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ABSTRACT As mechanical fault diagnosis enters the era of big data, the traditional fault diagnosis methods
under variable working condition are difficult to be applied because of the massive computation cost and
excessive reliance on human labor. For the application of intelligent fault diagnosis under variable working
conditions, the crucial difficulty is that the variable speed or load can cause smearing and skewing of classable
feature. It is the key to break the predicaments by extracting the features which are irrelevant to the working
conditions and contain fault information. This paper propose a new intelligent fault diagnosis framework
under variable working conditions called Data-driven Fault feature Separation Method (DFSM) which can
eliminate the working condition features from all the information and employ the rest fault information for
diagnosis. In our DFSM, classification loss ensures the basic classified ability, first. Second, uncorrelation
loss increases the discrepancy between fault features and working condition features. Then, reference loss
guides the working condition encoder only extracting the working condition features. Finally, autoencoder
loss ensures that all the information has been extracted. It should be noticed that our DFSM is trained
only using the dataset under a certain working condition and can diagnose faults with high accuracy under
variable even time-varying working condition, which means that it is easy to be applied. The experimental
results of rolling bearing dataset show that the proposed DFSM can not only break the limitation of existing
methods, but also achieve a superior performance comparingwith relatedmethod. Besides, through the visual
understanding, the proposed DFSM is certified that it is able to eliminate the working condition information
and extract precise classable feature for fault diagnosis.

INDEX TERMS Data-driven, feature separation, intelligent fault diagnosis, variable working conditions.

I. INTRODUCTION
Rolling bearing is one of the most important mechanical
components and is widely applied in the rotary machineries
of aircrafts, wind turbines, automobiles, and so forth [1], [2].
However, bearings are vulnerable because of the harsh work-
ing environment, such as humidity, high temperature, and
variable load [3], which can lead to a catastrophic failure
of the entire mechanical system, and consequently heavy
investment and productivity losses [4], [5]. Therefore, the
fault diagnosis of bearing is very important for ensuring a
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high performance transmission. However, in general, rotary
machinery often runs at variable speed because of different
working conditions or time-varying working condition like
power and load, which causes difficulty on fault diagnosis [6].
When the working condition is variable, such fluctuation
and changing condition may cause smearing and skewing of
classable feature like spectrum, which indicates that these
fault features will no longer be observable and detected.

For the time-varying working condition, plenty of
time-frequency analyzing methods have employed in existent
report. For instance, Chen and Feng [7] improved polynomial
chirplet transform (PCT) by iterative algorithm, and achieved
merits of fine time-frequency resolution and cross term free

113702 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1271-6036
https://orcid.org/0000-0001-8482-5234
https://orcid.org/0000-0002-9674-165X
https://orcid.org/0000-0001-8641-6119


S. Li et al.: Novel DFSM and Its Application on Intelligent Fault Diagnosis

nature, and validated the method by lab experiments on a real
world 4 kW inductionmotor driven planetary gearbox test rig.
Wang et al. [8] used the reference signal from a current signal
measured from the stator of the generator for vibration order
tracking. Huang et al. [9] verified that nuisance attribute pro-
jection (NAP) can effectively eliminate the effect of nuisance
attributes through projection and the information of fault
pattern is retained in the features. Jiang et al. [10] proposed
time-frequency ridge fusion and logarithm transformation
to track the targeted ridge curve reliably, and improved the
diagnosis accuracy. It can be found that plenty of studies
have been conducted on fault diagnosis under time-varying
working condition. But the amount of data collected has
grown in an exponential manner with the development of
modern machinery fault detection systems [11], [12]. This
means that fault diagnosis enters the era of big data [13],
which makes these studies suffer three deficiencies: 1) Lots
of the actual effort goes into the design of time-frequency
feature extracting. So the existing methods largely depend on
much prior knowledge about signal processing techniques.
2) Even though the correct and clear time-frequency features
are obtained, it is still difficult to diagnose the fault, since
the depending on diagnostic expertise. Besides, the signal
is corrupted by heavy background noise, which affects the
diagnosis result. 3) Most existing methods require massive
computation cost, which reduces efficiency of fault diagnosis.
Therefore, it is a tough work to process big data.

Machine learning which is regarded as a data-driven
model, depends less human knowledge and is quite suitable
to deal with mechanical big data, has drawn wide attention
in fault diagnosis field, such as Artificial Neural Networks
(ANN) [14], [15], Autoencoders (AE) [16], [17], Restricted
Boltzmann Machine (RBM) [18], Convolutional Neural Net-
works (CNN) [19], [20], Sparse Filtering [21], [22] and
k-Nearest Neighbor [23]. For the fault diagnosis under dif-
ferent working conditions, deep transfer learning, as a branch
of deep learning, has been employed. The application can be
described as follows: take the roller bearing fault diagnosis
problem as an example, model is trained with the labeled
dataset under working condition A and unlabeled dataset
under working condition B, and then the actual application
in fault diagnosis is to recognize the test data collected under
working condition B. For example, Lu et al. [24] presented a
deep model based on domain adaptation method for machine
fault diagnosis. A gearbox dataset collected under different
working conditions was used to test the performance of the
proposed method. Wen et al. [25] set up a new deep transfer
learning method for fault diagnosis. The validation dataset
was acquired from a bearing testbed operating under differ-
ent loading conditions. They both get the satisfying testing
accuracies under their experiment conditions. But according
to the above description, necessary condition for the transfer
learning based methods is the dataset of different fault sam-
ples under working condition B. However, mechanical fault
datasets, similar to medical datasets [26], genomics [27] and

financial datasets [28], are also very limited since the vast
majority of samples are normal samples. When the machine
is employed under another working condition, the collected
samples must be imbalanced [29], [30] and generally lack
plenty of categories. This condition will lead to the change of
distribution and further result in the negative transfer, which
troubles the existing methods.

As we can see from the two types of methods, the funda-
mental goal is consistent. The key is to extract the features
which are irrelevant to the working conditions and contain
fault information. For fault diagnosis under time-varying
working condition, the existing methods focus on extract-
ing the time-invariant feature like angular domain feature or
NAP. For intelligent fault diagnosis methods under different
working conditions, the goal is to extract the cross-domain
feature which is consistent in the source domain and target
domain. The fundamental motivation of all the mentioned
methods is that fault information is irrelevant to the work-
ing conditions [31] and the present methods all focus on
extracting fault feature. But, in this paper, we focus more
on eliminating the working condition information instead of
extracting fault feature. In practical application, we have the
labeled dataset under a certain working condition in general.
According to the theory, samples of the dataset must contain
the fault information, and the fault information is irrelevant to
the working conditions. Therefore, intelligent fault diagnosis
method under variable working conditions only trained with
the labeled dataset under a certain working condition can be
realized, so long as the method can design a model which
can extract the fault features and eliminate the working con-
dition information, which is the idea of our method. Inspired
by this theory, we proposed a data-driven intelligent fault
diagnosis method under variable working conditions in this
paper, which is called Data-driven Fault feature Separation
Method (DFSM). The main contributions of our work can be
summarized as follows.

1) For intelligent fault diagnosis method under variable
working conditions, different from the present methods,
we proposed a new idea that we can indirectly extract fault
features by eliminating the working condition information.

2) To ensure the featuremore stable, kernel method is intro-
duced for calculating the distribution distances and vector
distances.

3) Through resetting the fault features belonging normal
health condition to zero, we ensure the working condition
encoder can only extract the working condition features.

4) DFSM can extract all the information of training sam-
ples through two encoders with the help of autoencoder opti-
mization object.

This paper is organized as follows. In Section II, several
theory backgrounds are described. The framework of DFSM
is detailed in Section III. In Section IV, the diagnosis case of
bearing dataset under variable rotational speed is studied to
test the effectiveness of DFSM. Finally, main conclusions are
given in Section V.
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II. THEORY BACKGROUND
A. CONVOLUTIONAL OPERATION AND POLLING LAYER
Comparing with feature extracting method of inner product
like fully-connected layer, convolutional operation has shift
invariant, i.e., it can extract the certain fault information with
only one convolution kernel no matter when the fault hap-
pens, which is suitable for processing vibration signal. In this
paper, we employ the one-dimensional convolutional opera-
tion since vibration signal is one-dimensional. Concretely, the
output c of one-dimensional convolutional layer is obtained
by

c = f (w∗u+ b) (1)

where, ∗ represents convolution, w∈Rl is referred to as the
convolution kernel, b is the corresponding bias, u is the
input of convolutional layer and f represents the activation
function.

The stride of introduced convolutional operation is 1 and
the dimensions of c and u are same, because we want to
gain more information in the process of feature extracting.
Each convolutional layer is connected with a pooling layer
which is conducted to reduce the dimension of convolution
features. The max pooling function is utilized in the paper,
which returns the maximum value within a certain sub-region
as follows

p[i] = max
(
c[(i−1)×s:i×s]

)
(2)

where, s is the pooling length and the subscript [i] represents
the ith point of pooling output p. In the same way, [(i−1)×s:
i × s] represents the sub-region between (i − 1) × sth point
and i× sth point of convolution feature c.

B. AUTOENCODER
As one of the widely used deep learning techniques, AE has
captured increasing attention in the field of fault diagno-
sis [16], [17], [32]. Our DFSM considers decomposing and
reconstructing the vibration signal so we adopt the structure
of AE. Generalization of AE is detailed in this section.

AE includes encoder and decoder. We can abstract the
encoder into a map ψe: X → S, where, X and S are
data space and hidden feature space, respectively. Therefore,
the hidden layer feature ui can be obtained by

ui = ψe (xi; θe) (3)

where, xi is the input of encoder and θe is the parameters
of ψe. Then, the hidden layer feature ui is used to recon-
struct the input xi through decoder. Similarly, we abstract the
decoder into a map ψd : S → O with parameters θd , where,
O denotes output space. Thus the decoder process is defined
as follows

x̂i = ψd (ui; θd ) (4)

AE want to reduce the errors between input and output.
Therefore, the loss function is

Lae (θe, θd ;X) =
1
n

n∑
i=1

∥∥xi − x̂i∥∥2 (5)

where, X = {xi}ni=1 is the training data set and || · || denotes
l2-norm or called Frobenius norm.

C. MAXIMUM MEAN DISCREPANCY BETWEEN
TWO DISTRIBUTIONS
MaximumMean Discrepancy (MMD) is a measure of the dif-
ference between two distributions from their samples. It is an
effective criterion that compares distributions. Given two dis-
tributions D(1) and D(2) on activation vector space V , MMD
is defined as

MMD
(
D(1),D(2)

)
= sup
σ∈F

(
Ev∼D(1) [σ (v)]−Ev∼D(2) [σ (v)]

)
(6)

where, F is a class of functions f : V → H. H denotes
Reproducing Kernel Hilbert Space (RKHS) [33]. Based on
the fact that σ is in the unit ball in a universal RKHS, one
may rewrite the empirical estimate of MMD as

D
(
V (1),V (2)

)
=

∥∥∥∥∥∥ 1
n1

n1∑
i=1

φ
(
v(1)i
)
−

1
n2

n2∑
j=1

φ
(
v(2)j
)∥∥∥∥∥∥

H

(7)

where, V(1)
= {v(1)i }

n1
i=1 and V

(2)
= {v(2)j }

n2
j=1 are feature sets

on activation vector space V. The superscripts (1) and (2)
represent that the samples follow distributions D(1) and D(2),
respectively. Besides, ϕ(·) : V → H is referred to a feature
space map.

To calculate the distribution distance of high-level learned
features between different distributions, we employ kernel
method. Then, the practical computation of MMD is written
as,

Dk
(
V (1),V (2)

)
= [

1

n21

n1∑
i=1

n1∑
j=1

〈
φ
(
v(1)i
)
, φ
(
v(1)j
)〉

+
1

n22

n2∑
i=1

n2∑
j=1

〈
φ
(
v(2)i
)
, φ
(
v(2)j
)〉

−
2

n1n2

n1∑
i=1

n2∑
j=1

〈
φ
(
v(1)i
)
, φ
(
v(2)j
)〉
]
1
2

= [
1

n21

n1∑
i=1

n1∑
j=1

k
(
v(1)i , v

(1)
j

)
+

1

n22

n2∑
i=1

n2∑
j=1

k
(
v(2)i , v

(2)
j

)
−

2
n1n2

n1∑
i=1

n2∑
j=1

k
(
v(1)i , v

(2)
j

)
]
1
2 (8)

where, Dk (V(1), V(2)) is the unbiased estimation of D(V(1),
V(2)). k(•,•) is a kernel function, which could compute
the inner product in a higher dimensional space, i.e., k(x,
y) =< ϕ(x), ϕ(y)>. For further improving the stability of
learned feature, we adopt multiple kernel variant of MMD
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FIGURE 1. Motivation of DFSM: (a) Fundamental theory, (b) Sketch of
DFSM.

(MK-MMD) in this paper which is obtained by

DMK
(
V (1),V (2)

)
=

∑
k∈K

Dk
(
V (1),V (2)

)
(9)

where, K is the set of kernel functions.

III. PROPOSED METHOD
The proposed DFSM is based on CNN and makes reference
to the idea of AE to extract the fault features and eliminate
the working condition information. In this section, we mainly
describe the details of our DFSM, including the main idea,
model structure and training strategy.

A. MOTIVATION OF DFSM
For better illustration of DFSM, we detail our motivation
first. Fig.1 is given to make it easier to understand. As can
be seen from Fig.1(a), fault bearing signal contains two pri-
mary information: most is the working condition information
that is useless for fault diagnosis and the rest is fault infor-
mation which is difficult to extract. Therefore, the present

methods focus on the representation of fault information,
which is the paramount classifiable feature for detecting the
health condition. According to the previous description in
section I, fault information is irrelevant to the working con-
dition. We consider that fault information is different from
the working condition information. If we can completely
extract the working condition information, we can obtain
the corresponding fault information. So the point is to find
the reference of working condition information. It should
be noticed that the normal bearing signal only contains the
working condition information. The working condition fea-
ture of fault bearing signal and normal bearing signal must
be similar. Thus, the motivation of DFSM is to eliminate
the working condition information from fault bearing signal
with reference of normal bearing signal and extract the fault
information for detecting the health condition.

We make a brief introduction of DFSM framework com-
bining with the sketch as shown in Fig.1(b). We consider
designing two encoders, one decoder and one classifier. One
encoder is fault encoderψfe which can extract the fault feature
and another is working condition encoder ψwe for extracting
the working condition feature. Fault feature is used as the
input of classifier ψc for fault diagnosis. We want to increase
the discrepancies between the working condition feature and
fault feature and reduce the differences of working condi-
tion features extracted from fault bearing signal and normal
bearing signal. Besides, working condition feature and fault
feature are combined as the inputs of decoder.

B. DFSM MODEL
This section details the realization method of our DFSM.
DFSM is constructed by combining CNN with AE and
redefining the original objective function of them. With the
help of these losses, DFSM learns the precise fault feature
without working condition information. For describing the
method conveniently, the illustration of method is shown
in Fig.2.

There are C health conditions, and the vibration signals
of machines are obtained under different health conditions.
These signals compose the training data set {xi, yi}Ni=1, where
xi ∈ Rmx is the ith sample containingmx vibration data points
and yi is the health condition label. We define a fault encoder
ψfe, a working condition encoder ψwe, a classifier ψc and a
decoder ψd with parameters θfe, θwe, θc and θd , respectively.
Their forms are shown in Fig.2. It should be noticed that the
original vibration signal in time domain is used as the input
of our method.

The forms of two encoders are same, which contain
three convolutional layers, three max pooling layers and one
fully-connected layer as shown in Fig.2, where, l20s1 denotes
that the length of convolution kernel is 20 and the stride
of convolutional operation is 1, 32/ReLU is the channel
number and activation function. For max pooling layers,
l4s4 denotes that the pooling length is 4 and the stride is 4.
For fully-connected layer, mh/ReLU is the output dimen-
sion and activation function. The form of decoder contains

VOLUME 8, 2020 113705



S. Li et al.: Novel DFSM and Its Application on Intelligent Fault Diagnosis

FIGURE 2. Structure illustration of the proposed method.

three convolutional layers, two fully-connected layers and
two nearest neighbor interpolation operations (NNI) as shown
in Fig.2, where, NNI mx means that the feature dimensions
are extended tomx using nearest neighbor interpolation oper-
ation. The classifier contains only one fully-connected layer.
By employing softmax regression, the classifier can estimate
the health conditions of machines and give the posterior
probabilities of categories as follows,

ŷi = softmax (oi) =
eoi

C∑
j=1

eoi[j]
(10)

where, ŷi ∈ RC is the posterior probability vector of ith
sample and oi is the output of fully-connected layer without
activation function.

C. CLASSIFICATION LOSS
The model should ensure the basic ability of classification.
Therefore, the first optimization object of the proposedmodel
is to minimize the health condition classification error on the
source domain labeled data. The posterior probability vector
ŷi of ith sample xi can be obtained by

hi = ψfe
(
xi; θfe

)
(11)

ŷi = ψc (hi; θc) (12)

where, hi ∈ Rmh is the precise classable feature. Then,
the desired objective function can be defined as a standard
softmax regression loss,

LC
(
θfe, θc; xi, yi

)
= −

1
N

N∑
i=1

C∑
c=1

1 {yi = c} log ŷi[c] (13)

where, 1{•} denotes the indicator function returning 1 if the
condition is true, and 0 otherwise.

D. UNCORRELATION LOSS
Fault information is irrelevant to the working condition.
Therefore, the fault feature and working condition feature
should be uncorrelated.Wewant to decrease the inner product
between the working condition feature zi extracted by ψwe
and precise classable feature hi extracted by ψfe. Then the
uncorrelation loss is defined as follows,

LD
(
θfe, θwe; xi

)
=

1
N

N∑
i=1

〈hi, zi〉 (14)

where, zi = ψwe (xi; θwe) is the working condition feature.

E. REFERENCE LOSS
Reference is quite important for our DFSM. If lack it the two
encoders can only extract two different features instead of
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fault feature and working condition feature. As mentioned
before, normal health condition samples are suited reference.
Normal health condition samples contain all the working
condition information, so they can be regarded as the sam-
ples eliminating fault information. Thus features extracted
from fault samples throughworking condition encoder should
be similar with features extracted from normal samples.
It should be noticed that this similarity is between the whole
distributions of different categories. Therefore, the reference
loss can be defined using MK-MMD,

LR (θwe; xi, yi) =
C−1∑
i=1

DMK
(
Z(Nor),Z(Fi)

)
(15)

where, Z(Nor) = {z(Nor)a }
nNor
a=1 and Z(Fi) = {z(Fi)b }

nFi
b=1 are

feature sets. The superscripts (Nor) and (Fi) represent that
the samples follow distributions D(Nor) and D(Fi), i.e., the
labels of samples are normal health condition and ith fault,
respectively.

Minimizing the reference loss means the features extracted
through working condition encoder are both similar to the
reference without fault information.

F. AUTOENCODER LOSS
It should be noticed that there is an important concealment
condition: the two encoders can extract all the information
of samples and the working condition encoder only extract
working condition feature. Therefore, the precise classable
feature hi and working condition feature zi should contain
all the sample information, and thus can be the sufficient
condition for reconstructing the vibration signal. Besides,
we want to ensure zi containing working condition informa-
tion as much as possible, so long as ψwe can encoder more
working condition information, i.e. for normal health condi-
tion samples, we can almost reconstruct the vibration signal
only using working condition feature zi. So we consider using
autoencoder loss and design the decoder.

First, the input of decoder should be constructed combining
hi and zi. We change the elements of fault features hi which
belong to normal samples to zero and then obtain ĥi because
we want to reconstruct the normal vibration signal only using
working condition information. So the encoder feature ui is

ui = [ĥi, zi]T (16)

Then the reconstructed sample can be obtained through
decoder ψd

x̂i = ψd (ui; θd ) (17)

Finally, the desired objective function can be defined as a
standard autoencoder loss,

LA
(
θfe, θwe, θd ; xi

)
=

1
N

N∑
i=1

∥∥xi − x̂i∥∥2 (18)

Minimizing the autoencoder loss means that the two
encoders can extract all the information from samples,

besides, encoder ψwe can extracted the entire working con-
dition feature.

G. OPTIMIZATION OBJECT AND ALGORITHM
By integrating (13), (14), (15) and (18) together, the final
objective function of DFSM is written as

L (θ; xi, yi) = LC + αLD + βLR + γLA (19)

where, α, β and γ are both greater than zero and control the
tradeoff among optimization objects, θ = [θfe, θwe, θc, θd ] is
parameters.

According to equation (19) and Fig.2, it is conve-
nient to train the proposed method by stochastic gradient
descent (SGD) algorithm. Therefore the loss function equa-
tion (19) is rewritten as follows,

L
(
θ∗fe, θ

∗
we, θ

∗
c , θ
∗
d

)
= min
θfe,θwe,θc,θd

LC
(
θfe, θc

)
+αLD

(
θfe, θwe

)
+βLR (θwe)+ γLA

(
θfe, θwe, θd

)
(20)

Based on the equation (22) and SGD algorithm, the param-
eters θ are updated as follows,

θfe ← θfe − ε

(
∂LC
∂θfe
+ α

∂LD
∂θfe
+ γ

∂LA
∂θfe

)
(21)

θwe ← θwe − ε

(
α
∂LD
∂θwe

+ β
∂LR
∂θwe

+ γ
∂LA
∂θwe

)
(22)

θc ← θc − ε
∂LC
∂θc

(23)

θd ← θd − εγ
∂LA
∂θd

(24)

where, ε is the learning rate.
When the training process is completed, we can obtain a

fault encoder ψfe precisely extracting the classable feature,
a working condition encoder ψwe encoding all the working
condition information, a classifier ψc which can give the
posterior probability of categories and a decoder ψd recon-
structing samples. When we use testing samples to verify the
proposed DFSM, only the fault encoder and the classifier are
employed for fault diagnosis.

IV. CASE STUDY: FAULT DIAGNOSIS OF ROLLING
BEARING USING DSFM
This section shows the ability of proposed DFSM for dealing
with different rotational speed samples. The DFSM model
only trained with the samples under a certain rotational speed
is employed to classify the samples under other rotational
speeds and time-varying speed. We investigate the results and
certify the idea of DFSM.

A. DATA DESCRIPTION
As shown in Fig. 3, the vibration signals of rolling bear-
ings were collected from a test bench which consisted of an
induction motor, four supporting pillow blocks, a tachome-
ter and a coupling. The tested bearing is installed in the
farthest supporting pillow block from the induction motor.
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FIGURE 3. The arrangement of bearing test bench and bearing with fault.

An accelerometer is mounted on the supporting pillow block
of tested bearing to measure the vibration signals. The sam-
pling frequency is 25.6 kHz. The bearing dataset vibration
signals are collected under five different health conditions
which include normal condition (Nor), inner race fault (IF),
roller fault (RF), outer race fault (OF) and concurrent faults
in the outer race and roller (ORF).

The training dataset is composed of the labeled signals
under rotational speed of 1500 rpm, which is a time-invariant
working condition. There are 1000 signals for each health
condition and each signal contains 1200 data points. For
testing the method, two types of testing datasets severally
composed by time-invariant rotational speed signals and
time-varying rotational speed signals are built. The time-
invariant rotational speed signals under three drive motor
speeds (900rpm, 1000rpm, and 1300rpm) are used to build
the time-invariant rotational speed testing dataset (TI1, TI2
and TI3), which has the large discrepancy of rotational speed
comparing with the training dataset. For testing the robust-
ness of proposed method, the signals under large speed oscil-
lation compose the time-varying speed dataset TV which
has the large discrepancy of angular acceleration comparing
with the training dataset. The rotational speeds are ruleless
as shown in Fig. 4 and the time-frequency distributions are
indistinct according to Fig.5. It should be noticed that almost
all the rotational speeds of TV are under 1500 rpm, which are
incompatible with the training dataset. We randomly sample
segments with 1200 data points from all the testing signals as
testing samples to compose the TV dataset of 10000 samples
and TI dataset of 30000 samples.

B. DIAGNOSIS OF DFSM
The form of kernel function should be selected first. Accord-
ing to Ref. [34], the Gaussian radial basis function (RBF),
i.e., kG(x1, x2) = exp(||x1−x2||2/2s2), maps the original
features to an infinite-dimensional space, and it has been well
studied and proven to make distance useful in practice [35],

FIGURE 4. Rotational speeds of varying speed dataset.

where s is the standard deviation. Different s corresponds
to different infinite-dimensional spaces. Therefore, the pro-
posed method uses different RBF and sums them to calculate
the distances for ensuring the features stabilized in different
infinite-dimensional spaces. We use RBF whose mid-value is
m and times between two s. To solve the problem of selecting
penalty parameters,m is the mean of ||x1−x2|| on the training
data. For example, if m = 1 and the number of kernel is 5,
the final standard deviations are [0.25, 0.5, 1, 2, 4].

The structure parameters of the DFSM is [mh,m1,

m2,m3] = [100, 600, 800, 1000]. In the beginning of opti-
mization, the error is quite big and could decrease with the
epoch. So the learning rate should decrease in the process of
optimization. Based on Ref. [36], the learning rate and train-
ing step of SGD are 0.01/(1+10×q)0.75 and 500, respectively,
where q is the training progress linearly changing from 0 to 1.
α, β and γ are equal to 1. For training our DFSM better,
we adopt batch normalization (BN) to every convolutional
layer. But batch normalization has the capability of gener-
alization, we design a batch normalized CNN with the same
structure to ψfe and ψc for certifying the efficacy of DFSM.
It should be noticed that 15 trails are carried out for each
experiment in the following studies to reduce the effects of
the randomness.

The diagnosis results are shown in Fig.6. In this figure,
the testing accuracy is the minimum value of 15 trials, and
the positive error bars show the range of testing accuracy.
It can be seen that the testing accuracies of different testing
datasets are over 98.54%, which means that the proposed
DFSM is able to diagnosis the fault under different working
conditions even time-varying working condition only trained
with a certain working condition and the accuracies are quite
high. For CNN with BN, the highest testing accuracy range
is 96.48%∼96.80% of testing dataset TI3 because the testing
working condition is nearest to the condition of training
dataset’s. The testing accuracies are lower when the rotational
speed goes lower. Thismeans that the generalization ability of
BN is limited. The comparing results of the two methods cer-
tify that the structure of DFSM is effective. Besides, we have
investigated the parameters α, β and γ and find that the
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FIGURE 5. Time-frequency distribution of fault signals and fitted curves of tenfold rotational speed frequencies: (a) ORF (b) IF(c) RF (d) OF.

FIGURE 6. Diagnosis results of different testing dataset.

selecting ranges of them are relatively large (around 1∼100)
but it is best to select them on the same order of magnitude.
For bearing fault diagnosis, the recommended values of them
are both 1.

C. EQUATIONS VERIFICATION OF DFSM
To study the feature extracted from the two encoders
obviously, t-distributed stochastic neighbor embedding
(t-SNE) [37] is used. This technique makes it possible to
embed these 100-D vectors in a 2-D image in such a way that
the vectors are close together in the 100-D space are also close
together in the 2-D plot [38]. For each category and testing
dataset, we randomly select 100 samples and then extract the
precise classable features and working condition features for
reducing dimensions. The t-SNE visualization are displayed
in Fig.7(a)∼(b). As we can see from the t-SNE visualization,
most features of the same health condition are gathered in the
corresponding cluster and most features of different health
conditions are separated.Meanwhile we can find that features
learned by DFSM exhibit tight health condition class cluster-
ing while mixing the feature distribution between different
testing datasets, which means that the proposed DFSM only
trained by a certain working condition is able to extract the
fault features under different working condition. Working
condition features extracted through ψw are consistent for
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FIGURE 7. The t-SNE visualization of (a) precise classable feature, (b) working condition feature, (c) two different features under
1000 rpm and (d) original samples and reconstructed samples.

every health condition and the t-SNE visualization is difficult
to classify as shown in Fig.7(b). Besides, for verifying that the
two encoder (fault encoder and working condition encoder)
extract different information, the fault feature hi and working
condition feature zi under 1000 rpm are investigated. We also
use t-SNE to reduce the dimension. The results are shown
in Fig.7(c). As can be seen from the figure, we can distinguish
the two feature just using a linear boundary, which means that
the fault feature hi and working condition feature zi comprise
different information.

However, the different precise classable features and the
same working condition features cannot certify that we real-
ize idea of DFSM because if the two kinds of features can-
not be used to reconstruct the original samples, the fault
features is not regarded as the features eliminating all the
working condition information. For certify the idea of DFSM,
the training dataset is processed: first, for training samples
and reconstructed samples, Fast Fourier Transform (FFT) is
applied to every signal sample to obtain the corresponding

frequency amplitude; second for obtaining more stable spec-
trum, we average the frequency amplitudes of every 10 sam-
ples and obtain 500 average spectra of samples and 500 aver-
age spectra of corresponding reconstructed samples; then,
we extract 14 handcrafted features, i.e., mean, root mean
square, kurtosis, variance, crest factor, wave factor, and eight
energy ratios of wavelet package transform of every spectra;
finally, we adopt t-SNE to reduce dimension and display the
principal components in Fig.7(d). In this figure, the recon-
structed samples are different from the original samples, but
the difference is not large. There are always the corresponding
reconstructed samples close to the original samples, which
indicates that the information of them are similar. There-
fore, we consider that the two encoders can extract all the
information of training samples. It should be noticed that the
distance between the original samples and the reconstructed
samples under normal health condition is the shortest. This
means the information of them is basically consistent. For
samples under normal health condition, when we reconstruct
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TABLE 1. Classification comparison of the rolling bearing dataset.

the samples, only the features extracted through working
condition encoder ψw is used, which indicates that the work-
ing condition encoder ψw is able to extract all the working
condition information of samples.

Through the visual understanding, the proposed DFSM is
certified that it is able to eliminate the working condition
information and extract precise classable feature for fault
diagnosis.

D. COMPARING WITH RELATED WORK
To show the effectiveness of DFSM, we compare it with
the methods in related work using the same rolling bearing
dataset.

For our DFSM, we want to study the importance of DFSM
structure, so we do not use BN. The learning rate and training
step are 0.001 and 150, respectively and other model sets are
same to section 4. We design a CNN with the same structure
to ψfe and ψc for certifying the efficacy of DFSM.

Transfer Component Analysis (TCA) [39] is the represen-
tative work of searching the feature subspace by marginal
probability adaptation in the domain adaptation field. Joint
DistributionAdaptation (JDA) [40] combines marginal prob-
ability adaptationwith conditional probability adaptation. For
the two methods, spectra of samples are the inputs, the kernel
functions are both RBF kernel with standard deviation 1 and
output dimension is 100. Then a SVM classifier is trained on
the labeled source data to classify the unlabeled target data.

Deep neural network for domain Adaptation in Fault
Diagnosis (DAFD) [24] and Deep Transfer Learning
(DTL) [25] are the successful methods based on transfer
learning (or called domain adaptation) for fault intelligent
diagnosis. The reporting results are quite valuable for com-
parison. It should be noticed that authors used single layer
network in the paper of DAFD.

Besides, we investigate the training time of the methods
trained by backpropagation. The computation platform is a
PCwith an Intel I5cpu and 8GRAM. The Classification com-
parison of the rolling bearing dataset is displayed in Table 1.

According to the calculated results in Table 1, we can
observe that the accuracies of DFSM reach 95.97% and
93.81% under two different experiments. This result out-
performs other listed methods. Specifically, the accuracy of
CNN is 81.24%, which is 14.73% lower than that of DFSM.
This comparing result means that the structure of DFSM is
effective. DAFD obtains best accuracy 94.73% among the

single layer network, which is 1.24% lower than our method.
For DTL, the diagnosis accuracies are both lower thanDFSM,
especially when the testing dataset is under load 0hp. Besides,
it should be noticed that our DFSM is trained only using
one dataset under a certain working condition. But, training
DFSM cost a little more time comparing with related work.
The reason is that DFSM contains extra working condition
information encoder and decoder which should be trained.

V. CONCLUSION
For intelligent fault diagnosis under variable working con-
dition, the key is to extract the features which are irrelevant
to the working conditions and contain fault information. The
fundamental theory is that fault information is irrelevant to
the working conditions. Inspired by this theory, we consider
indirectly extracting fault features by eliminating the working
condition information with the reference of normal health
condition samples, and then proposed four loss functions to
realize our DFSM. The experimental results of two rolling
bearing datasets show that the proposed DFSM can not only
break the limitation of existing methods, but also achieve
a superior performance comparing with related methods.
It should be noticed that our DFSM is trained only using the
dataset under a certain working condition and can diagnose
faults with high accuracy under variable even time-varying
working condition, so it is easy to be applied. Through the
visual understanding, the proposed DFSM is certified that the
proposed optimization objects can realize the idea of DFSM.
Besides, as we perform this study, we find that it is best to
adopt BN because the model is quite complex and a little
difficult to train. Hence, we will do research on more simple
framework in the future study.
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