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ABSTRACT This paper develops a novel nonlinear adaptive robust filter called the multiple-step randomly
delayed variational Bayesian adaptive high-degree cubature Huber-based filter (MRD-VBAHCHF) for a
class of nonlinear stochastic systems whose measurements are randomly delayed by multiple sampling times
and corrupted by contaminated Gaussian noise with unknown covariance. First, a system with randomly
delayed measurement is modeled in terms of multiple Bernoulli random variables. Then, the multiple-step
randomly delayed high-degree cubature Kalman filter (MRD-HCKF) is derived by employing the fifth-
degree cubature rule to compute the mean and covariance of the nonlinear equations in the system model.
Next, the MRD-HCKF is modified to the MRD-VBAHCHF by incorporating the variational Bayesian
theory and Huber technique for estimating the measurement noise covariance online and suppressing
the influence of non-Gaussian noise. Consequently, the proposed filter is not only adaptive to unknown
measurement noise statistics but also robust to randommeasurement delays and non-Gaussian noise. Finally,
the MRD-VBAHCHF is verified for use in inertial navigation system/visual navigation system (INS/VNS)
integrated navigation on asteroid missions, and the results of Monte Carlo simulations demonstrate that
the MRD-VBAHCHF outperforms the high-degree cubature Kalman filter (HCKF), the MRD-HCKF and
the variational Bayesian adaptive high-degree cubature Huber-based filter (VBAHCHF), thus showing the
superiority of the proposed filter.

INDEX TERMS Randomly delayed measurements, adaptive robust filter, INS/VNS integrated navigation,
asteroid missions.

I. INTRODUCTION
Asteroid exploration is significant for advancing our under-
standing of the Solar System and monitoring potential threats
to the Earth. On future asteroid exploration missions, high-
accuracy autonomous navigation will be an important foun-
dation for guaranteeing the survival of the prospectors and
completing the scheduled tasks. Inertial navigation systems
(INSs) [1] and visual navigation systems (VNSs) [2] are two
extensively used types of autonomous navigation systems for
asteroid prospectors. An INS offers superior performance on
a short time scale, but its navigation error drifts over time.
By contrast, although a VNS can provide long-term accuracy
in position and attitude bymatching observations against a set
of landmarks in an onboard database [2], its data update rate
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is infrequent because of the complexity of the corresponding
image processing algorithm. Because of the complementary
properties of INSs andVNSs, INS/VNS integrated navigation
has been widely adopted for asteroid prospectors [3], [4]. The
accuracy of INS/VNS integrated navigation strongly depends
on the nonlinear filter used to fuse the data from the INS and
VNS.

The most extensively used nonlinear filter for INS/VNS
integrated navigation is the extended Kalman filter
(EKF) [4], [5]. However, the performance of the EKF will
be severely degraded for a system with strong nonlinearities
because the EKF is based on first-order linearization [6].
Over the past few decades, several well-known Gaussian
approximation filters have been developed based on deter-
ministic sampling methods, such as the unscented Kalman
filter (UKF) [7], [8], the cubature Kalman filter (CKF)
[9], [10] and theGauss-Hermite quadrature filter (GHQF) [11].
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The GHQF, which is based on a quadrature rule, can achieve
better estimation accuracy than the UKF or CKF but suffers
from the curse of dimensionality [12]. Recently, the arbitrary-
degree cubature rule has been applied to develop the high-
degree cubature Kalman filter (HCKF), which has a lower
computational complexity than that of the GHQF [13].

However, it is worth pointing out that the abovementioned
filters perform well only when three assumptions are sat-
isfied: 1) the measurements arrive at the filter without any
delay at every instant of time, 2) the measurement noise
is subject to a Gaussian distribution, and 3) the statisti-
cal characteristics of the measurement noise are accurately
known. However, in real-world applications, any of these
assumptions may be violated since measurements are always
randomly delayed due to unreliability in the transmission
medium between the visual sensors and the filter [14] and
are corrupted by contaminated Gaussian noise with unknown
covariance arising from the complicated algorithmic image
processing [15]–[17]. In this situation, the traditional Gaus-
sian approximation filters perform poorly due to a lack of
adaptivity and robustness.

To address the problem of estimation from measurements
with random delay, various nonlinear filtering schemes,
which make use of Bernoulli random variables to model the
randomly delayed measurements, have been studied over the
past decades. Hermoso-Carazo and Linares-Pérez proposed
improved EKFs and UKFs for nonlinear systems in which
the measurements are randomly delayed by one step [18]
and two steps [19]. Later, by augmenting the states and
the measurement noises, this work was generalized to a
class of systems with multiple-step random measurement
delays [20]–[22]. In [23], the multiple-step randomly delayed
cubature Kalman filter (MRD-CKF), which uses the resid-
uals and channel statistics of the received measurements to
calculate tuned weighting factors, was proposed to handle
nonlinear systems in the presence of multiple-step randomly
delayed measurements. However, these studies ignored the
presence of contaminated Gaussian measurement noise with
unknown covariance, which may cause the filter accuracy
to deteriorate. To tackle non-Gaussian measurement noise,
Huber proposed a generalized likelihood technique [24] that
is a hybrid of the l1 and l2 norm estimation techniques [25].
The Huber technique exhibits robustness with respect to
contaminated Gaussian noise since it behaves both as an
l1 norm estimator for large residuals to reduce the impact
of perturbing noise and as an l2 norm estimator for small
residuals to ensure both quality and efficiency in the case
of a Gaussian distribution [26]. For the estimation prob-
lem under measurement noise with unknown statistics, vari-
ational Bayesian (VB) theory has been combined with a
Gaussian filter to estimate the measurement noise covari-
ance along with the system state and adaptively adjust
the state-space model [16], [27]. Furthermore, the Huber
technique has been embedded into VB theory to achieve
both adaptivity and robustness through the Gaussian-Newton
method [28], [29].

To overcome the aforementioned challenges, we propose
a novel multiple-step randomly delayed variational Bayesian
adaptive high-degree cubature Huber-based filter (MRD-
VBAHCHF) in this paper. The prediction is derived based on
a combination of the fifth-degree cubature rule, a multiple-
step randomly delayed system model and VB theory. The
update process is developed by modifying the conventional
VB adaptive filter with the Huber technique. The main con-
tribution of our paper is the proposal of a high-accuracy
nonlinear filter with strong adaptivity and robustness; we not
only consider multiple-step random delays in the received
measurements but also account for the non-Gaussianity and
covariance uncertainty of the measurement noise.

This paper is organized as follows. Section II formally
defines and lays the analytical foundations for the consid-
ered problem. In section III, the multiple-step randomly
delayed high-degree cubature filter (MRD-HCKF) is pre-
sented. In section IV, the MRD-HCKF is combined with
the VB theory and Huber technique to derive the proposed
MRD-VBAHCHF. Section V introduces a typical INS/VNS
integrated navigation system used on asteroid missions.
Section VI proves the superiority of the proposed filter on the
basis of comparative simulations, and conclusions are drawn
in section VII.

II. PROBLEM STATEMENT AND PRELIMINARIES
The nonlinear discrete-time stochastic system considered in
this paper is described by [30]

xk = f (xk−1)+ wk−1 (1)

zk = h(xk )+ vk (2)

where xk ∈ Rn is the state vector; m zk ∈ Rm is the
measurement vector without delay; f (xk−1) and h(xk ) are
the state function and measurement function, respectively,
of the nonlinear system; wk−1 ∈ Rn is the process noise,
which is subject to a Gaussian distribution with zero mean
and covarianceQk−1; vk ∈ Rm is the measurement noise; and
the subscript k denotes the discrete time tk .

A. MEASUREMENTS WITH MULTIPLE-STEP RANDOM
DELAYS
In practice, visual measurements transferred to a processing
center (filter) through an unreliable communication channel
are always delayed. If the maximum transmission delay is d
steps, then the measurements received by the filter at the kth
time instant may be zk−i (0 6 i 6 d). Therefore, the mea-
surement equation in (2) should be rewritten as follows:
yk = (1− τ1) zk + τ1 (1− τ2) zk−1 + τ1τ2 (1− τ3) zk−2

. . .+

(
d−1∏
s=1

τs

)
(1− τd ) zk−d+1 + [1− (1− τ1)

− τ1 (1− τ2)− · · · −

(
d−1∏
s=1

τs

)
(1− τd )

]
zk−d

=

d∑
s=0

τ (s,j)zk−s (3)
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where yk is the measurement actually received by the filter;
τ0 = 1; each τi (i = 1, . . . , d) is an independent Bernoulli
random variable taking a value of either 0 or 1, with cor-
responding probabilities of p(τi = 1) = E[τi] = pi and
p(τi = 0) = 1− pi; and τ (s,j) is given as follows:

τ (s,j) =



 s∏
j=0

τj

 (1− τs+1) , 0 6 s 6 d − 1

d∏
j=0

τj, s = d

(4)

where only one of τ (s,j) (s = 0, 1, . . . , d) takes value 1 and
the others take value 0. This means that yk may be one of
{zk−s}ds=0.
The probability that a measurement is delayed by s (0 6

s 6 d) steps can be given as follows [22]:

p(s,j) =

 s∏
j=0

pj

 (1− ps+1) , s = 0, 1, 2 . . . , d − 1 (5)

p(d,j) =
d∏
j=0

pj (6)

B. CONTAMINATED GAUSSIAN NOISE WITH UNKNOWN
COVARIANCE IN SENSOR MEASUREMENTS
Sensor noise is often assumed to follow a Gaussian distribu-
tion with known statistical characteristics. However, not all
real-word noise satisfies the above assumption. In particular,
the noise of the visual sensor on an asteroid prospector is
usually assumed to be contaminated Gaussian noise drawn
from a Gaussian mixture distribution, and the probability
density function can be expressed as follows [25], [28]:

p(v) = (1− α)N(v; 0,Rsen)+ αN(v; 0,Rper ) (7)

where N(v; 0,Rsen) is an ideal Gaussian distribution with
unknown covariance Rsen, N(v; 0,Rper ) is the perturbing
Gaussian distribution, v is the vector of the sensor mea-
surement noise, and α is the perturbing parameter, which
represents the error model contamination.

III. MULTIPLE-STEP RANDOMLY DELAYED
HIGH-DEGREE CUBATURE KALMAN FILTER
In this section, motivated by the superior performance of the
HCKF in dealing with nonlinear systems, the MRD-HCKF is
derived based on [23].

A. STATE AUGMENTATION
Considering (2) and (3), the measurement yk that is actu-
ally available to the filter is a mixture of {zk−s}ds=0; hence,
yk depends on xk , xk−1, . . . , xk−d . Therefore, the current
state needs to be augmented with the previous states
xk−1, xk−2, . . . , xk−d . The augmented state can be expressed

as

Xk =


xk
xk−1
...

xk−d


na×1

(8)

where na = (d + 1)n is the dimensionality of the augmented
state vector.

The corresponding augmented system is

Xk = F(Xk−1)+ Cwk−1 (9)

yk = zk−s = h(DsXk )+ vk−s, s = 0, 1, . . . , d (10)

where F(Xk−1), C and DsXk are given as follows:

F(Xk−1) =
[
f T (xk−1), xTk−1, . . . , x

T
k−d

]T
(11)

C = [In×n, 0, . . . , 0]T (12)

DsXk = xk−s, s = 0, 1, 2, . . . , d (13)

B. PREDICTION
According to (8), the state estimate X̂k−1/k−1 and the corre-
sponding covariance Pk−1/k−1 given y1:k−1 can be expressed
as (14), shown at the bottom of the next page.

Then, the state prediction X̂k/k−1 and the covariance
Pk/k−1 are given by

X̂k/k−1

=


x̂k/k−1
x̂k−1/k−1

...

x̂k−d/k−1


Pk/k−1

=


Pxxk,k/k−1 Pxxk,k−1/k−1 · · · Pxxk,k−d/k−1
Pxxk−1,k/k−1 Pxxk−1,k−1/k−1 · · · Pxxk−1,k−d/k−1

...
...

. . .
...

Pxxk−d,k/k−1 Pxxk−d,k−1/k−1 · · · Pxxk−d,k−d/k−1


(15)

It is clear that most of the block-matrix quantities in (15)
can be obtained from (14), with the exceptions of x̂k/k−1,
Pxxk,k/k−1, {P

xx
k,k−s/k−1}

d
s=1 and {Pxxk−s,k/k−1}

d
s=1, which are

calculated as follows.
The fifth-degree cubature rule is utilized to calculate the

Gaussian weighted integrals. The initial cubature point set
is constructed on the basis of the state estimate X̂k−1/k−1,
the covariance Pk−1/k−1 and the cubature point set ϒ:

χ i,k−1/k−1

=


χxi,k−1/k−1

...

χxi,k−d/k−1
χxi,k−d−1/k−1


=

√
Pk−1/k−1ϒ i + X̂k−1/k−1 i = 0, 1, 2 . . . , 2n2a (16)
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ϒ i

=



[0, 0, . . . , 0]T i=0
λs+i i=1, 2, . . . , na(na − 1)/2
−λs+i−na(na−1)/2 i=na(na − 1)/2+ 1, . . . , na(na−1)

λs−i−na(na−1) i=na(na − 1)+ 1, . . . ,
3na(na − 1)

2
−λs−i−3na(na−1)/2 i=

3na(na−1)
2

+1, . . . , 2na(na−1)

λei−2na(na−1) i=2na(na − 1)+ 1, . . . , n(2na−1)
−λei−na(2na−1) i=na(2na − 1)+ 1, . . . , 2n2a

(17)

where ei ∈ Rna is a unit vector, with the ith element being 1;
λ =
√
na + 2; and the vectors s+j and s−j are given by

{s+j } =
{√

1
/
2
(
ep + eq

)
: p < q; p, q = 1, 2, · · · na

}
{s−j } =

{√
1
/
2
(
ep − eq

)
: p < q; p, q = 1, 2, . . . na

}
(18)

where the subscript j is given byj = 1 p = 1, q = 2

j =
(q− 1)(q− 2)

2
+ p p < q, q > 2

(19)

Next, the state prediction x̂k/k−1, the covariance P
xx
k,k/k−1,

and the cross-covariances Pxxk,k−s/k−1 and P
xx
k−s,k/k−1 are cal-

culated as follows:

x̂k/k−1 =
2n2a∑
i=0

ωif (χxi,k−1/k−1) (20)

Pxxk,k/k−1 =
2n2a∑
i=0

ωi

(
f (χxi,k−1/k−1)− x̂k/k−1

)
×

(
f (χxi,k−1/k−1)− x̂k/k−1

)T
+ Qk−1 (21)

Pxxk,k−s/k−1 =
2n2a∑
i=0

ωi

(
f (χxi,k−1/k−1)− x̂k/k−1

)
×

(
χxi,k−s/k−1 − x̂k−s/k−1

)T
, s = 1, 2, . . . , d

(22)

Pxxk−s,k/k−1 =
(
Pxxk,k−s/k−1

)T
, s = 1, 2, . . . , d (23)

where the ωi are weights given by

ωi =



2
na + 2

i = 0

1

(na + 2)2
i = 1, 2, . . . , 2na(na − 1)

(4− na)

2(na + 2)2
i = 2na(na − 1)+ 1, . . . , 2n2a

(24)

By substituting (20)-(23) into (15), we can get the state
prediction X̂k/k−1 and the covariance Pk/k−1.
Based on the state prediction X̂k/k−1, the covariance

Pk/k−1 and the cubature point set ϒ, we then generate the
cubature points for the prediction step as follows:

χ i,k/k−1 =


χxi,k/k−1

...

χxi,k−d+1/k−1
χxi,k−d/k−1


=

√
Pk/k−1ϒ i + X̂k/k−1 i = 0, 1, 2 . . . , 2n2a (25)

The s-step-delayed measurement prediction ŷsk/k−1,
the covariance Pyy,sk/k−1, the cross-covariance PXy,sk/k−1 and the
filter gain K s

k are calculated as shown below:

ŷsk/k−1 =
2n2a∑
i=0

ωih(Dsχ i,k/k−1) (26)

Pyy,sk/k−1 =
2n2a∑
i=0

ωi

(
h(Dsχ i,k/k−1)− ŷ

s
k/k−1

)
×

(
h(Dsχ i,k/k−1)− ŷ

s
k/k−1

)T
(27)

PXy,sk/k−1 =
2n2a∑
i=0

ωi

(
χ i,k/k−1 − X̂k/k−1

)
×

(
h(Dsχ i,k/k−1)− ŷ

s
k/k−1

)T
(28)

K s
k = PXy,sk/k−1

(
Pyy,sk/k−1 + Rk−s

)−1
(29)

C. UPDATE
This subsection describes the process of updating the state
and covariance based on a newly received measurement yk .

X̂k−1/k−1 =


x̂k−1/k−1

...

x̂k−d/k−1
x̂k−d−1/k−1



Pk−1/k−1 =


Pxxk−1,k−1/k−1 · · · Pxxk−1,k−d/k−1 Pxxk−1,k−d−1/k−1

...
. . .

...
...

Pxxk−d,k−1/k−1 · · · Pxxk−d,k−d/k−1 Pxxk−d,k−d−1/k−1
Pxxk−d−1,k−1/k−1 · · · Pxxk−d−1,k−d/k−1 Pxxk−d−1,k−d−1/k−1

 (14)

118856 VOLUME 8, 2020



R. Mu et al.: Multiple-Step Randomly Delayed Adaptive Robust Filter With Application to INS/VNS Integrated Navigation

Because the measurement yk received from the sensor is a
mixture of {zk−s}ds=0, the measurement prediction is simi-
larly a mixture of {ŷsk/k−1}

d
s=0. Similar to interacting multiple

model (IMM) filter theory [23], [31], the update process con-
sists of d + 1 subupdates and is implemented by performing
the following two steps.

1) CALCULATION OF THE sth SUBUPDATE
The newly received measurement yk and the s-step-delayed
measurement prediction ŷsk/k−1 (0 6 s 6 d) are used to
update X̂

s
k/k and P

s
k/k :

X̂
s
k/k = X̂k/k−1+K

s
k

(
yk−ŷ

s
k/k−1

)
, s = 0, 1, 2, . . . , d (30)

Psk/k = Pk/k−1 − K
s
k

(
PXy,sk/k−1

)T
, s = 0, 1, 2, . . . , d (31)

2) UPDATE INTEGRATION
The subupdate results X̂

s
k/k and Psk/k are weighted to obtain

the state estimate X̂k/k and its corresponding covariance Pk/k ,
respectively:

X̂k/k =
d∑
s=0

µsk X̂
s
k/k (32)

Pk/k =
d∑
s=0

µskP
s
k/k (33)

where µsk is a tunable weight that is calculated as shown in
(34) based on residuals and delay probabilities.

µsk =
p(s,j)N(yk ; ŷ

s
k/k−1,P

yy,s
k/k−1+Rk−s)

d∑
i=0

[
p(i,j)N(yk ; ŷ

i
k/k−1,P

yy,i
k/k−1 + Rk−i)

] (34)

Remark 1: Although the structure of the MRD-HCKF is sim-
ilar to that of the IMM filter, there are two main differences
between them. First, every subfilter of the IMM filter yields
its own prediction, whereas the MRD-HCKF produces only
one prediction. Second, in the IMMfilter, the model transition
probability µsk is updated on the basis of residuals, model
transition probabilities and µsk−1 , whereas in the MRD-
HCKF, it is calculated on the basis of residuals and delay
probabilities.

IV. MULTIPLE-STEP RANDOMLY DELAYED VARIATIONAL
BAYESIAN ADAPTIVE HIGH-DEGREE CUBATURE
HUBER-BASED FILTER
To improve the adaptivity and robustness of the MRD-HCKF
when faced with contaminated Gaussian noise with unknown
covariance, the VB theory and Huber technique are incor-
porated into the MRD-HCKF to derive the novel MRD-
VBAHCHF, which can estimate the unknown covariance of
the measurement noise and suppress the influence of non-
Gaussian noise. Similar to that of theMRD-HCKF, the update
process of the MRD-VBAHCHF also consists of d + 1
subupdates, where the state update is implemented in all

subupdates, while the measurement noise covariance update
is implemented only in the zeroth subupdate.

A. JOINT ESTIMATION OF THE STATE AND MEASUREMENT
NOISE COVARIANCE USING VB THEORY
1) PREDICTION
The joint distribution of Xk−1 and Rk−1 given y1:k−1 can
be approximated by the following factorized free form
distribution:

p(Xk−1,Rk−1| y1:k−1) = p(Xk−1| y1:k−1)p(Rk−1| y1:k−1)

= N(Xk−1; X̂k−1/k−1,Pk−1/k−1)

×IW (Rk−1; ûk−1/k−1, Ûk−1/k−1)

(35)

where N(Xk ;mk ,Pk ) is a Gaussian distribution with mean
mk and covariance Pk and IW(Rk ; uk ,Uk ) is an inverse
Wishart (IW) distribution governed by the degree-of-freedom
parameter uk ∈ R and the scale matrix Uk ∈ Rm×m for the
measurement noise covariance Rk .

Because the IW distribution is a conjugate prior distribu-
tion for the covariance of the Gaussian distribution, the joint
predicted distribution can be expressed as the following
Gaussian-IW distribution:

p(Xk ,Rk | y1:k−1) = p(Xk | y1:k−1)p(Rk | y1:k−1)

= N(Xk ; X̂k/k−1,Pk/k−1)

×IW(Rk ; ûk/k−1, Ûk/k−1) (36)

where the state prediction X̂k/k−1 and the covariance Pk/k−1
can be obtained from (15) and ûk/k−1 and Ûk/k−1 are given
by

ûk/k−1 = κ(ûk−1/k−1−m− 1)+ m+ 1 (37)

Ûk/k−1 = BÛk−1/k−1B
T (38)

where κ is a discount parameter satisfying 0 < κ 6 1 and the
matrix B =

√
κIm×m is chosen to guarantee that the form of

the distribution of the measurement noise covariance remains
unchanged.

2) UPDATE
Next, to make the computation tractable, the joint poste-
rior distribution p(Xk ,Rk | y1:k ) is formed by applying the
VB approximation:

p(Xk ,Rk | y1:k ) ≈ Qx(Xk )QR(Rk ) (39)

where Qx(Xk ) and QR(Rk ) are the unknown approximate
densities for the state and measurement noise covariance,
respectively.

Byminimizing the Kullback–Leibler (KL) divergence with
respect to the probability densities, we can obtainQx(Xk ) and
QR(Rk ):

QX (Xk ) ∝ exp
(∫

log p(yk ,Xk ,Rk
∣∣ y1:k−1)QR(Rk )dRk)

(40)
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QR(Rk ) ∝ exp
(∫

log p(yk ,Xk ,Rk
∣∣ y1:k−1)QX (Xk )dXk

)
(41)

Finally, the state update (42)-(44) and measurement noise
covariance update (45)-(48) can be performed by comparing
the integral terms in (40) and (41) with the Gaussian distribu-
tion and the IW distribution, respectively:

K0
k = PXy,0k/k−1

(
Pyy,0k/k−1 + R̂k

)−1
(42)

X̂
0
k/k = X̂k/k−1 + K

0
k (yk − ŷ

0
k/k−1) (43)

P0
k/k = Pk/k−1 − K

0
k (P

Xz,0
k/k−1)

T (44)

χ0
i,k/k =

√
P0
k/kϒ i + X̂

0
k/k (45)

ûk/k = ûk/k−1 + 1 (46)

Ûk/k = Ûk/k−1 + µ
0
k

2n2a∑
i=0

ωi

(
yk − h(D0χ

0
i,k/k )

)
×

(
yk − h(D0χ

0
i,k/k )

)T
(47)

R̂k = (ûk/k−m− 1)−1Ûk/k (48)

where the updated cubature point set based on X̂
0
k/k and√

P0
k/k is given by

χ0
i,k/k =


χ
0,x
i,k/k
...

χ
0,x
i,k−d+2/k−1
χ
0,x
i,k−d+1/k−1


=

√
P0
k/kϒ i + X̂

0
k/k , i = 0, 1, . . . , 2n2a (49)

It can be seen that the state update and the measurement
noise covariance update are coupled; hence, they should be
solved by means of fixed-point iteration.

B. MODIFICATION OF THE UPDATE PROCESS USING THE
HUBER TECHNIQUE
1) MODIFICATION OF THE STATE UPDATE
By defining the state prediction error and the measurement
matrix as

δX s
k = X̂k/k−1 − X

s
k , s = 0, 1, 2, . . . , d (50)

Hs
k = [(Pk/k−1)

−1PXy,sk/k−1]
T , s = 0, 1, 2, . . . , d (51)

the state update can be recast as a linear regression problem:

_y
s

k = LskX
s
k + ς

s
k (52)

where

T sk =
[
R̂k−s 0
0 Pk/k−1

]
(53)

_y
s

k = (T sk )
−1/2

{
yk − ŷ

s
k/k−1 +H

s
k X̂k/k−1

X̂k/k−1

}
(54)

Lsk = (T sk )
−1/2

[
Hs
k

Ina×na

]
(55)

ς sk = (T sk )
−1/2

{
vk−s
δX s

k

}
(56)

Then, the linear regression problem can be solved by min-
imizing the following objective function:

J (X s
k ) =

m+na∑
i=1

`(ξ si ) (57)

where ξ si = (Lsk X̂
s
k/k −

_y
s

k )i is the ith component of the
normalized residual vector and the real-valued function `(·)
introduced by Huber is given by

`(ξ si ) =


1
2
(ξ si )

2 ∣∣ξ si ∣∣ < β

β
∣∣ξ si ∣∣− 1

2
β2

∣∣ξ si ∣∣ > β

(58)

where β is a tuning parameter.
Taking the derivative of objective function (57) with

respect to X s
k yields

m+na∑
i=1

`′(ξ si )
∂ξ si

∂X s
k
= 0 (59)

where

`′(ξ si ) =
d`(ξ si )

dξ si
(60)

Equation (59) can be rewritten as follows:

(T sk )
T8s(T skX

s
k −

_y
s

k ) = 0 (61)

where

8s
= diag[ψ(ξ si )] (62)

ψ(ξ si ) =
`′(ξ si )

ξ si
(63)

The iterative solution can be expressed as

X s,(j)
k/k =

(
8s,(j−1)T sk

)−1
(T sk )

T8s,(j−1)_y
s

k (64)

where the superscript j is the iteration index.
The covariance Psk/k is computed as

Psk/k =
(
(T sk )

T8sT sk
)−1

(65)

8s in (62) can be decomposed into two components:

8s
=

[
8s
y 0
0 8s

X

]
(66)

where8s
y and8

s
X correspond to the residuals of the measure-

ment prediction and state prediction, respectively.
Finally, (64) and (65) can be rewritten in the following

iteratively reweighted filter form:

X̂
s,(j)
k/k = X̂k/k−1 + K

s,(j−1)
k

[
yk − ŷ

s
k/k−1

]
(67)
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Ps,(j)k/k =
(
I − K s,(j−1)

k Hs
k

)
P1/2
k/k−1(8

s,(j−1)
X )−1P1/2

k/k−1 (68)

where the gain matrix is calculated as

K s,(j−1)
k

= P1/2
k/k−1(8

s,(j−1)
X )−1P1/2

k/k−1(H
s
k )
T
[
Hs
kP

1/2
k/k−1

(8s,(j−1)
X )

−1
P1/2
k/k−1(H

s
k )
T
+ R̂

1/2
k−s(8

s,(j−1)
y )

−1
R̂
1/2
k−s

]−1
(69)

2) MODIFICATION OF THE MEASUREMENT NOISE
COVARIANCE UPDATE
To guarantee the estimation accuracy for the measurement
noise covariance, according to [15], the measurement yk cor-
rupted by contaminated noise as expressed in (47) should be
modified to

^yk/k = ŷk/k +8yR̂
1/2
k ξ0(1 : m, 1) (70)

where the measurement estimate ŷk/k is calculated as

ŷk/k =
2n2a∑
i=0

h(D0χ
0
i,k/k ) (71)

C. MRD-VBAHCHF ALGORITHM
Because the covariance R̂k−s = (ûk−s/k−s−m− 1)−1

Ûk−s/k−s is used in the sth subupdate (0 6 s 6 d),
the degree-of-freedom parameter and the scale matrix must
be augmented with the previous ones up to d steps back:

uak =


uk
uk−1
...

uk−d


na×1

, Ua
k =


Uk
Uk−1
...

Uk−d


nu×m

(72)

where nu = na × m.
The augmented degree-of-freedom parameter ûak−1/k−1

and the augmented scale matrix Û
a
k−1/k−1 given y1:k−1 can

be expressed as

ûak−1/k−1 =


ûk−1/k−1
ûk−2/k−1

...

ûk−d−1/k−1

 ,

Û
a
k−1/k−1 =


Ûk−1/k−1
Ûk−2/k−1

...

Ûk−d−1/k−1

 (73)

Then, ûak/k−1 and Û
a
k/k−1 in the prediction step are given

by

ûak/k−1 =


ûk/k−1
ûk−1/k−1

...

ûk−d/k−1

 , Û
a
k/k−1 =


Ûk/k−1
Ûk−1/k−1

...

Ûk−d/k−1

 (74)

where ûk/k−1 and Ûk/k−1 can be obtained as shown in (37)
and (38), and the other elements are given in (73).

Next, ûak/k and Û
a
k/k can be updated as follows:

ûak/k =


ûk/k
ûk−1/k
...

ûk−d/k

 , Û
a
k/k−1 =


Ûk/k
Ûk−1/k
...

Ûk−d/k

 (75)

where ûk/k and Ûk/k can be obtained as shown in (46) and
(47), and the other elements can be updated as follows:

ûk−s/k = ûk−s/k−1, s = 1, 2, . . . , d (76)

Ûk−s/k = Ûk−s/k−1, s = 1, 2, . . . , d (77)

Finally, to clearly illustrate the calculation process of the
MRD-VBAHCHF, the main steps of the proposed filtering
algorithm are summarized in Fig. 1.

V. INS/VNS INTEGRATED NAVIGATION
A. REFERENCE FRAME
To establish the INS/VNS integrated navigation system
model, four coordinate frames are first defined. A sketch of
the geometrical relationships among these reference frames
is shown in Fig. 2.

1) ASTEROID-CENTERED ASTEROID-FIXED FRAME
It is assumed that the origin of the asteroid-centered asteroid-
fixed frame ( a frame) is located at the center of the asteroid
and that the xa axis, ya axis and za axis are coincident with the
minimum, intermediate and maximum inertia axes, respec-
tively, of the asteroid. The a frame rotates together with the
asteroid around the za axis.

2) ASTEROID-CENTERED INERTIAL FRAME
The definitions of the origin and axes of the asteroid-centered
inertial frame ( i frame) are the same as those for the a frame;
however, the i frame remains unchanged in the inertial space.

3) PROSPECTOR BODY FRAME
The prospector body frame ( b frame) is rigidly attached to
the prospector, with its origin at the center of the prospector
and the xb axis, yb axis and zb axis being the principal inertial
axes of the spacecraft. Ca

b is the matrix for the coordinate
transformation from the b frame to the a frame and can be
defined in terms of a 3-2-1 sequence of rotations as follows:

Ca
b

=

(
Cb
a

)T
=

 c θ cφ −sφ c γ + s θ cφ s γ sφ s γ + s θ cφ c γ
c θ sφ cφ c γ + sθsφsγ − cφ s γ + s θ sφ c γ
− s θ cθ s γ c θ c γ


(78)
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FIGURE 1. Flowchart of the MRD-VBAHCHF.
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FIGURE 2. Sketch of the geometrical relationships among the reference
frames.

where θ , φ and γ are the pitch angle, yaw angle and roll
angle, respectively. In addition, the following notations are
used: cϕ ≡ cosϕ, ϕ = θ, φ, γ and sϕ ≡ sinϕ.

4) CAMERA FRAME
Let the origin of the camera frame ( c frame) lie at the optical
center of the camera. The zc axis is parallel to the optical axis
of the lens, while the xc axis and yc axis lie within the image
plane. The matrix Cc

b for the coordinate transformation from
the b frame to the c frame is

Cc
b =

 cosφc 0 − sinφc
sin θc sinφc cos θc sin θc cosφc
cos θc sinφc − sin θc cos θc cosφc

 (79)

where θc and φc are the camera installation angles.

B. INS/VNS INTEGRATED NAVIGATION MODEL
1) STATE MODEL
The mechanical model of the INS is chosen to be a state
model. First, the state vector is defined as follows:

xk =
[
RTa ,V

T
a ,9

T , bTa , b
T
g

]T
(80)

where Ra = [x, y, z]T and Va = [vx , vy, vz]T represent the
position and velocity, respectively, of the prospector in the a
frame; 9 = [θ, φ, γ ] is the attitude; and ba and bg are the
biases of the accelerometer and gyro, respectively, as defined
in the b frame.
Then, the mechanical equations of the INS can be summa-

rized as follows:

Ṙa = Va (81)

V̇a = Ca
b

(
ãb − ba −∇v

)
− 2ωaia × Va

−ωaia × ω
a
ia × Ra + ga (82)

9̇ = � (9)
(
ω̃bib − bg − εv − C

b
aω

a
ia

)
(83)

ḃa = ∇u (84)

ḃg = εu (85)

with

� (9) =

 0 cos γ − sin γ

0
sos γ
cos θ

cos γ
cos θ

1 tan θ sin γ tan θ cos γ

 (86)

where ãb is the accelerometer measurement; ω̃bib is the gyro
measurement; ∇v, ∇u, εv and εu are zero-mean Gaussian
white noise terms with spectral densities given by σ 2

avI3×3,
σ 2
auI3×3, σ

2
gvI3×3 and σ 2

guI3×3, respectively; ω
a
ia is the spin

rate of the asteroid in the a frame; and ga is the gravitational
vector represented in the a frame.

According to (81)-(85), the nonlinear state model of the
INS/VNS integrated navigation system can be written in
differential form as follows:

ẋk
= f (xk−1)+ wk

=


Va

Ca
b

(
ãb − ba

)
− 2ωaia × Va − ω

a
ia × ω

a
ia × Ra + ga

� (9)
(
ω̃bib − bg − C

b
aω

a
ia

)
0
0



+


0

−Ca
b∇v

−� (9) εv
∇u
εu

 (87)

2) MEASUREMENT MODEL
The measurements of the visual sensor are acquired along the
lines of sight (LOSs) between the prospector and landmarks
such as craters and rocks. A schematic of this system is shown
in Fig. 3. The measurement equation for the visual sensor can
be expressed as

zk,j = hj(xk )+ vk,j

= Cc
bC

b
a

1√
(xl,j − x)2 + (yl,j − y)2 + (zl,j − z)2

×

 xl,j − xyl,j − y
zl,j − z

+ vk,j (88)

where Rl,j = [xl,j, yl,j, zl,j]T represents the positions of
landmarks, zk,j indicate the measurement of the jth feature
at time k .

The VNS can determine the attitude and position of the
prospector using three LOS vectors [32]. The corresponding
navigation accuracy is affected by the geometry between the
matched landmark features and the prospector, in a manner
similar to the dilution of precision (DOP) in a global nav-
igation satellite system [33]. Thus, the measurement model
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FIGURE 3. Visual navigation system.

FIGURE 4. Asteroid Kleopatra, with 1250 landmarks.

based on three features selected on the basis of the position
DOP can be formulated as follows:

zk = h(xk )+ vk=

 h1(xk )h2(xk )
h3(xk )

+
 vk,1vk,2
vk,3

 (89)

VI. SIMULATIONS
Simulations were conducted to validate the superior filtering
performance of the proposed MRD-VBAHCHF in handling
randomly delayed measurements and contaminated Gaussian
noise with unknown statistics.

A. SIMULATION SCENARIO AND PARAMETERS
As shown in Fig. 4 and Fig. 5, a model of the target asteroid
Kleopatra was constructed as a polyhedron based on data

FIGURE 5. The prospector trajectory.

TABLE 1. Simulation parameters.

from the NASA planetary data system [34]. A ‘‘polar’’ orbit
was simulated for 400 s, with an initial position of Ra =
[0, 0, 8.0× 104]Tm, an attitude of 9 = [0, 0, 0]deg and a
velocity of Va = [0,−55.89, 0]m/s, and 1250 points were
randomly generated to simulate landmarks. The simulation
parameters are listed in Table 1. The visual measurements
were randomly delayed by at most three steps, with the
following delay parameters [22]:

p(0,j) = 1− pd , p(1,j)=
pd
2
, p(2,j)=

pd
4
, p(3,j) =

pd
4

(90)

where pd is the delay probability given in Table 1.
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FIGURE 6. Position error of the MRD-VBAHCHF.

FIGURE 7. Velocity error of the MRD-VBAHCHF.

The contaminated Gaussian measurement noise was drawn
from the distribution given in (7), with the following covari-
ances of the ideal Gaussian distribution and the perturbing
Gaussian distribution [5]:

Rsen =

 1.69× 10−10 0 0
0 1.69× 10−10 0
0 0 1.69× 10−12


(91)

Rper = 36Rsen (92)

FIGURE 8. Attitude error of the MRD-VBAHCHF.

FIGURE 9. Diagonal values of user Rsen estimated using the VBAHCHF
and MRD-VBAHCHF.

Considering a lack of a priori knowledge of the visual
measurement noise, the measurement noise covariance matri-
ces Rk of the HCKF and MRD-HCKF were set as shown in
(93). In the variational Bayesian adaptive high-degree cuba-
ture Huber-based filter (VBAHCHF) and MRD-VBAHCHF,
the initial degree-of-freedom parameter û0/0 and the scale
matrix Û0/0 were set to 11 and (û0/0−m−1)R0, respectively.

Rk = diag([1.69×10−9, 1.69×10−9, 1.69×10−11,

1.69×10−9, 1.69×10−9, 1.69×10−11, 1.69×10−9,

1.69×10−9, 1.69×10−11]) (93)
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FIGURE 10. Position RMSEs of the HCKF, MRD-HCKF, VBAHCHF and MRD-VBAHCHF.

The process noise covariance matrices Qk−1 of the
MRD-VBAHCHF and the other filters considered for
comparison were chosen in accordance with the statistical
characteristics of the inertial measurement unit noise.

Qk−1
= diag([10−6, 10−6, 10−6, 1.38×10−6, 1.38×10−6,

1.38×10−6, 8.46×10−12, 8.46×10−12, 8.46×10−12,

9.62×10−11, 9.62×10−11, 9.62×10−11, 2.35×10−15,

2.35×10−15, 2.35×10−15]) (94)

The initial values of the state x0/0 and the covariance Pxx0,0/0
were set as follows:

x0/0 = [20, 20, 80020, 2,−53.89, 2, 1.75× 10−3,

1.75× 10−3, 1.75× 10−3, 0, 0, 0, 0, 0, 0]T (95)

Pxx0,0/0 = diag([400, 400, 225, 4, 4, 4, 5× 10−5,

5× 10−5, 5× 10−5, 1× 10−3, 1× 10−3,

1× 10−3, 1× 10−6, 1× 10−6, 1× 10−6]) (96)

B. SIMULATION RESULTS AND ANALYSES
The proposed filter and the filters considered for compari-
son were coded in Visual Studio 2005, and the simulations
were run on a laptop with an Intel Core i5-2410M CPU
@2.30 GHz. The position, velocity and attitude errors of the
MRD-VBAHCHF are shown in Figs. 6-8, respectively. The
estimation error curves converge rapidly to the 3σ bounds
denoted by the blue dash-dotted lines, demonstrating that the
proposed filter shows good consistency and accuracy. The
diagonal values of Rsen estimated using the VBAHCHF and
MRD-VBAHCHF are illustrated in Fig. 9. The results suggest
that the MRD-VBAHCHF exhibits better performance in
estimating the unknown covariance Rsen than the VBAHCHF
does because the proposed filter considers the random mea-
surement delay, and thismeans that theMRD-VBAHCHFhas
better adaptivity than the VBAHCHF. While the HCKF and

TABLE 2. Comparison of the ARMSEs of the different filtering algorithms.

MRD-HCKF lack of adaptivity because there isn’t covariance
estimation process in them.

To quantitatively describe the navigation accuracy, the root
mean square errors (RMSEs) of position, velocity and
attitude from 100 independent Monte Carlo simulations
obtained using the HCKF, MRD-HCKF, VBAHCHF and
MRD-VBAHCHF are shown in Figs. 10-12, respectively,
and the average RMSEs (ARMSEs) of the four filtering
algorithms are presented in Table 2 for comparison. The
MRD-VBAHCHF behaves the best, the HCKF behaves the
worst, and the MRD-HCKF and VBAHCHF show simi-
lar behavior. This is because the MRD-HCKF can address
measurements with multiple-step random delays and the
VBAHCHF can limit the impact of non-Gaussian noise and
estimate the unknown noise covariance, while the MRD-
VBAHCHF is capable of handling both multiple-step ran-
domly delayed measurements and contaminated Gaussian
measurement noise with unknown statistics. In addition,
the single computation time of these four filters are summa-
rized in Table 3. It can be seen that the single computation
time of the proposedMRD-VBAHCHF is greater thanHCKF,
VBAHCHF and MRD-HCKF, but still much less than the
sampling interval. So the proposed filter can satisfy the real-
time requirement of INS/VNS system.

To further illustrate the filtering performance of the MRD-
VBAHCHF under different levels of delay and contamina-
tion, additional simulations were implemented by varying
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FIGURE 11. Velocity RMSEs of the HCKF, MRD-HCKF, VBAHCHF and MRD-VBAHCHF.

FIGURE 12. Attitude RMSEs of the HCKF, MRD-HCKF, VBAHCHF and MRD-VBAHCHF.

TABLE 3. Single computation time of the different filtering algorithms.

either the delay probability or the perturbing parameter while
keeping the other fixed. The corresponding ARMSEs from
100 independent Monte Carlo simulations are presented as
follows.

The relationships between the estimation errors of the
four filtering algorithms and the delay probability are
shown in Figs. 13-15. It is clear that the performance of
the HCKF and VBAHCHF decreases rapidly as the delay
probability increases. By contrast, the MRD-HCKF and
MRD-VBAHCHF show greater robustness to random

FIGURE 13. Position ARMSEs of the four filtering algorithms under
different delay probabilities.

measurement delay. This is because the MRD-HCKF and
MRD-VBAHCHF are derived based on a randomly delayed
measurement model. Moreover, the navigation error achieved
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FIGURE 14. Velocity ARMSEs of the four filtering algorithms under
different delay probabilities.

FIGURE 15. Attitude ARMSEs of the four filtering algorithms under
different delay probabilities.

FIGURE 16. Position ARMSEs of the four filtering algorithms under
different perturbing parameters.

by the MRD-VBAHCHF is always the smallest under differ-
ent delay probabilities.

The position, velocity and attitude ARMSEs of the HCKF,
MRD-HCKF, VBAHCHF and MRD-VBAHCHF under dif-
ferent perturbing parameters are summarized in Figs. 16-18,
respectively. The results show that the estimation errors

FIGURE 17. Velocity ARMSEs of the four filtering algorithms under
different perturbing parameters.

FIGURE 18. Attitude ARMSEs of the four filtering algorithms under
different perturbing parameters.

of the VBAHCHF and MRD-VBAHCHF are smaller than
those of the HCKF and MRD-HCKF, respectively, thus
demonstrating the robustness of the VBAHCHF and MRD-
VBAHCHF to contaminated Gaussian noise. These findings
are attributed to the fact that the update processes of the
VBAHCHF andMRD-VBAHCHF are derived on the basis of
the Huber technique and therefore can down weight measure-
ments corrupted by perturbing noise. Furthermore, theMRD-
VBAHCHF achieves the highest estimation accuracy under
all perturbing parameters.

From the above simulation results, we can conclude
that the MRD-VBAHCHF exhibits stronger adaptivity to
unknownmeasurement noise statistics and robustness against
random measurement delay and non-Gaussian noise, thereby
clearly confirming the superiority of the proposed filtering
algorithm.

VII. CONCLUSION
In this article, a novel multiple-step randomly delayed adap-
tive robust filter called the MRD-VBAHCHF is proposed to
handle randomly delayed measurements and contaminated
Gaussian measurement noise with unknown covariance, and

118866 VOLUME 8, 2020



R. Mu et al.: Multiple-Step Randomly Delayed Adaptive Robust Filter With Application to INS/VNS Integrated Navigation

its application in INS/VNS integrated navigation for asteroid
missions is investigated. First, the MRD-HCKF is derived
based on a multiple-step randomly delayed system model
and the fifth-degree cubature rule. To estimate the measure-
ment noise covariance online and suppress the influence of
non-Gaussian noise, the MRD-HCKF is then combined with
the VB theory and Huber technique to develop the MRD-
VBAHCHF. Simulation results illustrate that the proposed
filtering algorithm achieves the highest estimation accuracy
among all filters considered for comparison when simulta-
neously faced with randomly delayed measurements, con-
taminated Gaussian noise and unknown measurement noise
statistics, thus showing better adaptivity and robustness than
the HCKF, MRD-HCKF or VBAHCHF.
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