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ABSTRACT Aimed at the bottleneck of Firework Algorithm’s performance and the problem that it is
easy to fall into the local extremum, this paper introduces a chaotic map approach and analyzes its
statistical characteristics. New hybrid chaotic systems and a chaotic perturbation operator are designed.
Based on different chaotic map approaches, a new Chaotic Firework Algorithm (CFWA) is proposed and
simulated by typical test functions. The results show that performance of the Chaotic Firework Algorithm is
generally better than the original algorithms, and the chaotic hybrid approaches are superior to single chaotic
approaches. In order to further verify the application of the proposed algorithm in practical engineering
problems, CFWA is applied to Blind Source Separation (BSS) of radar signals. As a result, it does well
in sorting observed signals, and has faster convergence and better sorting performance than the traditional
algorithms. In this way, the CFWA extends its engineering application.

INDEX TERMS Firework algorithm, chaotic map, chaotic perturbation, hybrid chaotic systems, blind source

separation.

I. INTRODUCTION

Metaheuristic algorithms usually solve complex engineering
optimization problems in the scientific field. Due to their
excellent performance, they have been the focus of research
in recent years. There are many kinds of metaheuristic
algorithms which inspired mechanisms, they can be roughly
divided into two categories: one is to imitate biological pro-
cesses, such as Genetic Algorithm (GA) [1], Particle Swarm
Optimization Algorithm (PSO) [2], Ant Colony Optimization
Algorithm (ACO) [3], Fish Swarm Search Algorithm (FSS)
[4], Artificial Bee Colony Algorithm (ABC) [5], Firefly
Algorithm (FA) [6], Cuckoo Algorithm (CS) [7], Bacterial
Foraging Optimization (BFO) [8], Grey Wolf Optimizer
(GWO) [9], Fruit Fly Optimization Algorithm (FOA) [10]
etc.; and the other is based on the principles of physics,
such as Simulated Annealing (SA) [11], Gravitational Search
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Algorithm (GSA) [12], Biogeography-Based Optimization
(BBO) [13], Water Wave Optimization, (WWO) [14], Vor-
tex Search (VS) [15], Harmony search, (HS) [16], etc.
In particular, a metaheuristic algorithm based on swarm
intelligence, has an incomparable advantage over traditional
optimization algorithms in solving optimization problems in
engineering.

The Firework Algorithm (FWA) is a new swarm intelli-
gence algorithm proposed by Tan and others [17] in 2010,
inspired by the natural phenomenon of firework explosions
in the night sky. So the FWA is also a metaheuristic algorithm
based on physical principles. Compared with the traditional
Genetic Algorithm, Particle Swarm Algorithm, and Differen-
tial Evolution Algorithm, FWA shows a good performance
in optimization. In addition, FWA has a simple structure,
few control parameters, and is easy to implement. It has
local search and global search self-adjusting mechanisms.
More and more researchers have begun to study the improve-
ment and application of FWA in engineering problems from
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different perspectives, such as sensor deployment [18], opti-
mization calculation of distribution grid scheme [19], robot
path planning [20], multi-objective optimization problem
[21], etc.

Although FWA has been widely used in engineering field,
there are still some shortcomings, such as low accuracy of an
optimization result, and slow convergence speed, and it’s easy
to fall into alocal optimum. In recent years, scholars have pro-
posed many improved algorithms. Zheng et al. [22] analyzed
the explosion operator, mutation operator, selection strategy,
and map rule mechanism of the firework algorithm in detail,
and proposed the Enhanced Firework Algorithm (EFWA).
Next, Zheng and Tan [23] dynamically calculated the fire-
work explosion radius based on the dynamic change of the
spark fitness value, and proposed a dynamic search Fire-
work Algorithm (dynFWA). Li et al. [24] determined the
firework explosion radius based on the distance between the
optimal individual and a specific individual, and proposed
an Adaptive Firework Algorithm (AFWA). Li et al. [25]
proposed a Reverse Firework Algorithm by combining the
backward learning strategy with the FWA to overcome the
slow convergence speed and performance bottlenecks in the
traditional FWA. Reddy et al. [26] proposed the Binary
Fireworks Algorithm (BFWA) and applied BFWA to the
PBUC (profit based unit commitment) optimization problem.
Li et al. [27] introduced a novel Guided Spark (GS) in the
FWA to enhance the information utilization of the algorithm.
Experiments show that GS’s ability to explore and develop the
FWA has been greatly enhanced. Shen et al. [28] adopted a
new type of map rule that takes into account the location char-
acteristics and proposed an Enhanced Multimodal Firework
Algorithm based on the loser elimination system. In general,
the above algorithm improves the search performance of the
FWA, but still has the disadvantages of slow convergence and
easily falling into a local optimum.

Chaos optimization is a relatively new optimization
method, which has unique characteristics such as the inher-
ent randomness and initial value sensitivity. In this paper,
two hybrid chaotic systems are designed by analyzing one-
dimensional chaotic maps, and an improved Chaotic Fire-
work Algorithm (CFWA) is proposed. Firstly, chaotic maps
are used to replace the traditional random initialization of
firework positions, making the initial solution distribution
more uniform. Then a new adaptive chaotic perturbation
operator is designed to accelerate the convergence speed and
avoid the algorithm from falling into a local optimum and
evolutionary stagnation. Experiments show that the algorithm
performance has been greatly improved.

The structure of this paper is as follows: Section II intro-
duces the flow of the basic Firework Algorithm. Section III
analyzes the statistical characteristics of six types of one-
dimensional chaotic maps and designs two hybrid chaotic
systems. Section IV introduces a standard test function with
different characteristics and analyzes the test performance of
each function. Section V proposes the CFWA and constructs
the algorithm flow. Section VI verifies the effectiveness of
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the CFWA through experiments and compares it with several
classic improvement methods. Section VII applies CFWA
to the problem of Blind Source Separation of radar signals.
The simulation results show advantages of this algorithm in
solving practical engineering problems. Section VIII draws a
conclusion and summarizes the whole paper.

Il. BASIC FIREWORK ALGORITHM
FWA comes from the simulation of the firework explosion
process. The execution process of the algorithm is shown
in Figure 1. The basic principle of the FWA: If the fitness cor-
responding to a firework is smaller, the number of sparks gen-
erated by the fireworks explosion is smaller and the explosion
amplitude is smaller; on the contrary, if the corresponding
fitness of fireworks is larger, the number of sparks generated
by the firework explosion will be smaller and the explosion
amplitude will be larger. During the iterative process of the
FWA, the explosion operator, mutation operator, map rule,
and selection strategy are used in turn until the termination
condition is reached. The specific implementation steps are
as follows.

Stepl: Expression and initialization of solutions. x; =
(xi1, X2, - - ., Xjp) is the current position of the i-th
firework, which is generated by equation (1).

.,xij,..

Xi = (Xmax — Xmin) - rand (1, D) + Xppin (1

In Equation (1) (1 <i < N, 1 <j < D), Disthe search space
dimension, N is the population size, x;; is the j-th component
of the i-th firework, and the value range of the component is
[Xmins Xmax]-rand (1, D) generates a D-dimensional vector.

Step2: Explosion operator. In FWA, the equation for the
number of explosion sparks generated by the i-th firework x;
is as Equation (2):

Si=m Yiorst _f (xi) +‘?>: (2)

N
Z:l (onrst _f (xi)) + g

In Equation (2), m is a constant, and Y, 1S the worst fitness
value in the current population. f (x;) is the fitness value of
x;. £ is a very small normal number that the computer can
represent, and is used to prevent the division by zero error.
At the same time, in order to prevent too much or too little
S; from being generated, §; is corrected according to the
equation (3):

round (am), if S; <am
Si = { round (bm), if S;>bm,a<b<1 3)
round (S;),  otherwise

In Equation (3), round (e) is a rounding function, a and b are
given constants. The equation for calculating the explosion
radius of x; is as follows:

Ai:ANf(xi)_Ybest""g )

2 (f (xi) - Ybest) +SJ-
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FIGURE 1. Execution process of FWA.

In Equation (4), A is the preset maximum explosion radius.
Assuming that the objective function to be optimized is a
D-dimensional function, the z-dimensional coordinates in
the D-dimensional are randomly selected for update. The
k-dimensional coordinate update equation of the j-th spark
generated by x; is as follows:

x{‘ = x!‘ + Ajrand(—1, 1) (5)

Step3: Mutation operator. The mutation operator is used
to generate Gaussian sparks in order to increase population
diversity. Generate M Gaussian sparks according to preset
parameters, and the k-dimensional coordinate update equa-
tion of the j-th spark is as follows:

x}‘ = x;‘ Gaussian(1, 1) (6)

In Equation (6),j=1,2,...,Mandk =1,2,...,z

Step4: Map rules. Map rules are used to correct coordinates
that exceed the value range during coordinate update. The
map rules using modulo operation are as follows:

k k

— k k k
Xi = Xmin + i mOd(xmax - xmin) )

In Equation (7), xX .. and x . are the upper and lower bounds
of the boundary of the k-th value range of the i-th spark,
respectively.

Step5: Selection strategy. In FWA, the elite retention

strategy is adopted, and the spark with the best fitness is
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End

automatically retained to the next generation. The remaining
individuals choose to adopt the roulette method, and the
probability of being selected is represented by p(x;).
R(x;)
p@i) = ®)

> R(x))

J=1
In Equation (8), R(x;) is the sum of the distances between
the individual x; and other individuals. Calculate using the
Equation (9).

K K
R = d(xix;) =) |xix ©
=1

j=1

d (xi, xj) is the Euclidean distance between individuals x; and
x;. K is the total number of sparks generated by the explosion
operator and mutation operator.

lll. CHAOS OPTIMIZATION ANALYSIS

A. CHAOS INTRODUCTION

Chaos originated from mathematics and physics. Chaos was
first proposed by American biologist May [29], which caused
a research climax in the 1970s. Chaos is a peculiar evo-
lutionary behavior of nonlinear dynamical systems, which
refers to an unpredictable, random-like motion that occurs
in deterministic dynamical systems (with certain equations)
and is sensitive to initial values [30]. In nature, chaos is
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everywhere, such as flags swaying in the wind, rising smoke,
flowing streams, clouds moving in the sky, weather changes,
the path of lightning, star clusters in the universe and even
economic fluctuations, population growth etc.

Order in chaos is different from random processes. There is
an essential difference between chaos and random processes.
Chaotic motions are caused by deterministic physical laws
(deterministic equations), and are caused by the external real-
ization of intrinsic characteristics; while random processes
are caused by random factors such as external noise. Chaos is
non-periodic but has unique characteristics such as intrinsic
randomness and initial value sensitivity, which are not found
in random motion.

1) Non-periodic. For some parameters, chaos will gener-
ate non-periodic dynamic processes under almost all
initial conditions.

2) Initial value sensitivity. Even if the two initial values
differ by a factor of 10,000, over time and evolution,
the results obtained by the same chaotic system are
very different, such as the so-called butterfly effect.
Therefore, the evolution of chaos also has long-term
unpredictability.

3) Ergodicity. Different from the balance, periodic and
quasi-periodic movements of deterministic move-
ments, chaos is a kind of movement with a limited range
and never repetitive and complex movement trajectory,
which is constantly evolving and never stops.

4) Intrinsic stochasticity. Chaos is an unstable trajectory
generated by a deterministic equation, and the sys-
tem’s motion shows an inherently random and com-
plex behavior. Chaos is neither pure disorder nor pure
order, but the unity of the two. It is also the unity of
certainty and randomness. It has inherent regularity and
universality.

It is precisely because chaos has the properties of
aperiodicity, initial value sensitivity, ergodicity, and internal
randomness that it has become one of the hot spots in
current nonlinear scientific research. It is also widely used
in many fields such as optimization search, neural network,
image compression, nonlinear time series data prediction,
pattern recognition, fault diagnosis, secure communication,
etc. [31]-[34].

The basic idea of chaos optimization is to map the variables
from the chaotic space to the solution space of the optimiza-
tion problem, and then use the chaotic variables to search and
optimize using the characteristics of spatial ergodicity and
external randomness. The general steps of the CO method are
as follows:

Stepl: Use chaotic map to generate a set of chaotic vari-
ables with the same number of variables as the problem to be
optimized.

Step2: The chaotic variable cxg; € (0, 1) is mapped to
(Lg, Uy) according to Equation (10), that is, the traversal
range of the chaotic motion is expanded from (0, 1) to
(L4, Ug), and then the new chaotic variable x; is used for
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optimization.
xqg =Lg+cxqg (Ug —Ly) (10)

For most heuristic optimization algorithms, the generation
of random variables is usually based on a certain standard
probability distribution, such as uniform distribution and
Gaussian distribution. Chaos is not only random-like but also
has better spatial ergodicity and non-repetition. Therefore,
compared with random search based on a certain probability
distribution, the population of the algorithm after the chaos is
relatively more diverse, and the possibility of jumping out of
local extreme points is relatively larger, which in turn allows
the algorithm to search at a relatively faster speed. At the
same time, there are different types of chaos. Each chaotic
system has some different statistical characteristics, which
has a greater impact on the initialization of chaos and the
generation of new chaotic solutions. Therefore, it is necessary
to analyze the statistical characteristics of typical chaotic
maps.

B. ANALYSIS OF A TYPICAL ONE-DIMENSIONAL

CHAOTIC MAP

To introduce chaos optimization, some one-dimensional, irre-
versible maps are used here to generate chaotic sequences.
As shown in Table 1, six typical one-dimensional chaotic
maps are introduced (k in the Table 1 is the number of
iterations and xg is the initial value).

To visually show the characteristics of the above-
mentioned one-dimensional chaotic maps. Figures 2 to 7
respectively show the chaotic numerical graphs and the prob-
ability distribution characteristics in the interval (0,1) of 6
chaotic maps such as Logistic map at 100 iterations. Inspired
by the literature [35], the probability distribution is estimated
by the following methods: iteratively uses chaotic maps to
iterate 100,000 times to generate 100,000 chaotic numerical
points, divides the interval (0,1) into 100 intervals, and counts
the probability of the 100,000 points falling into the 100 equal
partitions, as shown on the right of each figure. The initial
value of each chaotic map is randomly selected as shown in
the title of each figure.

Figure 2 shows the numerical graphs and their probability
distributions of the Logistic map when are 0.8 and 0.8001.
From Figure 2 (a) and (c), the numerical graphs are chaotic,
random, and have no overlapping overlap, reflecting the
external randomness and traversal of chaos; the initial values
of Figure 1 (a) and (c) are 0.8 and 0.8001 respectively, the dif-
ference between them is only one ten thousandth, but compar-
ing the two graphs, it can be seen that after 10 iterations, the
Logistic system shows a large difference, and there is no sim-
ilarity at the end, which fully reflects the initial value sensitiv-
ity of chaos; although the differences in Figure 2 (a) and (c)
are large, however, comparing Figure 2 (b) and (d), it can be
seen that the probability distributions in the two cases show
striking similarities, fully reflecting the inherent regularity of
chaos.
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TABLE 1. Typical one-dimensional chaotic map.

No Name Expression Description
_ a generally takes 4,when x| € (0,1) and x, € (0,0.25,0.5,0.75,1),
1 Logistic map X ax (L7 x) c
x, S (0,1)
. _ a
2 Circle map Xeo —x, THT (27)sin(2”xk)mod(l) When a=0.5,b=0.2, x, € (0,1)
Sinusoidal A X, € (0,1) ,when a=2.3 and x, = 0.7 ,x,,, Canbe abbreviated as
3 terator X4y = oax,sin(Tx,) o
crato X, = osin(Tx,)
o, x, =0 1/x, mod)=1/x, ~L1/x ],
4 Gauss map X 3 _
[1/x, mod(1), x, € (0,1) Lo] means round down, x, € (0,1)
[ * 0<yx S1- A
k . . — . .
5 Bernouilli ¥ = 1= Special formis x,, = 2x, mod1 , exist unstable cycle points, such
| x, ¢~ Ay 1< . < as 0.25, 0.5, 0.75 will iterate to the fixed 0.
T e
[x, 707, x,<0.7
'6 Tent map X =3 x, € (0,1
[10/3.\',:(1_,\‘,(), otherwise
. : . 0.08 ; ; : ;
0.06
9
8 =
o = 004f
> S
St
| A~ 002t
: ‘ 0 s . . s
40 60 80 100 0 0.2 0.4 06 0.8 1
Iterations Value
(a) Numerical graph of Logistic map (x, = 0.8) (b) probability distribution of Logistic map (x, = 0.8)
1 | : ; ; 0.08 : : . ,
08 0.06
2
© 06 =
% < 0.04H
> 04 3
L
P 002t g
02f
0 ‘ s . 0 . . . s
0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1

Iterations
(c) Numerical graph of Logistic map (x, = 0.8001)

Value
(d) probability distribution of Logistic map (x, = 0.8001)

FIGURE 2. Numerical graph and probability distribution of logistic.

The other five chaotic maps such as the Tent map also
show similar chaotic properties as Logistic map, which will
not be detailed here. Here we only briefly analyze the
probability distribution of each chaotic map. As shown in
Figures 2 (b) and (d), the distribution characteristics of the
chaotic sequence of the Logistic map are relatively even in
the middle, but the probability of the values at both ends
(0,0.1) and (0.9,1) is particularly high, which is the mid-
dle distribution About 10 times. Therefore, when chaotic
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optimization is performed using the Logistic map, a large
number of searches are performed at both ends of the variable
value interval. If the global optimal solution of the opti-
mization problem is not distributed at both ends but in the
middle, a large number of invalid searches will occur. It is
very bad for global optimization. What is interesting is that,
as shown in Figure 3 (b), the probability distribution of the
Circle map just shows a trend of high in the middle and low
in both ends. Therefore, inspired by the above two chaotic
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FIGURE 3. Numerical graph and probability distribution of Circle map (xy = 0.7).
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FIGURE 4. Numerical graph and probability distribution of Sinusoidal iterator(xy = 0.7).
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FIGURE 5. Numerical graph and probability distribution of Gauss map(xq = 0.52).

maps, the author attempts to combine Logistic map and Cir-
cle map by some method to obtain an iterative numerical
sequence that is never repeated, has inherent randomness,
and is relatively uniformly distributed. This can facilitate the
initialization of intelligent optimization algorithms, and non-
repetitive heuristic search.

Similarly, as shown in Figures 4 (b) and 5 (b), the sinu-
soidal iterator and Gauss map also show roughly complemen-
tary probability distribution. The Sinusoidal iterator shows a
low front-end and high-back end distribution, while the Gauss
map is just the opposite. The probability distribution shows
a decreasing trend. Therefore, it is also possible to combine
the Sinusoidal iterator and Gauss map to design a chaotic
hybrid optimization approach to improve FWA to increase the
algorithm’s optimization performance.

Bernouilli map has unstable periodic points, such as
0.25, 0.5, 0.75 will iterate to fixed point 0. Therefore,
the method in [36] is introduced into the Bernouilli map to
form an improved Bernouilli map: if x; = 0, 0.25, 0.5, 0.75,
Bernouilli map re-enters the chaos state under perturbation.
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The improved Bernouilli map is shown in Equation (11).
X =2 (xx +0.1 x rand (0, 1)) mod1 (11D

Figures 6 and 7 show the numerical graphs and probability
distribution of Bernouilli map and Tent map. It can be seen
intuitively that the chaotic sequences of the two are evenly
distributed in the (0,1) interval. This distribution can avoid
excessive search in some local areas (such as a large number
of Logistic map are concentrated at both ends of the interval),
thereby reducing the incompatibility between the distribution
characteristics of the chaotic sequence and the global optimal
solution position of the optimization problem causes adverse
effects on the optimization algorithm.

C. HYBRID CHAOTIC SYSTEM

Based on the above-mentioned analysis of the probability
distribution/statistical characteristics of the Logistic map and
the Circle map, the Sinusoidal iterator and the Gauss map,
two pairs of “complementary” statistical characteristics are
obtained. Here we try to combine them in pairs to obtain a
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FIGURE 6. Numerical graph and probability distribution of Bernouilli map (xo = 0.2).
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FIGURE 7. Numerical graph and probability distribution of Tent map(xy = 0.2).

“perfect” sequence that is never repeated and has a relatively
uniform distribution of statistical characteristics. Traverse the
entire solution space. A hybrid chaotic system is proposed
here, which combines the variables in two chaotic maps
with “complementary” statistical characteristics. The pseudo
code of the hybrid chaotic map of the Logistic map and the
Circle map (abbreviated as L-C map) is shown in figure 8.
The pseudo code of the hybrid chaotic map of Sinusoidal
iterator and Gauss map (abbreviated as S-G map) is shown
in figure 9.

IV. CHARACTERISTICS OF FUNCTION OPTIMIZATION
PROBLEMS AND STANDARD TEST FUNCTIONS

A. CHARACTERISTICS OF FUNCTION

OPTIMIZATION PROBLEMS

A large number of optimization problems can be transformed
into functional optimization problems through mathematical
modeling, such as PID parameter optimization, mechanical
parameter optimization, aerodynamic parameter identifica-
tion, aircraft trajectory optimization, etc. [37], [38]. However,
optimization problems abstracted by these realistic problems
have different mathematical characteristics such as high-
dimensional, multimodal, nonlinear and non-separable.

1) High-dimensional. The solution space of high-
dimensional complex functions is very large, which
makes the difficulty of algorithm optimization increase
sharply. Many algorithms that work well for low-
dimensional functions are available may perform
poorly for high-dimensional complex functions [39].

120804

2) Multimodal. Multimodal functions are relative to Uni-
modal functions. Unimodal function means that the
function has only global optimums and no local opti-
mums in the domain; and the multimodal function
means that it has multiple local extremums, sometimes
even infinite (such as Ackley function, Griewank func-
tion, etc.). Therefore, the multimodal function is more
complicated than the unimodal function. It is difficult
for ordinary optimization algorithms to find the global
optimal value, and it is easy to fall into local extreme
values or oscillate between local extreme values [40].
Nonlinear. The nonlinear function solution space is
extremely complicated, and there is a lot of misleading
gradient information, which easily causes the algorithm
to sink into the local optimum, making optimization
difficult.

Non-separable. If a function with N variables can
be represented by the sum of N univariate functions,
the function is separable, otherwise it is a non-separable
function. Because relationships between non-separable
function variables are complex, solving such function
optimization problems is relatively more difficult.

3)

4)

Therefore, this paper introduces four types of complex
functions: unimodal separable, unimodal non-separable, mul-
timodal separable, and multimodal non-separable.

B. STANDARD TEST FUNCTIONS
To test the performance of various swarm intelligence algo-
rithms, several groups of Benchmark functions with different

VOLUME 8, 2020
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Input: D, N;
Output: Cx
for i=1,2,",N do

else

endif

endfor

Code : Hybrid chaotic map combining Circle and Logistic generates chaotic variable sequences

if 0<% <9.10r 0.8<96 <1 //6 isa uniformly distributed random number on (0,1)

Use Logistic map to generate a chaotic variable sequence Cx, of length D;

Use Circle map to generate a chaotic variable sequence Cx, of length D;

FIGURE 8. The pseudo-code of chaotic variable sequence generated by the hybrid chaotic map of Circle and Logistic.

Input: D, N;
Output: Cx
for i=1,2,",N do

else

endif
endfor

Code : Hybrid chaotic map combining Gauss and Sinusoidal generates chaotic variable sequences

if0<6<05 /9 isa uniformly distributed random number on (0,1)
Using Gauss map to generate chaotic variable sequence Cx,;

Using Sinusoidal iterator to generate chaotic variable sequence Cx,;

FIGURE 9. The pseudo-code of chaotic variable sequence generated by the hybrid chaotic map of Sinusoidal and Gauss.

characteristics are cited for testing. The author has selected
15 test functions with different mathematical characteristics
and scales as shown in Table 2 to facilitate the comparison of
subsequent algorithms.

Specifically, the feature ‘U’ in the Table 2 indicates that the
function is a Unimodal function, ‘M’ indicates Multimodal,
‘S’ indicates Separable, and ‘N’ indicates Non-Separable.
As shown in Table 2, the 15 standard test functions selected
include various complex mathematical features, including
4 unimodal inseparable functions, 2 unimodal separable func-
tions, and 3 multimodal separable functions. Multimodal
inseparable functions are the most, with a total of 6. Besides,
the set part in the feasible solution space is the domain of the
independent variable, and its superscript is the dimension. For
example, for the Ackley function, D = 200, and [—32, 32]D
is the optimal space. The bold figure in the global extremum
indicates that the Bridge function finds the global maximum,
and all other complex functions solve the global minimum.

The functions in Table 2 can also be divided into two
categories based on whether the dimensions can be freely
set. The five functions F5, F6, F9, F14, and F15 are free-
dimensional functions, their function dimensions can be set
freely. The higher the dimension, the more complicated the
solution space, and the more difficult it is to find the optimal
function. The other 10 functions are all fixed-dimensional
functions and the solution space dimensions of the functions
have been set.

For an intuitive understanding and convenient analysis of
function properties, Figure 10 gives three-dimensional plots
of 14 test functions except for Colville (Colville functions
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are 4-dimensional fixed-dimensional functions, which cannot
be represented by a single three-dimensional plot). It can be
seen from Figure 10 that each function has its characteristics.
For example, the function F1 presents a cone space and has
a large gradient. The optimization algorithm can easily miss
the global best. Therefore, it is very difficult for the algorithm
to achieve high optimization accuracy; F3 is a banana-like
unimodal function, whose optimal value is hidden in a long
and narrow parabolic channel. It is also difficult to find the
optimal solution; the number of local optimal points of F5,
F6 and F9 increases with the increase of the dimension,
which makes the difficulty of algorithm optimization sharply
increased; F11 is a derivable function with a total of 2 global
minimum points (—0.0898, 0.7126), (0.0898, —0.7126) and
6 local extremum points, each extremum point is independent
of each other. This makes it difficult for the algorithm to
obtain the heuristic information of the function, making it
difficult to find the optimal solution for the algorithm; F14 is
an inseparable complex multimodal function. Its domain
[—600, 600]° can build a very large search space for opti-
mization, especially when the value of the dimension D is
large. Besides, a large number of local extreme values and
high obstacles surround the global optimal value, which is
very deceptive, making the optimization algorithm easily fall
into the local extreme value and difficult to jump out; F15 is
a complex multimodal inseparable function formed by the
superposition of exponential function and cosine function.
Countless local extreme points are distributed in the solution
space of F15, which can cause a lot of misleading infor-
mation to the optimization algorithm. In addition, its global

120805



IEEE Access

W. Luo et al.: Optimal Performance and Application for FWA

TABLE 2. Standard test functions.

] . . Global
No. Function Expression Feature Solution space extremum
1 Easom J(X) = Teos(x)eos(x,) X exp ~{x, ~F) T (x, =)’ UN [-10,10]2 -1
2 Matyas F(X)T0.26 x/ T x) T048xx, UN [-10,10* 0
3 Rosenbrock F(X)=100(x, x)) v A x) UN [-2.048, 2.048]* 0
FOX)T100 2 =%, Fox om0t x m1 90 2l
4 Colville UN [-10,107* 0
2 2
100 6,70 Y oy, T T198 kT x, T
5 Sumsquares FOX)= 2} US [-10,101" 0
6 Sphere Fxy =2 Us [-100,100]° 0
7 Booth fX)= x 25,77 F 25, T x, 75 MS [-10,107* 0
8 Bohachevsky1 F(X)Tx T 2x) T03c0s(3%x) T 0.dcos(dTx,) T 0.7 MS [-100,1007? 0
9 Quadric fx)=2 [Z ] MS 130,301 0
i1 k=1
10 Eggcrate F(X)=x] T x]*25Csinx +sin’x) MN [-2m, 2m)* 0
2 4 1 & 2 4
11 Six Hump Camel Back F(X)=4x] ~20x 5 *oxx, Tdxl Ay MN [-5,51 -1.0316
12 Bohachevsky3 FX)= 5] 25 T03cos(3%x, F4Tx )T 03 MN [-100,1007* 0
. cos2®x Toos2®x, 2
13 Bridge ; )~ 0.7129 MN [-1.5,1.5] 3.0054
. - 1 i 2 _ ﬁ oY+ D
14 Griewank F(X)= ——2 %, cos(—= +1 MN [-600,600] 0
4000 ,-, - \/1_
n = h ] N 2 I N D
15 Ackley F(X)= "20exp(T0.2 J— 2 x') ~exp(— & c0s2Ta ) F 20 ¥ ¢ MN [-32,32] 0
D D 4

extremum is hidden in a deep, narrow cone, making it difficult
for the algorithm to find the global extremum; F4, F6, F8,
F12, F14, and FI15 all have infinitely many local optimal
values, and there is only one global minimum. It is very
difficult for ordinary optimization algorithms to converge to
the global extreme.

In summary, the use of the above-mentioned functions with
different characteristics for simulation experiments is con-
ducive to evaluating the adaptability of different optimization
algorithms to different function optimization problems.

V. CHAOTIC FIREWORK ALGORITHM

To improve the performance of FWA, the external random-
ness, initial value sensitivity, and spatial ergodicity of the
chaotic system described in Section III are fully used here.
The above chaotic map is used to initialize the firework
position instead of the random initialization of the basic
FWA. This method makes the initial population distribution
more uniform and diverse. At the same time, to make full
use of chaotic characteristics, the author designed a chaotic
perturbation operator. When the algorithm is trapped in local

120806

extremum and evolutionary stagnation occurs, it helps the
algorithm jump out of the local optimum and accelerate
convergence.

A. CHAOTIC FIREWORK ALGORITHM INITIALIZATION
Stepl: Using a chaotic map equation or a chaotic
hybrid system to generate N chaotic variable sequences
Cx of length D, Cx = {cxi,cx2,...,cxN}, cx; =
{exit, exin,y ..., cXigy ..., cxipl,i = 1,2,...,N,d = 1,
2,...,D.

Step2: Map each chaotic variable from (0, 1) to (Lg, Uy)
according to equation (10), so as to generate an initial
firework x = {x1,x2,...,xy} of scale N. Where x; =
{xi1, xi2, ..., Xig, ... ,xip} and (Lg, Uy) are variable opti-
mization intervals for the optimization problem.

B. CHAOTIC PERTURBATION OPERATOR

Generally speaking, swarm intelligence algorithms tend to
fall into local extremes in the later stages of evolution, result-
ing in stagnant evolution. The chaotic perturbation operator is
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one of the important means to use the ergodicity of the chaotic
system to enhance the ability to explore new high-quality
new solutions in the later stages of algorithm evolution. This
operator helps the algorithm to continue to explore more high-
quality new solutions near high-quality individuals in the
population and improve the locality Optimizing ability and
overall quality [41].

Combined with the chaotic map in Section III, a chaotic
perturbation operator is proposed that can effectively improve
the local optimization ability of the algorithm. The specific
steps are as follows:

Step1: Set the number of chaotic disturbances R, perform
multiple iterations according to the chaotic map to generate a
sufficient number of chaotic sequences, and randomly take
a number of R values to form a chaotic sequence C =
{c1,¢c0, ..., Cky...,CR}).

Step2: Suppose the current firework is {x;,i = 1,2, ...,
N}, the i-th firework is x; = {xj,x2, ..
xip}, and the optimal firework positionis gx = {gx],gx3, ...,
ng’.‘, ...,gx}}. After chaotic perturbation for R times, get R
chaotic fireworks in the neighborhood of optimal firework
position {gx;,k = 1,2,...,R}. The position of a single
firework is as follows:

.,x,-j,...,

gx, = {gx}.gx5. ... .gx}. ... exl) (12)

gx/’? =gx +w-cp-rj (13)

Step3: In Equation (12), gx]’.‘ is the placement of the k-th
firework in the j-th variable obtained by performing neigh-
borhood disturbance on the optimal fireworks, 7; is the radius
of the perturbation in the j-dimensional variable space, and @
is calculated from Equation (14):

= 1, l:frandomzl/2 (14)
-1, 1frand0m<1/2

In Equation (14), random € (0, 1). The perturbation radius
in equation (13) is important when the algorithm is a chaotic
perturbation because if the perturbation radius is too large,
it will affect the algorithm’s ability to mine in the vicinity of
the optimal solution; if the disturbance radius is too small,
it will affect the ability of the algorithm to perform wide-area
mining near the optimal solution. Besides, because the scope
of different variable spaces is different, the value range of
each variable is different, so disturbance radius needs to be
calculated in different dimensions. the radius of the distur-
bance in the j-dimensional variable space is as Equation (15):

L&
N inj -8
i1

Step4: Sort the newly generated R chaotic fireworks with
the current N fireworks, make a greedy decision, select the
best N fireworks from the R 4+ N fireworks and enter the next
iteration.

rj = (15)
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C. CFWA FLOW

Based on the differences between the two non-uniform maps:
Circle map and Gauss map, two uniform maps: Bernouilli
map and Tent map, and two Hybrid maps: Logistic map and
Circle map, Sinousoidal iterator and Gauss map, the CFWA
is recorded as CFWA_C, CFWA_G, CFWA_B, CFWA_T,
CFWA_L_C, CFWA_S_G, although the map is different,
the algorithm flow is basically same. The specific process of
obtaining the algorithm is as follows:

Stepl: Initialization parameters. the initial setting algo-
rithm of the firework scale N, Gaussian operator M, maxi-
mum number of iterations g,,.x, constant m, parameters a, b,
explosion radius A, chaotic disturbance number R.

Step2: Initialize the fireworks position. Select the corre-
sponding chaotic map, use the chaotic initialization method
to initialize the firework position {x;,i = 1,2, ..., N}, and
calculate the fitness value of each initial firework.

Step3: Generate explosion sparks and Gaussian sparks.
Calculate the number of explosion sparks and explosion
radius according to equations (2) and (4), and generate explo-
sion sparks and Gaussian sparks through N initial fireworks.

Step4: Generate the next generation of preparatory primi-
tive fireworks. Calculate the fitness value of the newly gen-
erated explosion sparks and Gaussian sparks, and select N
fireworks from the original fireworks, explosion sparks and
Gaussian sparks according to the selection strategy.

Step5: Chaotic perturbation. Use chaotic perturbation
operator to perform neighborhood perturbation near the opti-
mal solution

Step6: Make greedy decisions. Pick best N fireworks from
R + N fireworks for the next iteration.

Step7: Determine the number of iterations. Determine
whether the maximum iterations has been reached. If not,
go to Step 3; if yes, stop iterating and output the best fireworks
and its fitness value.

VI. EXPERIMENT AND ANALYSIS

A. EVALUATION STANDARDS FOR OPTIMIZATION RESULTS
For the algorithm simulation results, inspired by [42], the
algorithm performance can be evaluated from four aspects:
accuracy, convergence, robustness, and computational cost.
The accuracy of the solution is mainly measured by the
two indexes of the best value (BEST) and the average
value (MEAN) obtained by the solution. The convergence of
the solution is measured by the solution success rate (SR).
The solution success is a relative concept, that is, the result
of the solution satisfies Equation (16) is considered to be
successful once:

X e, v 20

Y=0

In Equation (16), Y is the optimal value obtained by the
solution, and Y * is the reference optimal value of the function,
¢ is set to 10e-6. Then the number of successful optimizations
divided by the total number is the solution success rate, which
is used to measure the algorithm’s solution convergence.

(16)
Y —Y*| < ¢,
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The robustness of the algorithm is expressed by the
variance (STD) and worst-case value (WORST). It mainly
examines the ability of the algorithm to overcome random
interference and obtain high-precision global extreme values.
The computational cost of the algorithm is measured by the
average number of iterations (AIN) required to achieve a
certain accuracy relative to the optimal solution [43]. In sum-
mary, we use BEST, MEAN, WORST, STD, SR, AIN to
evaluate the performance of different algorithms.

The average iterations AIN is required by each algorithm
to obtain a result with better accuracy than ¢ = 10e-6. When
a certain calculation does not reach a higher accuracy than
o = 10e-6, the iterations is regarded as the preset maximum
iterations as g,qx = 2000.

B. CONTRAST ALGORITHMS AND PARAMETER SETTINGS
The six CFWAs (CFWA_C, CFWA_G, CFWA_B, CFWA_T,
CFWA_L-C, CFWA_S-G) designed in this paper are com-
pared with three improved algorithms (EFWA [22], dynFWA
[23], AFWA [24]) and FWA.

The common parameters are set as follows: the maximum
number of iterations is g, = 2000, the population size is
N = 20, the constant m = 50 to adjust the explosion sparks,
parameters a = 0.8,b = 0.04, and the explosion radius
A = 40. The algorithms perform 20 independent operations
on 15 test functions and calculate the average value. The
internal parameters settings of CFWA and dynFWA, EFWA,
AFWA are shown in Table 3.

C. SIMULATIONS

In addition, to visually display the average fitness curve of
each algorithm for solving complex functions, the numbers
less than 10e-30 are regarded as 0, shown on the graph
is that some curves will be iterated to a certain algebraic
termination. At the same time, considering the length of the
paper, the author selected three fixed-dimensional functions
F3 (D = 2),F4A (D = 4), F1 (D = 2), and all high-
dimensional complex functions F5 (D = 150), F6 (D = 200),
F9 (D = 100)), F14 (D = 100), F15 (D = 200). The average
fitness curves of these 8 functions are plotted, as shown
in Figure 11. Table 4 is the simulation data of all algorithms
for all functions. The simulations employed Lenovo personal
computer with Core™ i7-6500 CPU operating under a clock
frequency of 2.60 GHz, and 8 GB of memory. The average
fitness curves of these 8 functions are plotted, as shown
in Figure 11. Table 4 is the simulation data of ten algorithms
for all functions.

For some test functions, the performance of FWA is better
than the three improved algorithms of dynFWA, EFWA and
AFWA. This is because the FWA map rules and mutation
operators enhance the search near the origin [22], so the
algorithm is easy to solve near optimal value if the optimal
value of the test function is far from the origin, FWA shows
poor performance.

For low-dimensional complex functions, the six types of
CFWA performance better than FWA, dynFWA, AFWA, and
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EFWA when solving functions F1, F2, F3, F4, F§, F10, F11,
F12, and F13, showing better BEST value, MEAN value,
WORST value, and smaller STD and average number of
AIN. For example, when solving functions F8, F10, and
F12, the BEST, MEAN, WOSRT, and STD values obtained
by the six CFWAs are all zero. However, when solving the
function F7, the performance of the six CFWAs is not as
good as AFWA. AFWA can continue to evolve and achieve
higher accuracy, but at the beginning of evolution, the iter-
ation speed is slower than CFWAs. A careful comparison
of Table 4 and Figure 11, it can be found that among the
six CFWAs, CFWA_L_C and CFWA_S_G are better than
CFWA_C, CFWA_G, CFWA_T, CFWA_B. Hybrid chaotic
maps are better than single maps. The hybrid chaotic map
can improve the convergence speed and accuracy.

For high-dimensional complex functions, dynFWA,
AFWA, and EFWA perform poorly. One possible reason
is that as the algorithm iteratively evolves, the diversity of
the population gradually disappears, which ultimately results
in poor results when obtaining high-dimensional complex
functions. Six CFWAs perform well, for the 150-dimensional
complex function F5, the optimal value of the CFWA_S_G
reaches 0, and the CFWA_L_C reaches 5.85e-268, even the
relatively poorly performing CFWA_G also reaches 1.68e-
240; for the 200-dimensional F6, CFWA_S_G reaches the
global extreme value 0; for the 100-dimensional F9, six
CFWASs obtain the BEST value of 0; For the 100-dimensional
F14, the BEST, WORST, and STD values obtained by the
six CFWAs are all 0; even for the 200-dimensional function
F15, the six CFWAs obtained the BEST value, MEAN value,
and WORST value are all 8.88e-16, showing the amazing
ability to solve high-dimensional complex functions. There-
fore, the six CFWAS have better solving ability and stability
for high-dimensional complex functions. At the same time,
it can be found that when solving high-dimensional functions,
it still shows a similar pattern to low-dimensional functions,
hybrid maps are better than single maps. From the simula-
tion results, CFWA_L_C is better for most low-dimensional
functions, CFWA_S_G is better at solving high-dimensional
complex functions.

CFWA adds chaotic initialization and perturbation oper-
ators to FWA. Chaotic initialization has little effect on
the time complexity, so only the time complexity of
chaotic perturbation operator needs to be analyzed. The
time complexity of chaotic perturbation operator focuses
on the sorting process after chaotic perturbation. For
different sorting methods, the corresponding time com-
plexity is also different. In the worst case, the time
complexity is O(n?). However, using methods such as quick
sorting and merge sorting, the average time complexity
is O(nlog,n).

Limitations of CFWA are mainly manifested in two
aspects: 1 Not every chaotic perturbation operator will
improve performance better, for example, the CFWA_C is
worse than AFWA in F3 (Rosenbrock function) and all
CFWA:s is worse than AFWA in F7 (Booth function); Due to
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FIGURE 11. Average fitness curve of 10 swarm intelligence algorithms.

the addition of chaotic perturbation operator, it will slightly
increase the time complexity of FWA.

VII. APPLICATION OF CFWA IN BLIND
SOURCE SEPARATION
Blind Source Separation (BSS) refers to the process of esti-
mating the source signal only from the observed signal when
the transmission channel is unknown [44]. In BSS, Indepen-
dent Component Analysis [45] (ICA) is a major method. ICA
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means that under the condition that the source signals are
independent of each other, the objective function is estab-
lished using the signal’s probability density function and
related information theory knowledge, and the non-Gaussian
nature of the estimated signal is maximized by an opti-
mization algorithm. Therefore, CFWA_L_C and CFWA_S_G
which perform best in test functions are used as an optimiza-
tion algorithm in BSS to verify the performance of CFWA in
practical engineering problems.
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TABLE 3. Internal parameter settings of dynFWA, EFWA, AFWA and CFWA.

Algorithm Internal parameters
dynFWA Reduction factor Cr =0.9 , Amplification factor C « = 1.2
AFWA Explosion radius adjustment factor A=13
EFWA Maximum radius factor Smax =0.02 , Minimum radius factor Smin =0.001
CFWA Chaotic disturbance number R =100
S(0) Channel X(@) Separation | y(f)
> A matrix  ——» Signal preprocessing and
Observed B L
. initialization parameters
signal
Unknown aliasing system _
Generate initial fireworks from
FIGURE 12. Typical schematic of BSS. chaotic maps
A. BASIC CONCEPT OF BSS Current iterations g=1
A typical BSS schematic is shown below: >¢
. . _ T
n 1nflependent source signals S(t) =[s1(¢), s2(¢), oy Su(t] Calculating fitness function values
are mixed to X (¢) = [x1 (#),x2(@),..., x5 ()] through v

an unknown system, X (#) is m observation signals, after
ignoring the effects of transmission delay and noise, it can be
obtained from
equation (17):

X (@) =AS () (17

In Equation (17), A is a n-dimensional full-rank reversible
mixed matrix. BSS is when only the observation signal
(mixed signal) X (¢) is known, a full-rank separation matrix
B is obtained through an optimization algorithm, and then the
separation signal Y (¢) is obtained from the observation signal
as shown in equation (18).

Y () =BX () (18)

In Equation (18), Y (#) = [y1 () ,y2 (), ..., In (")]F. The
BSS algorithm is the process of determining the separation
matrix B based on the statistical independence between y; (¢).

B. SEPARATION PRINCIPLE AND OBJECTIVE FUNCTION
Kurtosis and negative entropy are two common indicators
for measuring the statistical independence of signals, but the
kurtosis is easily affected by outliers and the separation per-
formance is unstable. In information theory, negative entropy
is a more robust criterion. The negative entropy of a random
signal can be expressed as Equation (19).

J(»)=Hg () —H() (19)

In Equation (19), H(y) is the differential entropy of the ran-
dom variable y. According to [46], the negative entropy of a
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FIGURE 13. BSS flow based on CFWA.
multivariate can be approximated as (20).
J(y) = %[41(32 + K7 +7K3 — 6K3K4] (20)

In the Equation (20), K3 is the third-order cumulant of the
signal; K4 is the fourth-order cumulant of the signal. When
the signal’s probability density distribution is symmetrical,
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TABLE 4. Comparative analysis of performance of 10 swarm intelligence algorithms.

Fun E;ZLL?;(QH FWA dynFWA  AFWA EFWA CFWA C CFWA G CFWA B CFWA T CF Wg—L CF wéx_s
BEST -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
MEAN -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
¢ WORST -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
STD 5.90¢-06  4.19¢-07 0 148e-11  19le-11  279%-11  7.84-12  1.12e-10  2.07e-15  7.44e-12
SR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 1074 282 24 85 14 17 11 12 7 10
BEST  2.74e-238  5.76e-08  7.40e-167  3.51e-12 0 2.55¢-304 0 5.67¢-296  4.90¢-324 0
MEAN  1.05e-230  123e-06  1.68e-120  7.60e-11  2.60e-258  7.54e-238  4.43e-253  2.68¢-256  4.64¢-295 0
Fy  WORST  405¢-227  9.85e-06  334e-119  3.03e-10  2.60e-257  7.54e-237 1.77e-252  2.68¢-255  1.85¢-294 0
STD 0 222¢-06  747¢-120  1.07e-10 0 0 0 0 0 0
SR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 26 450 52 38 5 5 5 6 4 5
BEST 2.11e-06  5.12e-07  833e-30  5.02¢-10  828e-11  3.6le-11  222e-10  234e-10  243¢-14  5.0le-11
MEAN  398¢-04  574e-05  2.56e-09  328¢-08  132¢-08  1.10e-09  1.50e-09  1.86e-09  7.66e-12  6.49¢-10
F3  WORST  0.0010 1.90e-04  1.66e-08  2.41e-07  5.17e-08  3.56e-09  6.66¢-09  6.46e-09  6.4le-11  2.33¢-09
STD 3.464e-04  7.89e-05  5.66e-09  4.28¢-08  1.78¢-08  129¢-09  2.04e-09  2.03¢-09  1.99%-11  6.54e-10
SR 10% 40% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 2000 2000 444 186 75 72 68 71 67 69
BEST 0.0077 0.0298 221e-05  5.89e-05  271e-07  2.13¢-06  4.43¢-07  2.19e-07  3.10e-08  1.54¢-06
MEAN 0.1644 0.8218 0.0506 0.0064 3.82¢-05  9.11e-05  237e-05  542¢-05  5.62¢-06  1.76e-05
ps  WORST 03981 22877 0.1353 0.0277 1.44¢-04  2.45¢-04  8.80e-05  149¢-04  2.47¢-05  9.55¢-05
STD 0.1572 0.6898 0.0460 0.0080  436e-05  8.60e-05  2.60e-05  5.89e-05  7.37e-06  2.76e-05
SR 0 0 0 0 30% 20% 30% 30% 80% 50%
AIN 2000 2000 2000 2000 2000 2000 2000 2000 1855 2000
BEST  8.00e-238 4.53¢+04 71876  229e+02  7.52¢-252 1.68e-240 1.06e-260 8.18¢-260  5.85¢-268 0
MEAN  125¢-198  6.14e+04  1.17¢+03  3.13e+02  1.00e-212  1.33¢-200  1.94e-205 1.05¢-210  8.44e-218  6.70e-320
Fs  WORST 663194  80let04  177¢+03  460e+02  1.00e211  133e-199  194e204  1.05e-209 844e-217  6.70e-319
STD 0 9.34e+03  260.08 1.28e+02 0 0 0 0 0 0
SR 100% 0 0 0 100% 100% 100% 100% 100% 100%
AIN 108 2000 2000 2000 83 76 64 61 50 36
BEST  2.73e-231  1.16e+05  4.48e+02 66330  171e-260 8.23e-245 1.30e-257 132e-244  2.40c-244 0
MEAN  3.86e-201  135¢+05  6.02¢+02 803776  6.88e-205 4.12¢-205  7.46e-209  3.30e-205  2.39¢-220 0
Fg  WORST = 3.86e-199  1.60et05  8.58e+02  1.0let02  6.88e-204 4.12e208  7.46e-200  3.3e-204  9.60e-220 0
STD 0 134e+04  1.57e+02  39.836 0 0 0 0 0 0
SR 100% 0 0 0 100% 100% 100% 100% 100% 100%
AIN 79 2000 2000 2000 50 46 45 33 35 28
BEST 5.90e-06  8.19¢-07 0 1.41e-09  7.98¢-12  1.13e-12  123e-11  3.86e-11  2.06e-16  3.23e-12
MEAN  298e¢-04  6.88¢-05  224¢-30  3.63e-08  844e-11  239e-10  6.5le-11  1.12e-10  4.38e-14  3.12e-11
g7 WORST = 949¢:04  3.05e-04 25229 141e-07 33210 161e-09  21le-10  23le-10  2.04e-13  8.10e-11
STD 3.59¢-04  8.87e-05  5.99¢-30  4.33¢-08  9.8le-11  4.88e-10  6.63e-11  7.45e-11  7.19e-14  3.02e-11
SR 10% 15% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 2000 2000 90 220 15 20 15 12 11 15
BEST 0 7.14¢-06 0 9.48¢-07 0 0 0 0 0 0
MEAN 0 1.96¢-04 0 1.090e-06 0 0 0 0 0 0
rg  WORST 0 7.89¢-04 0 2.98¢-06 0 0 0 0 0 0
STD 0 5.10e-04 0 9.48¢-07 0 0 0 0 0 0
SR 100% 15% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 35 2000 62 1484 16 18 16 16 14 16
BEST  243¢-238  128¢+05  8.79¢+02  230e+02  2.78¢-261  7.07e-260 3.90e-256 4.91e-246  2.87¢-254 0
MEAN  128e-198  1.63¢+05  2.07¢+03  7.39e+02  1.05¢-201  2.55¢-204  5.65e-218  5.78¢-212  6.55¢-222 0
go  WORST  128e-194  2.13¢405  378¢+03 11503 1.05e-200 255¢203  565e211  5.78e-211  6.550-214 0
STD 0 249¢+04  7.45e+02  1.78¢+02 0 0 0 0 0 0
SR 100% 0 0 0% 100% 100% 100% 100% 100% 100%
AIN 98 2000 2000 2000 53 70 44 68 44 40
K3 = 0, then Equation (20) can be written as: So the objective function can be set as:
it(y) = ——— 23
J@):% 2 1) fit (v) To)te (23)

The fourth-order cumulant K4 can be expressed as:
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Ky =E '] - 3EpP

(22)

In Equation (23) ¢ is an extremely small amount that pre-
vents division by zero. The bigger J (y) is, the smaller fir (y)
is, and the better the separation performance is.When using
the negative entropy to measure the non-Gaussian nature
of the separated signal, the observation signal needs to be
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TABLE 4. (Continued) Comparative analysis of performance of 10 swarm intelligence algorithms.

Fun  Dvaluation o, GFWA AFWA EFWA CFWA C CFWA G CFWA B CFwa T CFWAL CFWAS
standard C G
BEST 0 1.68e-07 1.17e-191 3.04e-10 0 0 0 0 0 0
MEAN 0 737¢-06  5.53¢-150  3.90¢-09 0 0 0 0 0 0
WORST 0 320e-05  2.26e-149  2.13¢-08 0 0 0 0 0 0
Fo STD 0 7.94¢-06  7.14e-150  6.34¢-09 0 0 0 0 0 0
SR 100% 65% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 32 1782 43 173 17 12 10 11 9 10
BEST 10316 -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316
MEAN  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316  -1.0316
¢y WORST  -L0316 10316 -10316  -10316  -10316  -10316  -1.0316 L0316  -10316  -10316
STD 247¢06  1.17¢-06  1.0le-16  286e-08  137¢-9  1.72e-10  436e-10  1.36e-10  491e-12  1.67e-10
SR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 519 403 50 77 1 10 10 9 8 9
BEST 0 1.93¢-06 0 2.65¢-07 0 0 0 0 0 0
MEAN 0 0.007  3.88¢-17  1.86¢-05 0 0 0 0 0 0
Fly  WORST 0 0042 22216  5.82¢-05 0 0 0 0 0 0
STD 0 0010 57217  2.11e-05 0 0 0 0 0 0
SR 100% 5% 100% 60% 100% 100% 100% 100% 100% 100%
AIN 54 2000 125 2000 19 18 15 13 12 13
BEST 3.0054  3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054
MEAN 3.0054  3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054
b3 WORST 30054 30054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054 3.0054
STD 468¢-16  326e-07  9.le-16  1.17¢-09  4.68¢-16  4.68e-16  4.68¢-16  4.68¢-16  4.68¢-16  4.68¢-16
SR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
AIN 27 87 138 80 16 16 14 14 9 14
BEST 0 30702 0323 0.9415 0 0 0 0 0 0
MEAN 0 501e+02 0507 0.9878 0 0 0 0 0 0
WORST 0 7.10¢+02  0.690 1.0513 0 0 0 0 0 0
Fi4 STD 0 93.46 0.108 0.0351 0 0 0 0 0 0
SR 100% 0 0 0 100% 100% 100% 100% 100% 100%
AIN 61 2000 2000 2000 38 38 32 34 31 26
BEST  888e-16 1821 17.78 160260  8.88¢-16  8.88¢-16  8.88¢c-16  8.88¢-16  8.88¢c-16  8.88¢-16
MEAN  888¢-16  18.66 18.25 177084 8.88¢c-16  8.88c-16  8.88c-16  8.88¢c-16  8.88¢c-16  8.88¢-16
Fls WORST 8.88e-16 19.07 18.78 18.3497 8.88e-16 8.88e-16 8.88e-16 8.88e-16 8.88e-16 8.88e-16
STD 0 0241 0.306 0.6863 0 0 0 0 0 0
SR 100% 0 0 0 100% 100% 100% 100% 100% 100%
AIN 128 2000 2000 2000 90 91 86 82 73 63
pre-centered and whitened. After these two pre-processing, cosfp 0 —sinfs cost3 —sinb3 0
the statistical independence of the signal will be stronger. o 0 10 o| sinf3  cost3  0(34)
sind, 0 cosH, 0 0 1

C. ALGORITHM STEPS AND PROCESSES

The separation matrix B is an orthogonal matrix. literature
[47] shows that an orthogonal matrix can be represented as
a product of a series of rotation matrixs. There are three
source signals, and the separation matrix B can be expressed
as equation (24):

1 0 0
B= |0 cosf sind;
0 sinf cosb
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The steps of BSS based on CFWA are shown below:

Stepl: Collect and sample observation signals, and per-
form centralization and whitening preprocessing.

Step2: The rotation angle 6 = [0y, 65, 63] of the rotation
matrix is used as the fireworks position x = [x1, x2, x3].
Within the solution space [0, 2r]. Initialize CFWA param-
eters and firework position according to the chaotic maps.

Step3: Calculate and record the objective function value of
the fireworks.

Step4: Use Equation (4) to calculate the explosion radius
of the fireworks and generate explosion sparks.
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FIGURE 14. Simulation results.

Step5: Use Equation (6) to generate Gaussian mutation

sparks.

Step6: The out-of-range spark is mapped into the range by

Equation (7).

Step7: Perform chaotic perturbation and greedy decision,
choose the best fireworks to enter the next iteration.

Step8: g =

g + 1, return to Step3 until the maximum

number of iterations is reached or the best firework is found,

and the loop ends.

120814

Step9: Output the optimal solution x* and calculate the
separation matrix B by equation (24).
Stepl0: Using separation matrix B, the source signal is
estimated by equation (18).

D. SIMULATION ANALYSIS
Two classic radar signals and one Gaussian noise are used
as source signals. Two radar signals are Chirp signal s1(¢)
and Sinousoidal signal s5(#), and Gaussian noise is s3(¢). The
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bandwidth of the chirp signal is B = 70MHZ, the pulse
width is 7 = 10us, and the chirp frequency is p = B/T,
expressions are (25) (26) (27).

s1(t) = rect(%)exp(jnptz) (25)
s2(t) = sin(27r300¢ /5000) (26)
s3(t) = n(t) 27

In order to quantitatively analyze the separation perfor-
mance of the algorithm, the Similarity Coefficient and Per-
formance Index (PI) are used to measure the separation
performance. The Similarity Coefficient &; and Performance
index PI are expressed as Equation (28)(29).

N
> yi®)si(t)
&= (siy) = ;1 — (28)
NDBHODIEHO!
t—1 —1
=Y R
PI=Y" Zman ol 1

i=1 \j=1

n

|Mﬂ|
* Z ]Z: maxy |l ! @9
In equation (28), s; is the source signal of the i-th path, and
yj is separation signal of the j-th path. The closer &;; is to 1,
the higher similarity between the sorting signal and the source
signal. In equation (28), ;; is the element in the i-th row and
Jj-th column of the matrix G, G = BA. The closer PI is to
0, the higher the separation accuracy of the algorithm. The
number of signal sampling points is 500, and the maximum
iterations of the algorithm is g,,,x = 100. Equation (30) is
a randomly generated mixing matrix A. At the same time,
we use the traditional Natural Gradient Algorithm (NGA)
in BSS for comparison. The simulation results are shown
in Figure 13. Table 5 is Similarity Coefficient and PI of
FWA and CFWA_L_C, for a more intuitive comparison, the
author has drawn a histogram of the Similarity Coefficient
between the separated signal and the source signal, as shown
in Figure 14.

0.063 0.117 0.397
A=0.881 0.003 0.863 (30)
0.856 0.647 0.450

Comparing with Figure 14, the Chirp signal and the Sinu-
soidal signal separated by NGA and FWA algorithm are
deformed. The signal separated by the CFWA_L_C and
CFWA_S_G has a good agreement with the source signal,
and the separation effect is ideal.

As can be seen from Table 5 and Figure 15, CFWA_L_C
and CFWA_S_G is superior to NGA and FWA in both the
Similarity Coefficient and PI. Compared with traditional
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TABLE 5. Data of algorithm performance evaluation index.

Algorithm  NGA FWA CFWA L C CFWA SG

- 09669  0.9906 0.9999 0.9999
Similarity = ge98 (9872 1.0000 0.9999
Coefficient
09346 09372 0.9632 0.9625
PI 09234 04584 0.0143 0.0148
Numberof = 5 ¢ 92 1 12
convergence

—

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92

CFWA L C CFWA S G

u Chlrp signal = Slnous(nddl signal Gaussian noise

FIGURE 15. Histogram of Similarity Coefficients.
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FIGURE 16. Fitness curve of objective function.

NGA algorithm, swarm intelligence algorithms have fewer
iterations and higher separation accuracy. Figure 16 is the fit-
ness curve of the objective function. CFWA_L_C has smaller
fitness and faster convergence than FWA, dynFWA, AFWA,
and EFWA.

VIIl. CONCLUSION

This paper has presented the Chaotic Fireworks Algo-
rithm (CFWA), a significant improvement of the Fireworks
Algorithm (FWA). In order to improve the performance of
conventional FWA, we performed a comprehensive study
on the basic FWA and presented several improvements: by
analyzing the classic chaotic maps, two hybrid chaotic sys-
tems are designed and applied to make the initial fireworks
more uniform and increase the probability of finding the
optimal solution. At the same time, a new chaotic perturbation
operator is proposed, which can increase the speed of the
algorithm convergence, to avoid the algorithm falling into a
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local optimum. From the result of our experimental evalua-
tion we conclude the following observations:

1. The proposed CFWA algorithm significantly improves

the results of FWA, and it performs better than EFWA,
dynFWA and AFWA in all test functions except Booth
function. In Booth function, AFWA performs the best,
but it’s speed of reaching 10e-6 accuracy is slower than
CFWA.

In CFWA, two hybrid chaotic systems proposed in this
paper are better than two uniform chaotic maps and two
non-uniform chaotic maps.

In the BSS problem, the Similarity Coefficient and PI
of the CFWA separated signal and the source signal are
smaller than FWA, and the convergence speed and con-
vergence accuracy are also better than FWA, EFWA,
dynFWA, and AFWA.
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