
Received May 20, 2020, accepted June 15, 2020, date of publication June 24, 2020, date of current version July 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004756

SIMHAR - Smart Distributed Web Crawler for the
Hidden Web Using SIM+Hash and Redis Server
SAWROOP KAUR AND G. GEETHA , (Member, IEEE)
Department of Research and Development, Lovely Professional University, Phagwara 144411, India

Corresponding author: G. Geetha (gitaskumar@yahoo.com)

ABSTRACT Developing a distributed web crawler obliges major engineering challenges, all of which
are eventually associated to scale. To retain corpus of search engine and a reasonable state of freshness,
the crawler must be distributed over multiple computers. In distributed crawling, crawling agents are given a
task to fetch and download web pages. The number and heterogeneous structure of web pages are increasing
rapidly. This made the performance a serious challenge to web crawler systems. In this paper, a distributed
web crawler for the hidden web is proposed and implemented. It combines and integrates, scrapy framework
and Redis server. Crawling is split into three stages-adaption, relevant source selection and underlying
content extraction. The crawler accurately detects and submit the searchable forms. Duplication detection
is based on hybrid technology using hash-maps of Redis and Sim+Hash. Redis server is also acting as a
data store for a massive amount of web data so that the growth of hidden web databases is handled ensuring
scalability.

INDEX TERMS Distributed crawlers, duplication detection, hidden web, web crawler.

I. INTRODUCTION
A web crawler is an automated software to browse the
World Wide Web in an organized manner. By applying dis-
tributed computing technique to web crawling, the efficiency
and effectiveness are improved in terms of time, cost, load
balancing, and search quality etc. In distributed crawling,
multiple agents work together for crawling the URLs and
necessitate more complex approach than simple informa-
tion curation. Mercator [1], Heritrix [2], Nutch [3], Scrapy,
JSpider, HTTrack [4], YaCy [5], etc. are some of the dis-
tributed web crawlers in use. The hidden web is a part of the
web that is masked behind the HTML forms and is not gen-
erally accessed by web crawlers. For this purpose, we need a
crawler that can find all webpages with in searchable forms
and can also fill and submit the form automatically without
any manual intervention. EFFC [6], Adaptive crawlers [7],
FFC [8] are some of the web crawlers that can handle the hid-
den web. To access the hidden web, there are two approaches
namely virtual integration and web surfacing.

II. LITERATURE REVIEW
The literature review is organized into three parts. The first
part review the distributed web crawlers, followed by focused
and hidden web crawlers.

The associate editor coordinating the review of this manuscript and
approving it for publication was Senthil Kumar.

Zhou et al. [9] have designed a distributed vertical crawler
using crawling template-based periodic strategy. The domain
of crawling is internet forums and performance of the same
has been measured in terms of the number of URLs that has
been processed. Results have shown that distributed crawling
has gathered a greater number of URLs than single verti-
cal crawler, when compared. Gao et al. [10] have designed
geographically distributed web crawler and tested on various
crawling strategies. Out of which, URL based and extended
anchor text-based have given the favorable performance.
Yu et al. [11] have presented cluster-based distributed crawler
implemented as a data server. This crawler is shopping prod-
uct based so do the feature extraction.Web server is presented
with processed data. Scalability is provided using a Hadoop
platform. Hbase is used to store huge data. The assumption
for load balancing is that when all the nodes finish their crawl-
ing task at the same time. Performance of crawler is com-
pared with Nutch crawler. With 8 crawling nodes between
3500-4000 pages are crawled per minute. Feng Ye et al [12]
have implemented distributed crawler based onApache Flink.
On the cluster, Redis and other databases are deployed to
store the web pages that are crawled. Scrapy is selected as
an underlying crawling framework. Duplication detection is
employed by combining the bloom filter with Redis. Perfor-
mance is measured in terms of crawled pages and execution
time. The crawler has managed to crawl 20000 pages in
seven hours. CPU utilization rate even at the fourth hour is

117582 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7338-973X

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

TABLE 1. Comparison of reported distributed web crawlers.

less than 35% as compared to a single crawler. Duplication
detection is compared with bloom filter, link list, hashmap
and treemap with bloom filter giving promising results. The
number of fetched pages increases to 7000 when system used
Mesos/Marathon platform.

UniCrawl, a geographical distributed web crawler worked
upon by Moftah and Abuelenin [13], have yielded 5000 new
URLs in 50 crawling rounds and yielding throughput between
106 to 107 for 6000 seconds. M. ElAraby et al. [14] have
developed a dynamic web crawler as a service. Each stage
of this architecture worked as a separate service and deals
with its load. So, scalability is also based on individual stages.
The whole system does not need to be scaled. Along with
being dynamic, this architecture is customizable and provided
standalone services using elastic computing. The system has
used Amazon RDS service. Performance is compared for
fetched pages vs time graph. This crawler can fetch more
than 250 pages in less than 400000 seconds. Then using
5 virtual machines 300 pages are crawled in 153.04 seconds.
With the same configuration number of discovered URLs
are 8452. This system has also worked on discovering new
domains from newly discovered URLs. Comparison is made
between response time for multithreaded crawler and virtual
machines. For 300 pages, the response time of multithreaded
crawler is 142132.4 and virtual machines on cloud computing
are 512159.8.

According to Achsan and Wibowo [15] infinite threads
curtail the performance of web crawler. The system has
divided crawling based on the heuristic that the large site are
crawler before smaller size sites. Results are compared for
CPU and memory utilisation. For 2000 threads CPU utili-
sation is 70% at 550 Mbps bandwidth. Choosing a suitable
approach to divide the Web is the main issue in parallel
crawlers.

Achsan and Wibowo [15] have worked on politeness
property. Bosnjak et al. [16] proposed continuous and
fault-tolerant web crawler called Twitter Echo. This crawler
continuously extracts data from twitter like communities.
Performance is measured in terms of classification accu-
racy with 99.4% of the highest classification accuracy for
non-Portuguese sites.

Raj et al. [16] have developed a platform-independent
distributed crawler that can handle AJAX-based applications.
They have also supported the breadth-first search for com-
plete coverage. Performance is compared up to 64 active
threads to crawl two-page application and medium sized
application.

Xu et al. [17] have implemented distributed crawler based
on Hadoop and P2P. All the files are stored and shared from in
the distributed file system. Performance is measured as time
to crawl vs nodes.

DG- Distributed General
DF- Distributed focused
CT- crawling time
DS- Downloading speed
MT – Maximum threads
CPU-U – CPU utilisation
T – throughput
Table 1, shows the comparison of existing distributed web

crawlers based on their performance measures.

A. HIDDEN WEB CRAWLING
To crawl the data hidden behind the web forms, the following
steps are performed.

1) AUTOMATED HIDDEN WEB ENTRY POINT DISCOVERY
The deep web site can be discovered in two ways: either
using heuristic or machine learning. Madhavan et al. [18]
used heuristics to discover form tag and other features of
forms that includes- presence of a number of a text box. Other
way is to use heuristic to discard forms with short input as
implemented used by Bergholz and Chidlovskii [19]. While
Cope et al. [20] and Barbosa et al. [21] have appliedmachine-
learning algorithm to classify forms to find entry to the hidden
web.

2) FORM MODELLING
After entry to the deep web, the next step is form modelling.
that includes the identification of the type of classification.
Forms can also be classified studies based on pre-query or
post query. In the post query case response page is a source

VOLUME 8, 2020 117583

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

of classification. Feature of each form is also the source of
classification.

3) QUERY SELECTION
Kashyap et al. [22] have used the concept of static hierarchy
for query selection. BioNav has been used for the hierarchies.
The performance measure is based on the overall cost of the
queries. The aim is to retrieve a greater number of records.
Chen et al. [23] have worked on both the content and the
structure of the form for queries as well as databases. The
quality of the query is measured in term of difficulty over
the database. This model estimates the number of queries
compulsory to retrieve the whole content of the hidden web
site. Performance is measured in terms of correlation of
average precision. Madhavan et al. [24] have proved that
the load on the system increases by increasing the number
of submissions. As some queries generate duplicate results.
So, the query selection technique should have the goal of
‘‘minimize the number of queries and maximize the accurate
response’’. Barbosa and Freire [25] proposed model for unsu-
pervised keyword selection. This model starts with keywords
extracted from the form page. First, most frequent words
are calculated, and submission is repeated until maximum
results are obtained. Performance is measured in terms of
the effectiveness of the technique with and without using a
wrapper. Ntoulas et al. [26] proposed a technique in which for
submission is done with the user-provided keyword. It also
extracts keywords from the response pages. The keywords
with higher informativeness are selected., which is calculated
as their accumulated frequency.

4) CRAWLING PATH LEARNING
Searchable forms can be reached using a path learning pro-
cess. Relevant page with correct response can be gener-
ated by following the pages in an order. Based on path
learning crawlers can be categorized as blind crawlers,
with aimless but perpetual download capacity and focused
crawlers [28], [29] that works on a fabricated path and reach
the desired web page. The proposed crawler is based on the
focused crawlers. Overall performance check of the crawlers
is based on their access to the hidden websites and to measure
the finding capacity and accuracy of the desired forms. Hid-
den web crawling neither have standard dataset nor compar-
ison framework and testing environment to compare features
of the techniques. So the reported research is compared using
different techniques used in hidden web crawling.

B. FOCUSED CRAWLERS
Focused web crawlers play an important role in creating and
maintaining subject-specific web collections. Application of
focused crawlers includes search engines, digital libraries,
specialized information extraction and text classification,
high-quality result page, minimizing the time, space and net-
work bandwidth. The goal of a focused crawler is to retrieve
maximum relevant pages. Focused web crawlers like general
web crawler have same components called:

1. Fetcher or downloader which fetches the web page and
retrieves its contents.

2. Frontier that stores the URLs of unvisited websites along
with the visited one, for extraction of further information

In addition to these three components, focused web crawler
has a topic-specific crawling model, relevance estimation and
ranking module. Focused crawler first collects some URLs
as seed sites. From these URLs, a crawler begins its crawling
process and give results in the form of webpages crawled.

From the above literature, we conclude that distributed
crawlers for the hidden web are limited and they face perfor-
mance issues in terms of scalability, duplication, and unable
to support frequent change in the underlying technology
of web pages. To address the above-mentioned challenges,
focused distributed web crawler is developed that can handle
duplication and scalability. Duplication detection is based on
hybrid technology using hash-maps of Redis and Sim+Hash.
Redis server is also acting as a data store for amassive amount
of web data so that the growth of hidden web databases is
handled ensuring scalability.

Plethora of literature is available on the information
retrieval methods, however there is no refined information
about the working and liability of distributed web crawlers
and their role in bringing hidden web data to light. Some
emerging research in this area used MapReduce to compute
term frequency etc. As opposed to general web crawling,
hidden web crawling requires a complex approach to parse,
process and extract information from the hidden websites.
And similarly, the process of distribution in hidden web
crawling is equally challenging. Performance of crawler is
highly influenced by architecture and techniques of crawling.
From the literature review, it is found that Distribution can be
implemented to covercome the drawbacks such as scalability,
duplication, and inability to support frequent changes in the
underlying technology of web pages. The crawlers working in
a methodical approach can effectively touch specific topics.
As per the literature there isn’t any focused distributed web
based crawler designed to uncover hidden data.

III. THE PROPOSED ARCHITECTURE
The proposed architecture work in three stages.
1. URL adaption and classification: Frontier is initialized in

this phase, followed by parameter learning, ranking and
domain classification.

2. Relevant source selection: When frontier encountered a
URL, all the links are extracted in link frontier, and in
fetched link frontier.

3. Underlying content extraction: While in the third stage the
form structure is extracted to fill and submit the forms.

This system has implemented the frontier as a queue from
which URLs are taken out for further processing. The fron-
tier starts from the seed URLs. We have implemented three
queues as frontiers. The frontier for seed URLs consists of
URLs from the directory. The frontier for links consists of
URLs extracted from the seed URLs. The frontier for fetched
links consists of URLs from links. The frontier depletes very

117584 VOLUME 8, 2020

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

FIGURE 1. Architecture of SIMHAR as a single entity focused crawler.

easily. So as the frontier for seed URLs will have a scarcity
of URLs, frontier for links will be used. A webpage can have
multiple hyperlinks but not all are relevant. Aim of a web
crawler is to fetch maximum deep websites by minimizing
the visited URLs. Following figure 1 show three phases of
the crawler. All the stages are interconnected with each other.
As the URL is extracted from the frontier, the next step is
pre-processing of URLs.

A. PRE-PROCESSING OF URLS
The baseline components of URLs are extracted. These
are host, extension, documents, path etc). from all the
components URL, path, anchor and text around anchor
are fed to feature vector. The system has implemented
python NLTK for stemming, stop word removal and

tokenization. Now all the segmented words are fed to feature
vector.

Feature space for the hidden website is defined as:
FD = [URL, anchor, text around anchor].
Feature space for links of the hidden website is defined as:
FL = [path, anchor, text].
Path of the URL is learned to reach the exact loca-

tion of the form. special symbol related to the path is the
forward-slash (/). Path of the URL is found after the host-
name. Anchors are helpful in internal navigation inURL.And
we need to find the internal links as well.

B. WEIGHT CALCULATION OF TERMS
Based on feature vector construction, we have to compute the
weight of term corresponding to its occurrence in URL(U),
anchor(A), text around the anchor (T) and path (P).

VOLUME 8, 2020 117585

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

FIGURE 2. Rejection framework for forms.

Term frequency of term Ti in U, A, T and P and is defined
as:

tifi = α × tifi + β × tifi + γ × tifi + δ × tifi (1)

where α, β, γ , and δ are the weight coefficient. Ig is the
information gain of terms.

wij̇ = tifi × i̇dfj × Ig
√∑N

N=1(tifi × i̇dfj)2
(2)

It is proved in [12] that outcome of the tf-idf alone is an
inappropriate distribution of feature vector. In their approach,
information is combined with the segmentation of page in a
major four sections. In our approach weights are based on
URLs and associated terms. After term weighting similarity
is computed. Similarity(S) is computed between the already
discovered URL and newly discovered URL. The similarity
is required in the ranking section. The similarity is computed
as.

S = sim(U,Unew)+ sim(A,Anew)+ sim(T,Tnew) (3)

Similarity has a different meaning concerning each step-in
web crawling. The crawler has to work on finding similar
URLs so that it can prevent similar data retrieval. It also needs
to find similar content for top k queries, as well as text with
semantic similarity.

After pre-processing, the system has a list (k) of more than
50k keywords. Now using the similarity model (V), the sys-
tem read the reference file. In the next step, the elements
are removed from the list (k) one by one. The similarity
is computed between two lists. For example, the flight is a
word in list (k) and it has a close match in (V). If cosine
similarity is 1, it means an exact match is found. Close match
results are used for queries during repository generation in
form submission. Crawler removes duplicate URLs from the
frontier using Redis hash maps. The websites have a complex

relationship with each other. SameURL can be found onmul-
tiple websites. Downloading the sameURLsmultiple times is
a waste of resources. Redis database includes a de-duplication
set. So that’s why the unique fingerprint for each request
is calculated first. Fingerprints are put in this set. All the
repeated requests are removed here. Simhash and Levin [30]
is combined with Redis for improvement in results.

C. LEARNING
Feature construction is explained in section A. The crawler is
adaptive in nature, results from the first run are used in suc-
cessive runs. Following steps are performed in the learning
algorithm.
1. A new website (X) is encountered, extract [U, A, T].
2. For each URL, arrange the frontier using a similarity

model with respect to [U, A, T].
3. Extract the links from X.
4. Extracted links are saved in the link queue. The link

queue is ordered using the similarity model with respect
to [P, A, T].

5. Check for searchable forms by following rejection rules as
shown in Figure 2.

6. If the form is searchable, extract path, anchor and text.
7. Update the information in parameter learning module in

stage 1, and link ranking in stage 2. And new features are
reflected in these two modules.

8. Stop, if crawler has reached the threshold of 0.8, i.e 80 new
URLs and 0.1, i.e 100 new forms at depth one. Follow
steps 1-8 for depth 2 and depth 3.

D. RANKING
Aim of ranking in hidden web crawling is to extract top n
documents for the queries. The cost is expected to be the
least for this work. We have adopted the formula for ranking
from [31]. But our reward function (e) is based on a number

117586 VOLUME 8, 2020

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

of out-links, site similarity and term weighting. Let SF be the
frequency of out-links.

SF =
∑

Ii (4)

I = 0, site has not appeared,

I = 1, if it has appeared

e = wij + S + SF (5)

(rj) = (1− w).δj + w.ranking reward(e)/cj (6)

w is the weight of balancing e and cj.. δj is the number
of new documents. Computation of rj shows the similarity
of e and returned documents. If the value of e is closer to 0,
it means that returned value is more similar to the already
seen document i.e the new URL is similar to the already
discovered URL. cj is a function of network communication
and bandwidth consumption.

E. DOMAIN CLASSIFICATION
Domain classification is based on topical relevance of the
site and the home page. As the new URL is received its
homepage content is parsed and feature vector is constructed.
The resulting vector is fed to the classifier to check relevancy.
The crawler gets theURLs and the request is sent to a server to
fetch the page. The crawler will first check for the presence of
a search interface. The forms are two types defined as follows:
• Searchable form: ‘‘Webform is called searchable form if
it is capable of submitting a query to an online database
which in turn, return the results of a query.’’

• Non-Searchable form: ‘‘The forms, for example, login
registration, mailing list subscriptions forms, and so on
are called non-searchable forms. These forms do not
represent database queries.

A crawler encounter number of types of web pages, but not
every web page is searchable. So following rules are designed
to help crawler decide whether the encountered form is
searchable or not. After these rules are applied, the crawler
has a set of URLs which have < form> tag as well as the
property of being searchable. On being providedwith suitable
values, these forms will retrieve the data from the associated
database.

Rule1: If crawler do not find any < form> tag, consider
this a non-searchable form.

Rule2: If crawler found the < form> tag. Then extract the
attribute type. If the attribute type is not in repository call it a
non-searchable page.

Rule 3: If crawler found the < form> tag, and extracted
attribute type matched in a repository. But the attributes < 3,
consider this page non-searchable.

Rule 4: If the number of attributes is >3, but the submit
button is not found, consider this page as non-searchable.

Rule 5: If there exists < form> tag, and attributes are
similar to the repository, and submit button is also there. But
button marker is not present then consider this page as non-
searchable.

Rule 6: If there exists < form> tag, and attributes are
similar to the repository, submit button and button marker is
are present. It is a searchable form.

Rule 7: If there exists < form> tag, but crawler found
login, then this is non-searchable.

Rule 8: if there exist < form> tag, but crawler found
registration, consider this page as non-searchable.

Rule 9: if there exist < form> tag, but crawler found
subscribe, then consider this page as non-searchable.

Rule 10: If there exist < form> tag, but crawler found
mailing list subscription, then consider this page as non-
searchable.

Figure 2 shows the diagrammatic view of the above-
mentioned rules.

F. FORM STRUCTURE EXTRACTION
After the webpage with form is found, the content of the
form is extracted. Search forms have controls that a human
can easily fill and submit. If a crawler has to fill the forms
automatically it has to have a set of resources to automatically
fill and submit the forms with suitable values. A task-specific
database called repository, is initialized at the launch. This
database contains the set of values for filling the forms,
created by parsing the form as shown in table [2]. And
form element table is created with a control element type,
label and domain values. The crawler will adaptively learn
filling values with associated forms. When the first run of
the crawler is completed, the parsed values will be analyzed
to collect data. Form submission is of two types: post-form
submission and get form submission. This crawler work on
both type of submissions. After the form is submitted crawler
got the response status. Response status is either a valid page
or no page found code. Following steps are performed during
form parsing:
• Using Request library of python, HTTP GET request is
sent to URL of a webpage.

• The response of HTTP request is HTML content of a
webpage.

• Data is fetched and parsed using Beautiful soup.
• HTML tags and their attributes are analysed.
• Data is output in CSV file.

G. FORM AND RESPONSE ANALYSIS
Forms havemultiple control elements. It could be of any type:
• Text: This area of a form can be edited with multiple
lines of words.

• Input: This editable area has following attributes types-
type as text, Submit, checkbox and radio button

• Select: Select has two options like drop-down list box
and multi-choice list box.

Two heuristics are implemented based on visible fields.
If the number of visible fields is one or two -forms are
classified using query probing, label extraction otherwise.
As explained in [32] form submission include problems
like 404 error page, duplicate information, and sometimes
all information is retrieved in single submission otherwise

VOLUME 8, 2020 117587

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

TABLE 2. Contents of repository.

multiple submission are required. The crawler has also faced
these problems.

H. QUERY PROBING
Aim of query probing is to develop a set of queries for each
class. On submitting these queries crawler will retrieve the
same documents for that category. Our approach is simi-
lar [33], but we have implemented hierarchal classification,
and the system can expand to the number of classes as it
crawls more URLs. Currently, classes are based on seed
dataset.

I. FORM SUBMISSION
Two related techniques with form submission are:

HTTP POST: In post query technique, forms are submitted
with (name, value) tuple. This pair is sent encoded in the body
of the request. Query probing is implemented in post method
technique.

HTTP GET: In get query technique, forms submission
takes place with giving (name, value) pairs in URL. The
pre-query technique is implemented in get method technique.
In get method URL has three symbols a question mark (?),
equals to (=) and ampersand (&). (?) differentiates encoded
(name, value) from the base URL and action path. (=),(&)
separates the field name and field value.

J. STOPPING CRITERIA
Exhaustive crawling is waste or resources. This system has
implemented following stopping criteria.
• Maximum depth of crawl: the crawler will stop follow-
ing the link when the depth of three is reached. It is
proved in [23] that most of the deep web pages are found
till depth 3. While at each depth maximum number of
pages to be crawl is 100.

• At any depth maximum number of forms to be found is
100 or less than a hundred.

• If the crawler is at depth 1, it has crawled 50 pages,
but no searchable form is found, it will directly move
to next depth. And the same rule is followed at depth

FIGURE 3. Distribution of SIMHAR based on Redis server.

2. Suppose if at depth 2, 50 pages are crawled and no
searchable form is found. The crawler will fetch new link
from URL.

K. ASSUMPTIONS AND THRESHOLDS
• The size of the frontier should not decrease below
100 URLs at a time, as the number decreases, it will
crawl URLs from link frontier and fetched link frontier.

• Learning threshold is 80 new sites and 100 new search-
able forms.

• URLs are picked out from a crawler using first in first
out order.

L. DISTRIBUTION
The above architecture (figure 1) describes the working of
a single entity of focused crawler for the hidden web. The
Redis server is implemented as shared storage for URLs.
Redis store information in cache, unlike databases, that is why
information access is faster. The proposed crawler is devel-
oped in Python. Scrapy is an application framework. Scrapy
helps to extract web pages and structural data. For distributed
crawling, Scrapy and Redis are integrated to implement more
than one server. A crawler is implemented with breadth-first
search per host. Data can be extracted either by using API
of a website or by extracting information by accessing the
webpage. To create a tree structure of HTML data html5lib
parser library is used. To navigate through parse tree beautiful
soup is used. It can pull any type of data. The following
figure 3, explained distribution using multiple Redis to make

117588 VOLUME 8, 2020

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

FIGURE 4. Job scheduling in proposed crawler.

it fault-tolerant. Also the links captured from the web must
be shared with all the crawlers.

M. JOB SCHEDULING
Because scrapy has no mechanism for link sharing even
though it has schedular, so the URLs are shared frommemory
of crawler. Figure 4 show the step wise implementation of job
scheduling. The task of job scheduler is to prevent overload-
ing the websites.

Web pages are popped out from the frontier first-in-first-
out way. We have considered this as our baseline assumption.
Crawling in breadth-first fashion is implemented as URL and
server-based. It is proved in [34] that it yields promising
results. Following steps are performed in Job Scheduling.

Step 1. To start crawling, scrapy send schedule request to
message to a crawler.

Step2. As crawler receives the request it starts crawling.
From the Redis URL queue, a URL is selected and sent as a
request to schedular.

Step 3. Schedular receives a request of URL, it forward
this to Redis (request queue), and then again contact (request
scheduled) is made with scrapy.

Step 4, 5. Now the associated webpage is to be down-
loaded, for this request is popped from the top of a request
queue, and downloader on receiving the request, download
the request page.

Step 6, 7. Downloader after getting the contents of a page,
submit it page to the crawler.

Step 8, 9. Crawler parses the webpage, collect the new
URLs and send a new list of URLs to Redis pipeline. Redis
pipeline send these URLs to Redis queue. One another
advantage of.

IV. CONFIGURATION
The system hardware environment includes: CPU is
Intelr, CoreTM C5-7200@ 2.50 GHZ 2.70GHZ, with
installed RAM-12.0 GB, and Redis 3.0.509. the crawler

is implemented in python. The internet speed during the
experiment was 50-100mbps.

V. EVALUATION
This crawler has to first check if the page belongs to hidden
web or not, by following the rules in Figure 2. After the seed
database URLs are checked for < form> tag, the crawler
has to pull the contents of the webpage using the URL. The
request library help make use of HTTP with in the python
program. Beautiful Soup can extract any type of data from
a webpage. After the HTML Markup’s are removed page is
saved for further processing. Beautiful soup is combined with
urllib3 to work with web pages. Other way is to download
a copy of webpage then use it locally. Beautiful soup has
feature called ‘‘prettify’’, in which all the unnecessary tags
can be dropped.We have selected 6 domains from the dataset.
This dataset contains more than 260000 associated URLs.

Initially the DMOZ dataset is used. The performance of the
classifier is measured using confusionmatrix. Rows of confu-
sion matrix denote actual class, while column indicate classes
predicted by SVM and knn classifiers. We have computed
accuracy for each class. Average of each class denote the
performance of the classifier. The performance metrics are
precision, recall and f1. Precision is classification of portion
of webpages that are relevant to the class. It means how
correct the system is to reject the web pages that are not
relevant. Recall is how correctly classifier can find relevant
document. In Redis multiple jobs are separated using unique
keys. So, jobs are not mixed.

Table 3 shows the description of status codes. Web forms
cannot be submitted for these codes. Table 4 shows the val-
ues of precision, recall and accuracy using support vector
machine for status codes mentioned in table 3. This shows
how accurately system has detected the forms which cannot
be submitted.

Table 5 shows the confusion matrix for correctly submitted
forms. Table 6 and table 7 show the submission accuracy
results using support vector machine and K- nearest neighbor

VOLUME 8, 2020 117589

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

TABLE 3. Status and their description.

TABLE 4. Precision, recall and F1 score for status code, using SVM.

TABLE 5. Confusion matrix for correctly submitted web pages.

algorithms. Results have shown that SVM has performed
better than Knn. Figure 5 shows the percentage of forms sub-
mitted per class. This percentage can vary with the number
of URLs. The size of the database decreases as many of the

TABLE 6. Precision, recall and F1 score for correctly submitted code using
SVM.

TABLE 7. Precision, recall and F1 score for correctly submitted code using
KNN.

FIGURE 5. Percentage of correctly submitted forms submitted per class.

URLs which do not fulfill the criteria of searchable forms
are rejected. Figure 6 shows the comparisons for similarity
detection using cosine similarity, Simhash and hybrid tech-
nique of Redis +Simhash. From the figure it evident that
Redis+Simhash has given better results.

Table 4 show the performance of system in terms of clas-
sification of web forms that can not be submitted. Now the
system has to submit searchable forms. For this confusion

117590 VOLUME 8, 2020

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

FIGURE 6. Comparison of similarity detection of SIMHAR with cosine and
Simhash.

matrix is generated and classification performance is checked
using SVM and KNN.

VI. DISCUSSION
A. MAIN CONTRIBUTION
After carefully review the literature, we found that focused
hidden web crawling using distribution is still and unex-
plored area. The crawler named as SIMHAR is proposed and
implemented based on this research gap. Results have proved
that crawler detect and submit forms efficiently. Similarity
detection in SIMHAR is hybrid technique based on Simhash
and Redis server. Results are promising on compared with
existing technologies. Following point discuss the other con-
tributions

1. The values of the graph i.e classes vs number of forms sub-
mitted in figure 5, can vary with the number of available
URLs because not all URLs would fall in the category of
hidden web sites. Even if the dataset is huge, these values
depend on the searchable forms.

2. This crawler is a successful implementation of focused
crawling in the hidden web, then crawler is put on dis-
tribution mode.

3. The similarity is implemented in two ways, cosine simi-
larity is first modified by adding information gain, then it
is used for finding similar terms for top k queries.

4. This system is scalable as it can handle the size of growing
web databases. And it is scalable in terms of processing
and storage as well.

5. The crawler has inherent Redis security and fault toler-
ance. If one Redis server will stop responding the other
will come into working as shown in figure [3]. Redis port
can be made open for specific clients only. In our future
work, we will work on this by implementing the crawler
for client-based web harvesting.

6. The crawler is efficient in computing similarity with Redis
and simhash combination.

7. The crawler work with both pre and post query
approaches.

8. We have implemented stopping criteria’s with which
crawler resources will never deplete. As the number is
fixed for forms as well as new found URLs.

VII. CONCLUSION
In this paper, we have proposed Redis based distributed web
crawler for the hidden web called SIMHAR. Its resultant
pages can be used for indexing and harvesting. The evalua-
tion is detailed with a controlled environment using DMOZ,
jasmine and amazon as the seed directories. We expect that
system on being expanded to full scale can perform even
better. The future work will introduce deep learning, and
enhanced rejection criteria so that the goal of minimize visit
and maximize the number of hidden websites could produce
more promising results.

REFERENCES
[1] A. Heydon and M. Najork, ‘‘Mercator: A scalable, extensible Web

crawler,’’ World Wide Web, vol. 2, no. 4, pp. 219–229, Dec. 1999.
[2] G. Mohr, M. Stack, I. Rnitovic, D. Avery, and M. Kimpton, ‘‘An intro-

duction to heritrix,’’ in Proc. 4th Int. Web Archiving Workshop, 2004,
pp. 109–115.

[3] M. Cafarella and D. Cutting, ‘‘Building nutch: Open source search,’’
Queue, vol. 2, no. 2, pp. 54–61, 2004.

[4] M. Yadav and N. Goyal, ‘‘Comparison of open source crawlers—A
review,’’ Int. J. Sci. Eng. Res., vol. 6, no. 9, pp. 1544–1551, 2015.

[5] M. Herrmann, K.-C. Ning, C. Diaz, and B. Preneel, ‘‘Description of the
YaCy distributed Web search engine,’’ KU Leuven ESAT/COSIC, IMinds,
Tech. Rep., 2014.

[6] Y. Li, Y. Wang, and J. Du, ‘‘E-FFC: An enhanced form-focused crawler for
domain-specific deep Web databases,’’ J. Intell. Inf. Syst., vol. 40, no. 1,
pp. 159–184, Feb. 2013.

[7] L. Barbosa and J. Freire, ‘‘An adaptive crawler for locating hiddenwebentry
points,’’ in Proc. 16th Int. Conf. World Wide Web WWW, 2007, p. 441.

[8] L. Barbosa and J. Freire, ‘‘Searching for hidden-Web databases,’’ in Proc.
WebDB, vol. 5, 2005, pp. 1–6.

[9] B. Zhou, B. Xiao, Z. Lin, and C. Zhang, ‘‘A distributed vertical crawler
using crawling-period based strategy,’’ in Proc. 2nd Int. Conf. Future
Comput. Commun., ICFCC, vol. 1, May 2010, pp. 306–311.

[10] W. Gao, H. C. Lee, and Y. Miao, ‘‘Geographically focused collaborative
crawling,’’ in Proc. 15th Int. Conf. World Wide Web - WWW, 2006, p. 287.

[11] J. Yu, M. Li, and D. Zhang, ‘‘A distributed Web crawler model based on
cloud computing,’’ in Proc. 2nd Inf. Technol. Mechatronics Eng. Conf.
(ITOEC), vol. 66, 2016, pp. 276–279.

[12] F. Ye, Z. Jing, Q. Huang, and C. Hu, ‘‘The research and implementation of
a distributed crawler system based on Apache Flink,’’ in Proc. Int. Conf.
Algorithms Archit. Parallel Process., vol. 3, 2018, pp. 90–98.

[13] H. M. Moftah and S. M. Abuelenin, ‘‘Elastic Web crawler service-
oriented architecture over cloud computing,’’ Arabian J. Sci. Eng., vol. 43,
pp. 8111–8126, May 2018.

[14] D. Gunawan, Amalia, and A. Najwan, ‘‘Improving data collection on
article clustering by using distributed focused crawler,’’ J. Comput. Appl.
Informat., vol. 1, no. 1, pp. 39–50, 2017.

[15] H. T. Y. Achsan and W. C. Wibowo, ‘‘A fast distributed focused-Web
crawling,’’ Procedia Eng., vol. 69, pp. 492–499, Jan. 2014.

[16] M. Boanjak, E. Oliveira, J. Martins, E. M. Rodrigues, and L. Sarmento,
‘‘TwitterEcho: A distributed focused crawler to support open research with
Twitter data,’’ in Proc. 21st Int. Conf. Companion World Wide Web WWW
Companion, 2012, pp. 1233–1239.

[17] H. Xu, K. Li, and G. Fan, ‘‘An improved strategy of distributed network
crawler based on Hadoop and P2P,’’ in Proc. Int. Conf. Appl. Techn. Cyber
Secur. Intell., vol. 2, 2019, pp. 849–855.

[18] J. Madhavan, D. Ko, and A. Rasmussen, ‘‘Google ’ s Deep-Web Crawl,’’
Proc. VLDB Endowment, vol. 1, no. 2, pp. 1241–1252, Aug. 2008.

VOLUME 8, 2020 117591

S. Kaur, G. Geetha: SIMHAR - Smart Distributed Web Crawler for the Hidden Web Using SIM+Hash and Redis Server

[19] A. Bergholz and B. Childlovskii, ‘‘Crawling for domain-specific hidden
Web resources,’’ in Proc. 7th Int. Conf. Properties Appl. Dielectr. Mater.,
Dec. 2003, pp. 125–133.

[20] J. Cope, N. Craswell, and D. Hawking, ‘‘Automated discovery of search
interfaces on theWebBT,’’ inProc. 14th Australas. Database Conf. (ADC),
vol. 17, 2003, pp. 181–189.

[21] L. Barbosa and J. Freire, ‘‘Combining classifiers to identify online
databases,’’ in Proc. 16th Int. Conf. World Wide Web WWW, 2007, p. 431.

[22] A. Kashyap, V. Hristidis, M. Petropoulos, and S. Tavoulari, ‘‘Effective
navigation of query results based on concept hierarchies,’’ IEEE Trans.
Knowl. Data Eng., vol. 23, no. 4, pp. 540–553, Apr. 2011.

[23] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang, ‘‘Structured
databases on the Web,’’ ACM SIGMOD Rec., vol. 33, no. 3, p. 61,
Sep. 2004.

[24] J. Madhavan, A. Halevy, S. Cohen, X. L. Dong, S. R. Jeffery, and D. Ko,
and C. Yu, ‘‘Structured data meets the Web: A few observations,’’ IEEE
Data Eng. Bull, vol. 29, no. 4, pp. 19–26, Dec. 2006.

[25] L. Barbosa and J. Freire, ‘‘Siphoning Hidden-Web Data through Keyword-
Based Interfaces,’’ J. Inf. Data Manage., vol. 1, no. 1, pp. 133–144,
May 2010.

[26] P. Zerfos, J. Cho, and A. Ntoulas, ‘‘Downloading textual hidden Web
content through keyword queries,’’ in Proc. 5th ACM/IEEE-CS Joint Conf.
Digit. Libraries (JCDL), 2005, pp. 100–109.

[27] J. Caverlee, L. Liu, and D. Buttler, ‘‘Probe, cluster, and discover: Focused
extraction of QA-pagelets from the deep Web,’’ in Proc. 20th Int. Conf.
Data Eng., Apr. 2004, pp. 103–115.

[28] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart, and
C. Wang, ‘‘DIADEM: Thousands of websites to a single database,’’ Proc.
VLDB Endowment, vol. 7, no. 14, pp. 1845–1856, Oct. 2014.

[29] P. Liakos, A. Ntoulas, A. Labrinidis, and A. Delis, ‘‘Focused crawling for
the hidden Web,’’World Wide Web, vol. 19, no. 4, pp. 605–631, Jul. 2016.

[30] C. Sadowski and G. Levin, ‘‘SimHash?: Hash-based similarity detection,’’
Google, Tech. Rep., 2007.

[31] G. Valkanas and A. Ntoulas, ‘‘Rank-aware crawling of hidden Web sites,’’
in Proc. WebDB, 2011, pp. 1–6.

[32] S. Liddle, D. Embley, D. Scott, and S. H. Yau, ‘‘Extracting data behind
Web forms,’’ in Proc. Int. Conf. Conceptual Modeling. Berlin, Germany:
Springer, 2002, pp. 402–413.

[33] P. G. Ipeirotis, L. Gravano, and M. Sahami, ‘‘Automatic classification of
text databases through query probing,’’ in Proc. Int. Workshop World Wide
Web Databases, Berlin, Germany: Springer, 2000, pp. 245–255.

[34] C. Castillo, A. Nelli, and A. Panconesi, ‘‘A memory-efficient strategy for
exploring the Web,’’ in Proc. IEEE/WIC/ACM Int. Conf. Web Intell. (WI
Main Conf.)(WI), Dec. 2006, pp. 680–686.

SAWROOP KAUR received the M.Tech. degree
from Lovely Professional University, Punjab,
India, where she is currently pursuing the Ph.D.
degree in computer science.

G. GEETHA (Member, IEEE) is currently a
Professor in computer science and the Head
of the Division of Research and Development,
Lovely Professional University, Punjab. She works
in the area of cybersecurity. She has published
several research articles and has graduated six
Ph.D. students.

117592 VOLUME 8, 2020

	INTRODUCTION
	LITERATURE REVIEW
	HIDDEN WEB CRAWLING
	AUTOMATED HIDDEN WEB ENTRY POINT DISCOVERY
	FORM MODELLING
	QUERY SELECTION
	CRAWLING PATH LEARNING

	FOCUSED CRAWLERS

	THE PROPOSED ARCHITECTURE
	PRE-PROCESSING OF URLS
	WEIGHT CALCULATION OF TERMS
	LEARNING
	RANKING
	DOMAIN CLASSIFICATION
	FORM STRUCTURE EXTRACTION
	FORM AND RESPONSE ANALYSIS
	QUERY PROBING
	FORM SUBMISSION
	STOPPING CRITERIA
	ASSUMPTIONS AND THRESHOLDS
	DISTRIBUTION
	JOB SCHEDULING

	CONFIGURATION
	EVALUATION
	DISCUSSION
	MAIN CONTRIBUTION

	CONCLUSION
	REFERENCES
	Biographies
	SAWROOP KAUR
	G. GEETHA

