pp. 3351-3365, Nov. 2016.

[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A high performance, server-centric network architecture
for modular data centers,” in Proc. ACM SIGCOMM Conf. Data Commun.,
2009, pp. 63-74.

[71 C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” in Proc. ACM SIG-
COMM Conf. Data Commun., 2008, p. 75.

[8] T. A. Nguyen, D. Min, E. Choi, and T. D. Tran, “Reliability and avail-
ability evaluation for cloud data center networks using hierarchical mod-
els,” IEEE Access, vol. 7, pp.9273-9313, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8604034/

[9] F. Gilabert, M. E. Gamez, P. Lapez, and J. Duato, “On the influ-
ence of the selection function on the performance of fat-trees,” in
Euro-Par Parallel Processing (Lecture Notes in Computer Science),
vol. 4128, W. E. Nagel, W. V. Walter, and W. Lehner, Eds. Berlin,
Germany: Springer, 2006, pp. 864—-873. [Online]. Available: http:/link.
springer.com/10.1007/11823285_91

VOLUME 8, 2020

(10]

(11]

[12]

(13]

(14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

A. Farouk and H. M. El-Boghdadi, “On the influence of selec-
tion function on the performance of fat-trees under hot-spot traffic,”
in Proc. 9th IEEE/ACS Int. Conf. Comput. Syst. Appl. (AICCSA),
Dec. 2011, pp. 120-127. [Online]. Available: http://ieeexplore.ieee.org/
document/6126622/

J. Cao, D. Maltz, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan,
Y. Zheng, H. Wu, and Y. Xiong, “Per-packet load-balanced, low-
latency routing for clos-based data center networks,” in Proc. 9th ACM
Conf. Emerg. Netw. Exp. Technol., 2013, pp. 49-60. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2535372.2535375

Z. Qian, F. Fan, B. Hu, K. L. Yeung, and L. Li, “Global round
robin: Efficient routing with cut-through switching in fat-tree data cen-
ter networks,” IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2230-2241,
Oct. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/
8469071/

A. Zhao, Z. Liu, J. Pan, and M. Liang, “A novel addressing and routing
architecture for cloud-service datacenter networks,” IEEE Trans. Services
Comput., early access, Oct. 8, 2019. [Online]. Available: https://ieeexplore.
ieee.org/document/8862883/, doi: 10.1109/TSC.2019.2946164.

S. Habib, F. S. Bokhari, and S. U. Khan, “‘Routing techniques in data center
networks,” in Handbook Data Centers. New York, NY, USA: Springer,
Mar. 2015, pp. 507-532.

J. Esch, “Prolog to, ‘software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, no. 1, pp. 10-13, Jan. 2015.

S. Jain, M. Zhu, J. Zolla, U. Holzle, S. Stuart, A. Vahdat, A. Kumar,
S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, and
J. Zhou, “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM Conf., 2013, pp. 1-10.

C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray,
M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat, B4 and
after: Managing hierarchy, partitioning, and asymmetry for availability and
scale in Google’s software-defined WAN,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2018, pp. 74-87.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, Apr. 2010, pp. 9-19.

Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff, “Detecting heavy
flows in the SDN match and action model,” Comput. Netw., vol. 136,
pp. 1-12, Dec. 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128618300859

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM Conf., 2011,
pp. 254-265.

R. Trestian, G.-M. Muntean, and K. Katrinis, “Micetrap: Scalable traffic
engineering of datacenter mice flows using openflow,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage., Mar. 2013, pp. 904-907.

H. Xu and B. Li, “RepFlow: Minimizing flow completion times with
replicated flows in data centers,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2014, pp. 1581-1589.

H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Open-
qos: An openflow controller design for multimedia delivery with end-
to-end quality of service over software-defined networks,” in Proc. Asia
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Feb. 2012,
pp. 1-8.

H. Zhang, F. Tang, and L. Barolli, “Efficient flow detection and
scheduling for SDN-based big data centers,” J. Ambient Intell.
Humanized Comput., vol. 10, no. 5, pp.1915-1926, May 2019.
http://link.springer.com/10.1007/s12652-018-0783-6

J. Li, J. Hyun, J.-H. Yoo, S. Baik, and J. W.-K. Hong, “Scal-
able failover method for data center networks using OpenFlow,”
in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014,
pp. 1-6.

B. Raeisi and A. Giorgetti, “Software-based fast failure recovery in load
balanced SDN-based datacenter networks,” in Proc. 6th Int. Conf. Inf.
Commun. Manage. (ICICM), Oct. 2016, pp. 95-99.

H. Jin, G. Yang, B.-Y. Yu, and C. Yoo, “FAVE: Bandwidth-aware
failover in virtualized SDN for clouds,” in Proc. IEEE 12th Int. Conf.
Cloud Comput. (CLOUD), Jul. 2019, pp. 505-507. [Online]. Available:
https://ieeexplore.ieee.org/document/8814526/

A. Shirmarz and A. Ghaffari, ‘‘Performance issues and solutions in SDN-
based data center: A survey,” J. Supercomput., vol. 2020, pp. 1-49,
Jan. 2020. [Online]. Available: http://link.springer.com/10.1007/s11227-
020-03180-7

116879

http://dx.doi.org/10.1109/TSC.2019.2946164

lE E E ACCGSS Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

YANTAO SUN (Member, IEEE) received the B.S.
degree from the Shandong University of Tech-
nology, in 1999, the M.S. degree from Shandong
University, in 2002, and the Ph.D. degree from the
Institute of Software, Chinese Academy of Sci-

[29] S. Subbiah and V. Perumal, ““Energy awake network traffic steering using
SDN in cloud environment,” in Proc. 2nd Int. Conf. Recent Trends Chal-
lenges Comput. Models (ICRTCCM), 2017, pp. 31-36. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/8057504/

[30] Q. Liao and Z. Wang, “Energy consumption optimization scheme of
cloud data center based on SDN,’j Procedia. Comput. Sci.,. vql. 131, ences, in 2006. He studied at Columbia University
pp- 1318-1327, Oct. 2018. [Online]. Available: https:/linkinghub. as a Visiting Scholar, from September 2012 to

i~
elsevier.com/retrieve/pii/S1877050918307075 Ef:—z September 2013. He is currently an Associate Pro-
)

31] M. D. S. Conterato, T. C. Ferreto, F. Rossi, W. D. S. M s . .
(31] onterato erreto 0SSt arques fessor with the School of Computer and Infor-

and P. S. S. de Souza, “Reducing energy consumption in SDN-based N i’
data center networks through flow consolidation strategies,” in Proc. mation Technology. He has published over 30

34th ACM/SIGAPP Symp. Appl. Comput., Apr. 2019, pp. 1384-1391. articles on international journals and conferences, such as WCMC, Mobile

http://dl.acm.org/citation.cfm?doid=3297280.3297420 Networks and Applications, the Journal of Communication, GLOBECOM,
[32] S. 1. Alliance. Whitepaper on SDN Controller Performance in Data LCN, and the Journal of Software. He also holds six patents. His research

Center Scenario. Accessed: Jan. 14, 2020. [Online]. Available: interests include cloud computing, data center networks, wireless sensor

https://www.ixiacom.com/zh/resources/sdn-controller-performance networks, the Internet of Things, multimedia communication, and network
[33] Open vswitch. Accessed: Nov. 20, 2019. [Online]. Available: management.

http://www.openvswitch.org/

[34] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, “A survey on the
contributions of software-defined networking to traffic engineering,” IEEE
Commun. Surveys Tuts., vol. 19, no. 2, pp. 918-953, 2nd Quart., 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/7762818/

[351 J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer,
“Unicast QoS routing algorithms for SDN: A comprehensive
survey and performance evaluation,” [EEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp.388-415, 1st Quart.,, 2018. [Online]. Available:
http://ieeexplore.ieee.org/document/8027021/

[36] P. Zeng, Y. Shen, Z. Qiu, Z. Qiu, and M. Guo, “SRP: A routing pro-
tocol for data center networks,” in Proc. 16th Asia—Pacific Netw. Oper.
Manage. Symp., Hsinchu, China, Sep. 2014, pp. 1-6. [Online]. Available:
http://ieeexplore.ieee.org/document/6996564/

[37] Antlr Another Tool for Language Recognition. Accessed: Nov. 16, 2019.
[Online]. Available: https://www.antlr.org/index.html

[38] RYN SDN Framework. Accessed: Nov. 16, 2019. [Online]. Available:
https://osrg.github.io/ryu/

QIANG LIU was born in Changsha, Hunan, China,
in 1980. He received the B.S. and Ph.D. degrees in
communication and information system from the
Beijing Institute of Technology, Beijing, China,
in 2002 and 2007, respectively.

From 2007 to 2018, he was an Assistant Pro-
fessor with the School of Computer and Infor-
mation Technology, Beijing Jiaotong University,
where he has been an Associate Professor, since

[39] Mininet: An Instant Virtual Network on Your Laptop (or Other PC). 2019. He is the author of more than 50 articles and
Accessed: Nov. 16, 2019. [Online]. Available: http://mininet.org/ four patents. His research interests include mobile ad-hoc networks, UAV

[40] Quagga Routing Suite. Accessed: Nov. 16, 2019. [Online]. Available: ad-hoc networks, wireless media access control, wireless routing, and swarm
https://www.nongnu.org/quagga/index.html intelligence.

[41] Dcell Data Center Network Structure Implemented With Software-
Defined Networking (SDN). Accessed: Apr. 20, 2020. [Online]. Available:
https://github.com/chuyangliu/dcell

[42] A.A.Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using network,” in Proc. 7th Python Sci. Conf.,
G. el Varoquaux, T. Vaught, and J. Millman, Eds, Pasadena, CA USA,
2008, pp. 11-15.

[43] L. D. Ghein. Change of Default OSPF and is-is SPF and Flooding
Timers and ISPF Removal. Accessed: Nov. 20, 2019. [Online]. Available:
https://www.cisco.com/c/en/us/support/docs/ip/ip-routing/211432-
Change-of-Default-OSPF-and-IS-1S-SPF-and.html

[44] F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, ““‘A software engi-
neering perspective on SDN programmability,” IEEE Commun. Surveys
Tuts., vol. 18, no. 2, pp. 1255-1272, 2nd Quart., 2016.

[45] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and run-
time system for network programming languages.,” in Proc. POPL, 2012,
p.217.

[46] M. Reitblatt, M. Canini, A. Guha, and N. Foster, ‘“FatTire—Declarative
fault tolerance for software-defined networks,” in Proc. HotSDN, 2013,
p- 109.

[47] P. Bosshart, “P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87-95, Jul. 2014.

SONG DAI received the B.E. degree in software
engineering from Jiangxi Agricultural University.
He is currently pursuing the M.E. degree with the
School of Computer and Information Technology,
Beijing Jiaotong University, China. His research
interests include software-defined networking and
mobile ad hoc networking.

ZEQUN JIA received the B.E. degree in computer
science and technology from Beijing Jiaotong
University, China, where he is currently pursu-

CHENGXIN LIU received the B.E. degree in
computer science and technology from Beijing
Jiaotong University, China, where he is currently

= = ing the Ph.D. degree with the School of Com- pursuing the M.E. degree with the School of Com-

4 puter and Information Technology. His research puter and Information Technology. His research

| o interests include data center networking, software- interests include software-defined networking and
- defined networking, vehicular networking, and satellite networking.

information-centric networking.

116880 VOLUME 8, 2020

	INTRODUCTION
	DEFINITION AND DESCRIPTION OF REGULAR TOPOLOGY
	FORMALIZED DEFINITION OF REGULAR TOPOLOGY
	DISTANCE FORMULAS
	TOPOLOGY DESCRIPTION LANGUAGE TPDL
	DEVICES DEFINITIONS
	CONNECTIONS DEFINITIONS
	DISTANCE FORMULAS DEFINITIONS

	DESIGN AND ALGORITHMS
	FRAMEWORK OF cRetor
	PATH CALCULATION ALGORITHM
	FAILURE-FREE NETWORK TOPOLOGIES
	NETWORK TOPOLOGIES WITH FAILURESP

	FAILOVER MECHANISM

	EXPERIMENTS AND EVALUATIONS
	PATH CALCULATION PERFORMANCE
	NETWORK CONVERGENCE TIME
	END-TO-END DELAY
	CONTROL MESSAGE OVERHEAD
	FAILOVER TIME

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ZEQUN JIA
	YANTAO SUN
	QIANG LIU
	SONG DAI
	CHENGXIN LIU

