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ABSTRACT In this paper, a fractional order LQG benchmark is proposed for the control performance
assessment of fractional order control systems. Similar to the conventional LQG benchmark, the fractional
order LQG performance benchmark curve is determined by the numerical calculation method, which avoids
the calculation of the complex interaction matrix. The fractional order process model is discretized via
fractional order calculus. Meanwhile, the fractional order integral is introduced into the conventional LQG
cost function. Then solving the linear quadratic Gaussian problem under the fractional order model and
fractional control, the optimal input and output variances are determined for different weighting factors and
the performance curves can be achieved. The comparison between fractional order LQG and the conventional
LQG shows the improvement of the proposed benchmark under the same condition. The proposed benchmark
can provide a more direct and superior reference standard to evaluate the performance of fractional order
control system. Finally, a case study of fractional order PID(FO-PID) controller in industrial heating furnace
temperature control experiment with model matching and model mismatch conditions is used to verify the
effectiveness of the proposed benchmark.

INDEX TERMS Fractional order system, fractional order linear quadratic Gaussian (FO-LQG), control
performance assessment, FO-PID. control.

I. INTRODUCTION
The research on control performance assessment of con-
trol loops can be traced back to 1970. Devries and Wu
first proposed the idea of performance assessment in 1978.
Their work laid a theoretical foundation for control per-
formance assessment of control loops. In 1989, Harris [2]
proposed a performance index based on minimum variance
control, which uses the minimum variance controller as the
upper limit for evaluating the performance of univariate con-
trol loops. In 1993, Stanfelj et al. [3] extended the per-
formance evaluation method based on minimum variance
control to the univariate feedforward-feedback control loops.
In 1995, Tyler and Morari [4] revised and generalized the
Harris indicator. they applied it to unstable systems and non-
minimum phase systems. In 1996, Harris et al. [5] introduced
the univariate minimum variance control benchmark into the
multivariate control system. In 1999, Huang [6] proposed the
use of linear quadratic Gaussian (LQG) optimal control as
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a performance assessment benchmark, which considers both
the input and output variance. This provides a practical lower
bound of performance. Under the condition of changing the
weighting factor, a tradeoff curve is obtained by calculating
the optimal LQG control law and five performance indicators
are defined. In 1999, Ko and Edgar [7]proposed performance
assessment of constrained model predictive control systems.
And Chen et al. [8] also proposed performance evaluation
methods for cascade control loops. Lee et al. [9] proposed
an economic performance assessment method for constrained
model predictive control. In 2000, Huang et al. [10] extended
the evaluation method based on minimum variance con-
trol to multivariate feedforward-feedback control systems.
Grimble [11] proposed the generalized minimum variance
(GMV) benchmark, which introduced the control signal
amplitude as a penalty term into the objective function.
Li and Evans et al. [12], Li et al. [13] proposed generalized
minimum variance control for linear time-varying systems.
A method for evaluating the performance of control loops
with time-varying disturbances is proposed in [14], [15].
In 2007, Harris and Yu [16] extended the minimum variance
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control benchmark to a class of nonlinear univariate systems
and presented a Volterra sequence approximation method for
estimating the upper bound of performance from operational
data.

Kadali and Huang [17] proposed a data driven subspace
approach to calculate the LQG benchmark under closed-loop
conditions with certain external excitations. To improve the
accuracy of the LQG benchmark, Danesh Pour et al. [18]
proposed a noise uniformity estimation for closed-loop sub-
space identification in 2009. In 2010, Danesh Pour et al. [19]
extended the LQG benchmark to the cascade control loop.
In 2011, a numerical equigrid algorithm was introduced to
improve the traditional LQG benchmark by Liu et al. [20].
In 2014-2018, Wei and Wang [21], Wang et al. [22], Zhang
and Wang [23] extended LQG benchmark from one dimen-
sion to two dimensions and proposed a two dimensional
LQG benchmark for control performance assessment of ILC-
Controlled batch processes in a 2-D System framework.
Moreover, they developed a novel data-driven control perfor-
mance assessment method under two dimensions. In 2019,
an improved entropy benchmark for performance assess-
ment of common cascade control system was proposed by
Zhang et al. [24], which combined entropy with output
mean value and deal with the inconsistency of the minimum
variance benchmark in evaluating non-Gaussian disturbance
systems.

PID control or model predictive control optimization
based PID are the most widely used technology in the
control system. Because of its simple structure and strong
robustness, it is widely used in industrial process and has
strong vitality [25], [26]. It has important practical sig-
nificance to evaluate the performance of PID controller.
Sendjaja and Kariwala et al. [27] used the MVC benchmark
to evaluate the performance of the control loop by calcu-
lating the minimum variance that can be achieved by the
PID controller. Horton et al. [28] has put forward that an
optimal PI regulator was recommended as the default per-
formance standard for industrial level control loops. In 2017,
Fang et al. [29] evaluated the IMC-PID controller by a LQG
benchmark in case of the model matching and the model
mismatch on the heating furnace. Škarda et al. [30] proposed
a new performance evaluation index based on the sensitivity
function of ideal shape. The corresponding optimal achiev-
able performance is calculated for all processes belonging to
the fractional model sets controlled by PID-type controller.
This method is based on classical minimum variance theory
that maximum performance is strongly influenced by the
process normalized dead time and only used for evaluating
the process controller with fixed structure. However, there
exists some limits. Meneses [31] et al proposed a combined
performance evaluation index to solve the performance trade-
off between servo control and regulation control, which is
to evaluate FO-PID controller and also based on the theory
that the achievable performance is influenced by the process
normalized dead time and subject to a robustness constraint.
And this study of its performance index is just to guide the

selection whether to use fractional order controller or integer
order controller when assessing a fractional order system. But
its scope of use is limited.

In short, many scholars have studied the performance
evaluation of PID controller. But most of their researches
on the performance evaluation of control system is aimed
at the integer order controller’s model. At the same time,
from the perspective of development of the above perfor-
mance assessment techniques, no matter which assessment
benchmark, the process model they are targeting are nearly
integer order models. We know that when encountering more
complicated processes, the integer order model is not enough
to accurately describe the process dynamics, the extra frac-
tional order integral and differential may lead to more flexible
and accurate process models for representing the dynamic
characteristics of practical processes [32]–[34]. Fractional
order controller is an extension of the concept of tradi-
tional integral order controller. And FO-PID controller can
achieve better performance than integral order PID controller
in controlling fractional order system [35]–[38]. Therefore,
the performance evaluation of FO-PID controller and the
performance assessment techniques is also worth studying.
The existing evaluation methods for fractional order con-
trollers have disadvantages of insufficient application scope.
The most important thing is that their evaluation indicators
are one-sided, only from the perspective of process out-
put. However, we know that the LQG benchmark not only
takes into account the input variance for the system, but
also the output variables, which is more practice assessment
benchmark for actual industrial processes. Unfortunately, its
application is until now only for the system of integer order
process model and the problem of integer order control.
Consequently, on the basis of conventional LQG bench-
mark(based on the integer order model), we can consider an
novel LQG benchmark that based on fractional order process
model and fractional order control to achieve the performance
assessment problem under fractional order systems with frac-
tional order controller. This benchmark proposed in this paper
can provide a higher reference standard for control perfor-
mance assessment of fractional order system and any linear
fractional order controller. Based on the benchmark proposed
in this paper, a case study of heating furnace controlled by
a FO-PID controller is used to verify the validity of this
benchmark. At the same time, the performance of FO-PID has
studied under the model matching and the model mismatch.

II. FRACTIONAL ORDER CALCULUS
Fractional calculus is a branch of calculus, which extends
the order of calculus operator from integer order to fractional
order. The commonly used definitions of fractional calculus
are Grunwald-Letnikov(GL), Riemann-Liouville (RL) and
Caputo [39].

The GL definition of fractional order calculus is:

GL
c Dαt f (t) = lim

h→0

1
hα

[(t−c)/h]∑
i=0

(−1)i
(
α

i

)
f (t − ih) (1)
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where, f (t) is a continuous function, c denotes the initial
time, α denotes fractional order, h denotes the sampling step,
[(t − c)/h] denotes the integer part of (t − c)/h, ωαi is the
weight coefficient, which is calculated by the following recur-

rence equation, ωαi = (−1)i
(
α

i

)
is a polynomial coefficient,

which can be directly calculated by the following recurrence
formula:

ωα0 = 1, ωαi =
(
1−

α + 1
i

)
ωαi−1, i = 1, 2, . . . , (2)

The RL definition of fractional order calculus is:

RL
c Dαt f (t) =

1
0(m− α)

dm

dtm

∫ t

c

f (τ )
(t − τ )α−m+1

dτ (3)

where, m − 1 < α < m,m ∈ N , 0(•) denotes Euler-gamma
function.

The Caputo definition of fractional order calculus is:

Ca
c Dαt f (t) =

1
0(m− α)

∫ t

c

f m(τ )
(t − τ )α−m+1

dτ (4)

The Laplace transform of the RL fractional order derivative
with zero initial condition is given by:

L
{
RL
0 Dαt f (t)

}
= sαF(s) (5)

On the basis of general first order plus time delay model
and the above Laplace transform in (5), a simple fractional
order transform function model with time delay will be
considered:

G(s) =
T

Ksα + 1
e−τ s (6)

where, τ denotes the time delay, T denotes the time constant,
K denotes gains for process model.

In the time domain, Eq.(6) can be discretized to a fractional
order differential equation by GL numerical approximated
method, the validity of its numerical solution is demonstrated
[40], [41] (see some details for Appendix A):

y(k)+ µ
L∑
j=1

wαj y(k − j) = Hu(k − d) (7)

where,µ = Th−α(1+Th−α)−1,H = K (1+Th−α)−1 and the
time delay d = τ/h, L is the approximated memory length of
fractional order operators, y(k), u(k) is the output and input
of fractional order system, respectively.

wα0 = 1,wαj =
(
1−

α + 1
j

)
wαj−1, j = 1, 2, . . . ,L.

III. FRACTIONAL ORDER LQG BENCHMARK
A. SOLUTION FOR FRACTIONAL ORDER LQG BENCHMARK
The LQG performance benchmark is an extension of the
MVC benchmark, which takes into account the variance of
the system output and the control input. Therefore, the LQG
performance benchmark can provide more information on
the controller performance. The computational burden of the

Riccati equation is very large when the LQG is used as
the performance benchmark. As refer to the literature [42],
the LQG problem can be solved via the infinite MPC(model
predictive control) and a finite value of predictive horizon and
control horizon is usually enough to achieve the approximate
infinite horizon LQG solution via the MPC approach. There-
fore, the LQG benchmark is solved by the approximation
of solving the MPC, which can simplify the acquisition of
the tradeoff curve. The solution of LQG problem based on
fractional order model is similar to that based on integer order
model. Therefore, when the process model is extended to
fractional order, we can use fractional order MPC to solve
the LQG problem based on fractional order model.

Consider a single-input single-output fractional order
discrete time model:

Yk = Gp(z−1)Uk + Gd (z−1)ξk (8)

where, Uk , Yk are the measured output of the process and
the manipulated input of the process respectively. z−1 denotes
back-shit operator.Gp(z−1),Gd (z−1) are the transfer function
of process and disturbance, then it can be defined in details
as follows:

Gp =
B(z−1)
A(z−1)

, Gd =
T (z−1)
1(z−1)

(9)

where, A(z−1), B(z−1) are the numerator and denominator
of the model transfer function respectively, both of two
can be obtained from Eq.(7). {ξk} is a zero-mean discrete
white noise sequence of variance σ 2

ξ . T (z
−1) is a prefilter

to improve the system robustness rejecting disturbance and
noise.1 is the increment operator.1 = 1− z−1. Polynomial
A(z−1),B(z−1),T (z−1) are defined as follows:

A(z−1) = A1 + A2z−1 + · · · + Arz−r

B(z−1) = B1 + B2z−1 + · · · + Bsz−s

T (z−1) = T1 + T2z−1 + · · · + Tqz−q (10)

For an objective function of finite horizonmodel predictive
control can be descripted as follows:

JMPC =
p∑
j=1

(Yk+j|k − rk+j|k )2+ρ
M∑
j=1

(1Uk+j−1)2 (11)

where, M is the control horizon, P is the predictive horizon,
ρ is weighting factor of control input. rk+j|k is the reference
value of j step at future instant k .1Uk+j−1 is the control input

value of j step at future instant k − 1. Ŷk+j|k is the predictive
output value of j step at future instant k , which can calculate
by the nominal disturbance model:

Yk= Gp0(z−1)Uk + Gd0(z−1)ξk =
B0(z−1)
A0(z−1)

Uk+
1
1
ξk (12)

where, the subscript ‘0’ in this expression denotes nominal
values used in the controller design.
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Configuring parameter with rk+j|k = 0, P = M and
P→∞, then Eq.(11) can be rewritten as:

JMPC =
p∑
j=1

(Yk+j|k )2+ρ
P∑
j=1

(1Uk+j−1)2 (13)

The MPC objective function can converges to the LQG
objective function, which is shown as follows:

1
P
JMPC → JLQG = var {Yk} + ρvar {1Uk} (14)

Thus, the solution of LQG objective function can be
achieved by solving the following performance indexes:

JLQG = lim
P→∞

1
P


p∑
j=1

(Yk+j|k )2+ρ
P∑
j=1

(1Uk+j−1)2


= lim

P→∞

{
1

(P− 1)Ts

∫ PTs

Ts
[(Yk )2+ρ(1Uk−1)2]dk

}
(15)

where Ts denotes the sampling step.
In order to achieve the optimization of fractional order

control, according to [43], the fractional definite integral
operator is added to the objective function (15) to obtain:

JFLQG = ε1 IPTsTs (Yk )2 + ε2 IPTsTs ρ(1Uk−1)
2

=

∫ PTs

Ts
D1−ε1 (Yk )2dk + ρ

∫ PTs

Ts
D1−ε2 (1Uk−1)2dk

(16)

where, αIba f (t) =
∫ b
a [D1−αf (t)]dt, ε1, ε2 are arbitrary order

integral.
Using the definition of GL fractional order calculus,

Eq.(16) can be changed to discrete form, then, according to
[44], [45], the following be derived:

JFLQG
= T ε1s [ω−ε10 Yk+p + ω

−ε1
1 Yk+p−1+· · ·+(ω

−ε1
p−1− ω

−ε1
0 )Yk+1

+ (ω−ε1p − ω
−ε1
1 )Yk + (ω−ε1p+1 − ω

−ε1
2 )Yk−1 + · · · ]

+T ε2s ρ[ω
−ε2
0 1Uk+p−1 + ω

−ε2
1 1Uk+p−2 + · · ·

+ (ω−ε2p−1 − ω
−ε2
0 )1Uk + (ω−ε2p − ω

−ε2
1 )1Uk−1 + · · · ]

= T ε1s Y T01Y + T ε2s 1U
T021U

= (T ε1s Y T
→k

01 Y
→k
+T ε2s 1UT

→k−1
02 1U
→k−1

)

+ (T ε1s Y T
←k

0
1
Y
←k
+T ε2s 1UT

←k−1
02 1U
←k−1

) (17)

where, the symbols ←,→ denote the past and the future
value, 01 and 02 are infinite-dimensional square real weight-
ing matrices which depend, by construction, on ε1 and ε2,
respectively. x = ε1, ε2,

∀j > 0, ω−xj = (−1)−j
(
−x
j

)
, ∀j < 0, ω−xj = 0.

At the instant k , the output of the instant k − 1, the input
and output of the previous instant are known, the objective

function (17) can be further converted into the following
function cost:

JFLQG = Y T
→k

3(ε1,Ts) Y
→k
+1UT

→k−1
3(ε2,Ts) 1U

→k−1
(18)

where,

3(ε1,Ts)

= T ε1s 01

= T ε1s

 0
←1

0

0 0
→1


= T ε1s diag(· · ·ω−ε1p − ω

−ε1
−1 |ω

−ε1
p−1 − ω

−ε1
0 · · ·ω1ω0)

3(ε2,Ts)

= T ε2s 02

= T ε2s

 0
←2

0

0 0
→2


= ρT ε2s diag(· · ·ω−ε2p − ω

−ε2
−1 |ω

−ε2
p−1 − ω

−ε2
0 · · ·ω1ω0)

Y =

 Y
←k

Y
→k

 =



...

Yk−2
Yk−1
Yk
Yk+1
Yk+2
...

Yk+p


,

1U =

 U
←k−1

U
→k−1

 =



...

1Uk−3
1Uk−2
1Uk−1
1Uk
1Uk+1
...

1Uk+p−1


In the absence of constraints, the minimization of this cost

function (18) under the closed-loop system leads to a control
law [46]:

Uk = −Gc(z−1)Yk = −
S(z−1)
1R(z−1)

Yk (19)

where, S(z−1),R(z−1) are the controller’s polynomial, which
can be obtained from Eq.(20).8i,Fi, i = 1, 2, · · · ,P are two
polynomials obtained from the resolution of two Diophantine
equations (see [46] for more details).

R(z−1) =

T (z−1)+
P∑
i=1

ki8i

P∑
i=1

kiz−P+i
, S(z−1) =

P∑
i=1

kiFi

P∑
i=1

kiz−P+i
(20)

The specific expression of MPC controller can be
obtained by solving LQG optimization problem with

116656 VOLUME 8, 2020



R. Li et al.: Performance Assessment of FO-PID Temperature Control System Using a Fractional Order LQG Benchmark

spectral decomposition:

Gc(z−1) =
S(z−1)
1R(z−1)

=
A0(z−1)

γ̄ (z−1)− B0(z−1)
(21)

where, the polynomial γ̄ (z−1) is the invertible factor of the
spectral factorization Eq.(22).

γ̄ (z−1)γ̄ (z) = B0(z−1)B0(z)+ρ(1− z−1)A0(z−1)A0(z)(1− z)

(22)

The following closed loop relationships may be developed
by inserting the control law (19) into the true system descrip-
tion of Eq.(8). For convenience, the operator z−1 is omitted
from the following formula. According to Eq.(8),(19), and we
can obtain:

Yk =
TAR

BS + A1R
ξk (23)

Uk = −
TAS

1(BS + A1R)
ξk (24)

Dropping the argument for convenience. Applying
Parseval’s theorem to Eq.(23),(24) enables the variances
of the process output and differenced input to be com-
puted as [47]:

Var(Y optk ) = σ 2
Y =

σ 2
ξ

2π j

∮
|z|=1

∣∣∣∣ TAR
BS + A1R

∣∣∣∣2 dzz (25)

Var(Uopt
k ) = σ 2

U =
σ 2
ξ

2π j

∮
|z|=1

∣∣∣∣ TAS
1(BS + A1R)

∣∣∣∣2 dzz (26)

B. TRADEOFF CURVE AND PERFORMANCE INDEX
By changing the ρ between [0,∞], then take the optimal
input variance as the horizontal axis and the optimal output
variance as the vertical axis, By drawing the performance
limit curve, the variance performance indexes of the linear
controller can be obtained, such as Figure. 1. And the perfor-
mance indexes for assessment are defined in Figure. 1.

FIGURE 1. The performance limit curve based on fractional order LQG.

IV. SIMULATION CASE
In this section, we use an example of a heating furnace in
literature [28] (Fang et al., 2017) to develop a fractional
order model of the heating furnace with the corresponding

FIGURE 2. The electric heating furnace SXF-4-10.

measured data. Then we will introduce the performance eval-
uation results of FO-PID and the validity of fractional order
LQG benchmark is verified through MATLAB simulation.
The simulations are done on MATLAB 2014a, and the cor-
responding computer configurations are: operation system
windows 10, CPU i7-8550U 1.8GHz, Memory 16.0 GB.

A. TEMPERATURE CONTROL SYSTEM DESCRIPTION
The heating furnace’s schematic diagram is shown
in Figure 2. Its rated working voltage is 220V and rated
power is 4KW. The heating process circuit of the furnace is
described as follows: from the positive pole of 220VAC to the
positive pole on the left side of the resistive driver, the heating
wire and the solid-state relay respectively, from the negative
pole on the right side of the solid-state relay to the negative
pole of 220V AC.

The FO-PID controller is used to control the temperature of
the industrial heating furnace system modeled by a fractional
order model. The control process block diagram is shown
in Figure 3.

FIGURE 3. The control process block diagram of heating furnace.

B. PROCESS MODEL
The heating furnace model in literature [28] is

Gp =
28.5

735s+ 1
e−100s (27)

On the basic of the values of T = 735, K = 28.5,
τ = 100, α = 1 of the integer order model in Eq.(27),
the variances between the step response output of model and
practical process output of the heating furnace were utilized
to adjust the parameters of fractional order model. Then it is
obtained by using the new Luus-Jaakola(NLJ) method [48],
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FIGURE 4. The practical temperature and open-loop step responses of
models.

and its effectiveness for practical process has been testified
on the heating furnace by several experiments.

The fractional order model is

Gp =
31.8

510s0.93 + 1
e−100s (28)

In Fig. 4, the practical temperature and the open-loop step
response of the two models are shown.

In the course of the experiment, the disturbance transfer
function model is simulated as:

Gd =
1+ 0.2500z−1

1− 0.9732z−1
(29)

Finally, the process model of the furnace can be
selected as:

Yk = GpUk + G′dξk (30)

where, G′d is the transfer function form of Gd .

C. FRACTIONAL ORDER LQG TRADEOFF CURVE
A gaussian white noise with a mean value of 0 and vari-
ance of 0.1 is added to the temperature control system. The
order of LQG objective function are selected as ε1 = 0.8,
ε2 = 1.2, the weighted value ρ is changed within
[0.000000001,160000] since that the selected interval of ρ is
enough to represent the whole trend of LQG curve. Through
the fractional order LQG algorithm, the variance value of
corresponding optimal input and output is calculated. Then,
we can obtain the fractional order LQG Performance tradeoff
curve, as shown in Figure. 5.

D. THE COMPARISON OF TRADEOFF CURVES
For the fractional order and Integer order process model
obtained from the same heating furnace data, they use the
same interference transfer function, the corresponding per-
formance curve can be obtained by using a conventional
LQG benchmark and a fractional order LQG benchmark,
respectively. The result is shown in Figure. 6.

FIGURE 5. The fractional order LQG performance tradeoff curve.

FIGURE 6. The comparison of two tradeoff curves.

As can be seen from Figure. 4, the performance tradeoff
curve calculated using a fractional order LQG benchmark
is better than that calculated using the conventional LQG
benchmark under the same conditions. It means that this
benchmark can provide a better reference standard for the
performance assessment of system. Moreover, when evalu-
ating the fractional order systems and the fractional order
controllers, the conventional LQG algorithm can be available
by an operation of model transformation. The fractional order
LQGbenchmark is directly calculated using a fractional order
LQG algorithm, the operation of the model transformation is
omitted, the model approximation error is reduced and the
computation is smaller.

E. EXPERIMENTAL RESULTS
A class of fractional order PID controller [49] is used to the
experiment of the heating furnace, the transfer function of
which can be descripted as:

Gc(S) = kp + Ki
1
S
+ KdSγ (31)
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The proportion, integral and differential coefficients, frac-
tional order γ of the corresponding fractional order PID
controller are selected as follows:

γ = 0.3,Kp = 0.2011,Ki = 0.000132,Kd = 0.8956

At the same time, considering the actual situation, there
are often some uncertain factors or unmeasured interfer-
ence, which makes the established model have certain errors.
Therefore, it is necessary to consider both themodelmatching
and the model mismatch. Here, we select two sets of param-
eters of process model under model mismatch, so three sets
of the process parameters are as follows:

Model 1: α = 0.93,T = 510, τ = 100,K = 31.8
Model 2: α = 0.87,T = 408, τ = 80,K = 25.4
Model 3: α = 0.92,T = 612, τ = 120,K = 38.16
Since we mainly evaluate the steady state performance of

the furnace system, the setpoint of temperature are selected
600◦C and 605◦C respectively. Through many experiments,
the actual temperature and duty ratio variance of the system
are shown in Figure.7a-c. The actual the performance assess-
ment results of the actual temperature and duty ratio variance
of the system are shown in Figure. 8.

TABLE 1. Statistical results of steady state performance.

According to the experimental results, the input variance
and the output variance in the model matching and the model
mismatch are shown in Table 1. The assessment of the perfor-
mance of the control system has been performed according
to the performance index defined above. When the heating
furnace temperature setpoint is 600◦C, the performance index
of the matchmodel (Model 1) is ηu = 23.59%, ηy = 59.03%,
the performance index of the mismatch model (Model 2) is
ηu = 33.94%, ηy = 71.62%, and the performance index
of the mismatch model (Model 3) is ηu = 18.62%, ηy =
52.81%. When the heating furnace temperature setpoint is
605◦C, the performance index of the match model (Model 1)
is ηu = 20.41%, ηy = 54.70%, the performance index of the
mismatch model (Model 2) is ηu = 28.33%, ηy = 64.65%,
and the performance index of the mismatch model (Model 3)
is ηu = 15.86%, ηy = 49.45%. On the basis of the above
results, there is a large room for improvement in the control
performance.

According to the results of the assessment and the sim-
ulation results, here the parameter of the FOPID controller
as well as the integral and the derivative coefficients are

FIGURE 7. (a) Corresponding input and output of the different parameter
(Model 1). (b) Corresponding input and output of the different parameter
(Model 2). (c) Corresponding input and output of the different
parameter (Model 3).

adjusted by the trial and error method. We choose one set of
the controller parameters with the best control effect of the
heating furnace, the parameters are:

γ = 0.6,Kp = 0.1011,Ki = 0.000126,Kd = 0.8956
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FIGURE 8. Limit curve based on fractional order LQG benchmark and
actual variance of the system.

After adjustment and recalculation of the relevant data
and performance index, the simulation results of the three
different model parameters are further shown in Figure. 7a-c.
When the heating furnace temperature setpoint is 600 ◦C,
it shows that the performance index of the match model
(Model 1) is improved to ηu = 44.07%, ηy = 69.37%,
the performance index of the mismatch model (Model 2) is
improved to ηu = 62.60%, ηy = 83.25%, and the perfor-
mance index of the mismatch model (Model 3) is improved
to ηu = 36.25%, ηy = 61.75%. When the heating furnace
temperature setpoint is 605 ◦C, it shows that the performance
index of the match model (Model 1) is improved to ηu =
41.55%, ηy = 66.02%, the performance index of the mis-
match model (Model 2) is improved to ηu = 51.09%, ηy =
74.64%, and the performance index of the mismatch model
(Model 3) is improved to ηu = 32.58%, ηy = 58.01%.
By readjusting the parameters of FO-PID controller, the con-
trol performance is greatly improved for bothmodelmatching
and model mismatch cases, statistical results of which is
shown in Table 2.

TABLE 2. Statistical results of steady state performance.

According to the results, in the case of model matching
and model mismatch, the actual input variance and output
variance of the system are obtained before and after changing
the controller parameters, and the specific values are shown
in Figure. 9, Figure. 10.

We can intuitively find that input variance and output
variance can be reduced to a certain extent by adjusting

FIGURE 9. The output variance of system under the tuning of current/
improved parameter.

FIGURE 10. The output variance of system under the tuning of current/
improved parameter.

fractional order PID parameters in the case of model match-
ing and model mismatch, so that the performance point is
close to FO-LQG performance tradeoff curve, this indicates
that the control performance of the controller has been greatly
improved after parameter adjustment as expected. In addi-
tion, the actual input variance and output variance of the
system before and after the controller parameter adjustment
were compared under the conditions of model matching
and model mismatch for different heating furnace temper-
ature setpoints, and the results were drawn as bar graphs
in Figure 9, Figure 10. The results show that when the fur-
nace temperature was set at 600◦C, the input and output
variances corresponding to model 1 decreased by 20.48%
and 10.34%, respectively. The input and output variances
corresponding to model 2 decreased by 28.66% and 11.62%,
respectively. And the input and output variances correspond-
ing to model 3 decreased by 24.63% and 8.94%, respectively.
When the furnace temperature is set at 605◦C, the input
and output variances corresponding to the matching model 1
decreased by 20.48% and 10.34%, respectively. The input
and output variances corresponding to the mismatch model 2
decreased by 21.14% and 11.32%, respectively. And the
input and output variances corresponding to the mismatch
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model 3 decreased by 16.72% and 8.56%, respectively.
Compared with the output variance, the decrease of input
variance is more obvious, and the system is in the control
state of minimum energy. Through the redesign of the con-
troller parameters after the system performance evaluation,
the system control performance under the condition of model
matching and model mismatch is improved effectively.

V. CONCLUSION
In this paper, A fractional order LQG benchmark is devel-
oped for the performance assessment on fractional order
systems. By solving the linear quadratic Gaussian prob-
lem under the fractional order model and fractional control,
the optimal input and output variances are determined for
different weighting factors, the achieved performance curves
and performance indicators of input and output variance are
given. At the same time, the comparison between fractional
order LQG and the conventional LQG shows the improve-
ment of the proposed benchmark under the same condition.
Finally, the fractional order LQG benchmark is used to eval-
uate the performance of the furnace system based on FO-PID
controller with model matching and model mismatch. By
solving the current control performance of FO-PID with
current parameter, and then calculating the corresponding
performance indexes, much room for improvement in con-
trol performance can be given. Furthermore, through the
adjustment of parameters, the control performance of FO-PID
controller is further improved. The furnace system is not only
in the control state of minimum energy, but also more stable
for control output. Besides, the lower performance limit of
the linear fractional order controller is given. This allows us
to effectively evaluate the control performance of fractional
order controllers during furnace control experiments and to
make adjustments in time.

APPENDIX A
CALCULATION OF THE REPRESENTATIVE OF
FRACTIONAL ORDER DISCRETE MODEL
Step1: For simplicity, the following single-input single-
output fractional order Laplace transform model with time
delay is discussed:

G(s) =
Y (s)
U (s)

=
K

Tsα + 1
e−τ s (A.1)

Step2: The representative of the fractional differential
equation (A.1) can be written in the following:

TSαY (s)+ Y (s) = e−τ sU (s) (A.2)

Then a inverse Laplace transform is applied into the Eq.(A.2),
the following fractional differential equation is gained [34],
[35]:

0Dnt y(t)+ y(t) = u(t − d) (A.3)

Step3: Discretion of the fractional differential equation
According to the Grunwald-Letnikov (GL) definition, the

discretization formula of fractional derivatives is defined

to be (A.4):

0Dαt y(t) = h−α
L∑
j=0

wαj y(k − j) (A.4)

where h denotes the sampling instant, ωαj is the weight
coefficient, which is calculated by the following recurrence
equation:

wα0 = 1,wαj =
(
1−

α + 1
j

)
wαj−1 (A.5)

Then the discretization fractional differential equation is
obtained:

y(k)+ µ
L∑
j=1

wαj y(k − j) = Hu(k − d) (A.6)
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