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ABSTRACT This work proposes a marginal distribution multi-target Bayes filter with assignment of
measurements to track multiple targets in the presence of an unknown and variable number of targets, clutter,
and missed detections. Mathematically, the association of the measurements with either a target or clutter
may be established by maximizing the joint likelihood function of the measurement partition, which leads
to a two-dimensional assignment problem. By the introduction of detecting label, a handling approach for
missed detections is also developed and is applied to the proposed filter. This filter greatly reduces the number
of hypothesized targets or Gaussian terms by selecting the predicted probability density of a target or one
of its multiple updated probability densities as its state distribution at each time step. Experimental results
indicate that the proposed filter requires a less computational load than the existing filters and performs
better than the efficient implementations of the δ-generalized labeled multi-Bernoulli filter for multi-target
tracking at low and moderate clutter densities.

INDEX TERMS Multi-target tracking, marginal distribution multi-target Bayes filter, generalized labeled
multi-Bernoulli filter, two-dimensional assignment.

I. INTRODUCTION
The objective of multi-target tracking is to estimate the states
of multiple objects at different times by using the measure-
ments that are obtained by a sensor at different times [1]–[3].
This technique has an important application in sonar tracking,
radar tracking, space surveillance and traffic control. The
major problem in multi-target tracking is the uncertainty of
detection, uncertainty of data association and the presence
of clutter. Joint probabilistic data association (JPDA) [4],
multiple hypotheses tracking (MHT) [5] and random finite
set (RFS) [1], [6] provide an efficient solution for this
problem.

As a solution paradigm of multi-target tracking problem,
the RFS approach provides an elegant Bayesian framework
for multi-target tracking and is also the theoretical founda-
tion of the probability hypothesis density (PHD) filter [7],
cardinalized PHD (CPHD) filter [8] and cardinality-balanced
multi-Bernoulli (CBMeMber) filter [9]. The main difference
between the PHD filter and CBMeMber filter is that the

The associate editor coordinating the review of this manuscript and

approving it for publication was Filbert Juwono .

former propagates the posterior intensity in the filter recur-
sion [1], [6]–[8], while the latter propagates the parameters
of multi-Bernoulli distribution to approximate the posterior
density [9]. The PHDfilter and CBMeMber filter are efficient
for multi-target tracking in case of high detecting probability.
However, they have aweakmemory and become inefficient in
case of low detecting probability because they fail to provide
state estimation of an existing target if this target is undetected
at a time. Instead ofmaintaining the joint posterior probability
density of multiple targets, the marginal distribution multi-
target Bayes (MDMTB) filter was proposed in [10] and [11]
to propagate the state distribution and existence probability
of each target in the filter recursion. The advantage of the
MDMTB filter over the PHD filter and CBMeMber filter
is that it may provide the state estimations of missed tar-
gets in case of low detecting probability due to its strong
memory. Despite a lack of trajectory of the target, these
filters have been applied to autonomous vehicle [12], sonar
tracking [13] and radar tracking [14]. Their extensions have
been developed to track the maneuvering target [15]–[17],
the extended target [18]–[21], the target with glint noise [22]
and the target in possible subsequent missed detections [23].
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Detection-guided Bayesian filter [24] and parallel implemen-
tation of the sequentialMonte Carlo PHDfilter [25] were also
designed to obviate the need for exact knowledge of birth
objects and to improve the computational efficiency of the
sequential Monte Carlo PHD filter, respectively.

Recently, the δ-generalized labeled multi-Bernoulli
(δ-GLMB) filter was proposed in [26], [27]. The advantages
of the δ-GLMB filter over the PHD filter and CBMeMber
filter are that it may provide the target track and that it
does not require high signal to noise ratio, therefore it is
applicable to the case of high clutter density and low detecting
probability [28]. However, the δ-GLMB filter requires enu-
merating an exponentially growing number of hypotheses,
which leads to a high computational complexity [29]. Two
efficient approximations of the δ-GLMB filter have been
proposed to reduce the computational complexity. One is
the labeled multi-Bernoulli (LMB) filter [28] and the other
is the efficient implementation of the generalized labeled
multi-Bernoulli (GLMB) filter [30] called the rapid GLMB
(R-GLMB) filter in this paper. The extensions of the δ-
GLMB filter for diverse applications have also been reported
in [31]–[34]. Despite its efficiency, Vo’s efficient implemen-
tation of the δ-GLMB filter [30] still requires a much larger
computational load than the PHD filter or CBMeMber filter
due to the fact that the number of hypothesized targets or
tracks in this implementation is significantly greater than the
number of real targets. The large computational load also
restricts the application of the R-GLMB filter in many actual
tracking systemswhere the number of targets in a surveillance
region is up to hundreds. To address this problem, we pro-
pose an MDMTB filter with assignment of measurements
(AM-MDMTB filter) in this study. The proposed filter uses
the maximization of the joint likelihood function or mini-
mization of the sum of negative log-likelihood function to
assign each measurement to either a target or clutter, which
leads to a two-dimensional (2-D) assignment problem. The
Hungarian algorithm is employed to solve the 2-D assignment
problem to obtain the association result of individual mea-
surements and individual targets. Based on the association
result, a handling approach for missed detections is also
developed and is applied to the proposed filter. Similar to
the R-GLMB filter, the proposed AM-MDMTB filter uses
the track label to distinguish individual targets. Therefore it
may provide the target track. Unlike the R-GLMB filter that
searches the K best 2-D assignments to determine whether
a target is died, or surviving and detected, or surviving
and undetected; the proposed filter finds an optimal 2-D
assignment to associate eachmeasurement to either a target or
clutter. Importantly, the proposed filter selects the predicted
probability density of a target in case of missed detections
or one of its multiple updated probability densities in other
case as its state distribution at each time step. Therefore
the number of hypothesized targets or state distributions in
the proposed filter approximates the number of real targets.
Besides, the AM-MDMTB filter inherits the merits of the
MDMTBfilter, it may provide the state estimations of missed

targets in case of low detecting probability due to its strong
memory.

The main contributions of this paper are as follows:
(1) We establish a mathematical model of the 2-D assign-

ment by minimizing the sum of negative log-likelihood func-
tion of themeasurement partition to assign eachmeasurement
to either an existing target or a birth target or clutter.

(2) Based on the established model of the 2-D assignment
and the developed handling approach of missed detections,
we propose an AM-MDMTB filter for a linear Gaussian
system.

The paper is organized as follows. In Section II, we intro-
duce the MDMTB filter and establish the mathematical
model for assignment of measurements. The AM-MDMTB
filter for a linear Gaussian system is described in Section III.
The performance evaluation of the proposed filter is given in
Section IV by simulation, and concluding remarks are drawn
in Section V.

II. PROBLEM FORMATION
A. MDMTB FILTER
The MDMTB filter was proposed in [10] and [11] to propa-
gate the state distribution (i.e., probability density) and exis-
tence probability of each target in filter recursion. It assumes
that each target evolves and generates the measurement
independently of one another. In this filter, state distribu-
tion of each target is used to model the uncertainty of the
target state caused by the dynamic uncertainty and mea-
surement uncertainty, and the existence probability of each
target is employed to characterize the randomness of target
appearance and disappearance. Let

{
xi,k−1

}Nk−1
i=1 denote the

multi-target states at time step k − 1 where xi,k−1 and Nk−1
are the state vector of hypothesized target i and the number
of hypothesized targets at time step k − 1, respectively, let
y1:k−1 =

{
y1, y2, · · · , yk−1

}
denote all observations up to

time step k − 1, and suppose that the state distributions and
existence probabilities of individual hypothesized targets at
time step k − 1 are given by

fi,k−1(xi,k−1|y1:k−1); i = 1, · · · ,Nk−1 (1)

ρi,k−1; i = 1, · · · ,Nk−1 (2)

Using the prediction equation of the MDMTB filter to deal
with each hypothesized target independently, we obtain the
predicted probability density of individual hypothesized tar-
gets at time step k as

fi,k|k−1(xi,k |y1:k−1)

=

∫
f (xi,k |xi,k−1)

·fi,k−1(xi,k−1|y1:k−1)dxi,k−1; i = 1, · · · ,Nk−1 (3)

where f (xi,k |xi,k−1) is the transition probability between state
vectors xi,k−1 and xi,k . The predicted existence probability of
each hypothesized target is given by

ρi,k|k−1 = ρi,k−1; i = 1, · · · ,Nk−1 (4)
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Besides the existing targets, the birth targets may appear at

time step k . Let
{
xbi,k

}N b
k

i=1
denote the states of hypothesized

birth targets at time step k where xbi,k andN
b
k are the state vec-

tor of hypothesized birth target i and the number of hypoth-
esized birth targets at time step k , respectively, and suppose
that the probability densities and existence probabilities of
individual hypothesized birth targets at time step k are given
by

fi,k (xbi,k ); i = 1, · · · ,N b
k (5)

ρbi,k ; i = 1, · · · ,N b
k (6)

The multi-target state at time step k consists of the existing
target state and birth target state and it may be given by{

xi,k
}Nk|k−1
i=1 =

{
xi,k

}Nk−1
i=1

⋃{
xbi,k

}N b
k

i=1
(7)

where Nk|k−1 = Nk−1+N b
k denotes the predicted number of

hypothesized targets at time step k . The predicted probability
densities and existence probabilities of individual hypothe-
sized targets at time step k may be given by{

fi,k|k−1(xi,k |y1:k−1)
}Nk|k−1
i=1

=
{
fi,k|k−1(xi,k |y1:k−1)

}Nk−1
i=1

⋃{
fi,k (xbi,k )

}N b
k

i=1
(8){

ρi,k|k−1
}Nk|k−1
i=1

=
{
ρi,k|k−1

}Nk−1
i=1

⋃{
ρbi,k

}N b
k

i=1
(9)

Let yk =
{
zj,k
}Mk
j=1 denote the measurement at time

step k where Mk is the number of measurements at time
step k . The MDMTB filter exploits the Bayes rule to deal
with measurement zj,k and predicted probability density
fi,k|k−1(xi,k |y1:k−1) to obtain the updated probability density
of target i corresponding to observation zj,k as

fij,k (xi,k |zj,k )=
f (zj,k |xi,k )fi,k|k−1(xi,k |y1:k−1)∫
f (zj,k |xi,k )fi,k|k−1(xi,k |y1:k−1)dxi,k

(10)

where f (zj,k |xi,k ) is the probability density that state vector
xi,k generates observation zj,k .

Since measurement zj,k originates from clutter, target i or
other targets, the updated existence probability of target i
corresponding to observation zj,k may be given by

ρij,k =
ηij

λc +

Nk|k−1∑
e=1

ηej

(11)

where λc is the clutter density and ηij is the probability that
measurement zj,k originates from target i. This probability
may be given by

ηij = pD,kρi,k|k−1

∫
S
f (zj,k |xi,k )fi,k|k−1(xi,k |y1:k−1)dxi,k (12)

where S denotes the entire state space and pD,k is the detecting
probability.

Assume that clutter follows a Poisson distribution and is
uniform in the surveillance field. The probability density of
clutter is given by

λc =
Nc
8S

(13)

where Nc is the average number of clutter and 8S is the
surveillance field.

Based on the predicted and updated existence probabilities
of a hypothesized target, the MDMTB filter selects either its
predicted probability density or one of its multiple updated
probability densities as its state distribution at time step k .
A pruning step is also required in the MDMTB filter to dis-
card the hypothesized target with sufficiently small existence
probability. The state distributions and existence probabilities
of residual hypothesized targets after pruning may be denoted
as
{
fi,k (xi,k |y1:k ), ρi,k

}Nk
i=1 where Nk is the number of hypoth-

esized targets at time step k . For more details, we refer the
reader to [10] and [11].

B. ASSIGNMENT OF MEASUREMENTS
Each measurement originates from either a target or clutter.
An optimal solution for assigning each measurement to either
a target or clutter is to maximize the joint likelihood function
of an assignment of measurements as

max
Mk∏
j=1


Nk|k−1∏

i=1

sijηij

(Mk∏
i=1

s′ijλc

) (14)

subject to

Nk|k−1∑
i=1

sij +
Mk∑
i=1

s′ij = 1 for j = 1, · · · ,Mk (15)

Mk∑
j=1

sij ≤ 1 for i = 1, · · · ,Nk|k−1 (16)

Mk∑
j=1

s′ij ≤ 1 for i = 1, · · · ,Mk (17)

where sij and s′ij are the binary variables, and their values are
either 1 or 0. sij = 1 and s′ij = 1 indicate that zj,k originates
from target i and that zj,k is clutter, respectively.
The maximization of the joint likelihood function in (14)

is equivalent to the minimization of the sum of negative
log-likelihood function. This problem can be converted to a
2-D assignment problem as

min
Mk∑
j=1

Nk|k−1∑
i=1

sijcij +
Mk∑
i=1

s′ijc
′
ij

 (18)

subject to (15), (16) and (17). The cij and c′ij in (18) are
the association costs. Cost cij is given by the negative
log-likelihood that measurement zj,k originates from target i
as

cij = − ln(ηij) (19)
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FIGURE 1. Cost matrices C and C′ for the optimal 2-D assignment.

Similarly, cost c′ij is given by the negative log-likelihood of
clutter as

c′ij =

{
− ln(λc) i = j
∞ i 6= j

(20)

The cost matrices C =
[
cij
]
and C′

=

[
c′ij
]
for the optimal

2-D assignment are shown in Fig. 1.
The optimal 2-D assignment problem in (18) can be solved

by the Hungarian algorithm.

III. AM-MDMTB FILTER FOR A LINEAR GAUSSIAN
SYSTEM
In the linear Gaussian system, transition probability
f (xi,k |xi,k−1) in (3) and probability density f (zj,k |xi,k ) in (10)
and (12) are given by

f (xi,k |xi,k−1) = N
(
xi,k ;Fk−1xi,k−1,Qk−1

)
(21)

f (zj,k |xi,k ) = N
(
zj,k ;Hkxi,k ,Rk

)
(22)

whereN (·;m,P) is a Gaussian distribution with mean vector
m and covariance matrix P, and Fk−1, Qk−1, Hk and Rk are
state transition matrix, covariance matrix of process noise,
observation matrix and covariance matrix of observation
noise, respectively.

To efficiently track the target in the presence of missed
detections, we add a detecting label for each target. If a target
is detected, its detecting label is 1; otherwise, its detecting
label is 0. Besides, we also add a track label for each target to
establish the target track. The proposed filter consists of the
following steps.

A. PREDICTION
Suppose that the set consisting of state distributions, exis-
tence probabilities, detecting labels and track labels of indi-
vidual hypothesized targets at time step k − 1 is given by{
fi,k−1(xi,k−1|y1:k−1), ρi,k−1, lD,(i,k−1), lT ,(i,k−1)

}Nk−1
i=1 (23)

where fi,k−1(xi,k−1|y1:k−1) = N
(
xi,k−1;mi,k−1,P i,k−1

)
and

mi,k−1, P i,k−1, ρi,k−1, lD,(i,k−1) and lT ,(i,k−1) denote the
mean vector, covariance matrix, existence probability, detect-
ing label and track label of target i, respectively. We use (3) to
obtain the predicted probability density of each hypothesized
target at time step k as

fi,k|k−1(xi,k |y1:k−1) = N
(
xi,k ;mi,k|k−1,P i,k|k−1

)
;

i = 1, 2, · · · ,Nk−1 (24)

where

mi,k|k−1 = Fk−1mi,k−1 (25)

P i,k|k−1 = Fk−1P i,k−1(Fk−1)T + Qk−1 (26)

The predicted existence probability, detecting label and track
label of hypothesized target i are given by

ρi,k|k−1 = ρi,k−1, lD,(i,k|k−1) = lD,(i,k−1),

lT ,(i,k|k−1) = lT ,(i,k−1) (27)

Suppose that the set consisting of the probability densities,
existence probabilities, detecting labels and track labels of
individual hypothesized birth targets at time step k is given
by {

N
(
xbi,k ;m

b
i,k ,P

b
i,k

)
, ρbi,k , l

b
D,(i,k), l

b
T ,(i,k)

}N b
k

i=1
(28)

where mb
i,k , P

b
i,k , ρ

b
i,k , l

b
D,(i,k) and l

b
T ,(i,k) are the mean vector,

covariance matrix, existence probability, detecting label and
track label of hypothesized birth target i, respectively. The
detecting label lbD,(i,k) and track label l

b
T ,(i,k) may be given by

lbD,(i,k) = 0, lbT ,(i,k) =
[
k
i

]
(29)

where i is the index of the birth target. This index is unique
to distinguish the birth targets at time step k . We combine the
predicted set of hypothesized targets with the set of hypoth-
esized birth targets to generate an extended prediction set of
hypothesized targets. The extended prediction set is given by{
N
(
xi,k ;mi,k|k−1,P i,k|k−1

)
,

ρi,k|k−1, lD,(i,k|k−1), lT ,(i,k|k−1)

}Nk|k−1
i=1

=

{
N
(
xi,k ;mi,k|k−1,P i,k|k−1

)
,

ρi,k|k−1, lD,(i,k|k−1), lT ,(i,k|k−1)

}Nk−1
i=1⋃{

N
(
xbi,k ;m

b
i,k ,P

b
i,k

)
, ρbi,k , l

b
D,(i,k), l

b
T ,(i,k)

}N b
k

i=1
(30)

where Nk|k−1 = Nk−1 + N b
k is the number of hypothesized

targets in the extended prediction set.
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B. UPDATE
Based on (10), (11) and (12), the updated probability density
and existence probability of target i corresponding to obser-
vation zj,k , and probability that measurement zj,k originates
from target i are as follows:

fij,k (xi,k |zj,k )

= N
(
xi,k ;mij,P ij

)
(31)

ρij,k =
ηij

λc +

Nk|k+1∑
e=1

ηej

(32)

ηij = pD,kρi,k|k−1N
(
zj,k ;Hkmi,k|k−1,HkP i,k|k−1HT

k+Rk
)
(33)

where

mij = mi,k|k−1 + Ai · (zj,k −Hkmi,k|k−1) (34)

P ij = (I − AiHk )P i,k|k−1 (35)

Ai = P i,k|k−1HT
k [HkP i,k|k−1HT

k + Rk ]
−1 (36)

and updated detecting label lD,(ij) is given by

lD,(ij) = 0 (37)

C. ASSIGNMENT OF MEASUREMENTS
We first establish the cost matrices based on the association
cost of measurements and targets in (19) and the associa-
tion cost of measurements and clutter in (20), and use the
Hungarian algorithm to solve the optimal 2-D assignment
problem in (18) to obtain the association matrices S =

[
sij
]

and S′ =
[
s′ij
]
.

Based on the association matrix S =
[
sij
]
, we then adjust

the updated existence probability of the target. sij = 1
indicates that measurement zj,k is assigned to target i and also
implies that measurement zj,k originates from target i. In this
case, we adjust the updated existence probability of the target
as

ρej,k =

{
1 for e = i
0 for e = 1, · · · , i− 1, i+ 1, · · · ,Nk|k−1

(38)

This adjustment is due to the fact that measurement zj,k
originates from target i instead of any other target. At the
same time, if i ≤ Nk−1 then the detecting label of target i
correlative with zj,k is set as

lD,(ij) = 1 (39)

This setting implies that target i is an existing target at time
step k and is also detected at this time step.

D. HANDLING OF MISSED DETECTIONS
An existing target at time step k may be undetected at this time
step. In this case, we use the predicted probability density of
the target as its state distribution at time step k and decrease
its existence probability.

To do this, we first judge whether an existing target is
detected or not by using predicted detecting label lD,(i,k|k−1)

and b =
Mk∑
j=1

lD,(ij). If the condition that lD,(i,k|k−1) = 1 and

b = 0 is satisfied, target i is undetected at time step k due to
the fact that no measurement at time step k originates from
it. Then we use the predicted probability density of target i as
its state distribution at time step k as

N
(
xi,k ;mi,k ,P i,k

)
= N

(
xi,k ;mi,k|k−1,P i,k|k−1

)
(40)

Its existence probability and detecting label are given by

ρi,k = ηc × ρi,k|k−1, lD,(i,k) = lD,(i,k|k−1) (41)

where ηc is the given decay factor, and its value range is
ηc ∈ [0, 1).
If the condition that lD,(i,k|k−1) = 1 and b = 0 is not

satisfied, we first find the index of the maximum updated
existence probability from the set

{
ρie,k |e = 1, · · · ,Mk

}
as

a = argmax
e∈[1,··· ,Mk ]

{
ρie,k

}
(42)

The updated probability density, existence probability and
detecting label with index a are used as the state distribution,
existence probability and detecting label of target i at time
step k as

N
(
xi,k ;mi,k ,P i,k

)
= N

(
xi,k ;mia,P ia

)
,

ρi,k = ρia,k , lD,(i,k) = lD,(ia) (43)

The extended prediction track label of target i is used as its
track label at time step k as

lT ,(i,k) = lT ,(i,k|k−1); i = 1, · · · ,Ni,k|k−1 (44)

E. PICKING OF STATE VECTORS AND TRACK LABELS
The existence probability of a hypothesized target indicates
how likely it is a real target. If ρi,k ≥ 0.5, we confirm that
hypothesized target i is a real target, and then pick its mean
vector and track label to generate the set of mean vectors and
corresponding set of track labels, respectively. The generated
sets of mean vectors and track labels are used as the output of
the filter at this time step.

F. PRUNING
In this step, we prune the hypothesized targets with existence
probability ρi,k ≤ τ from the set

{
N
(
xi,k ;mi,k ,P i,k

)
, ρi,k ,

lD,(i,k), lT ,(i,k)
}Nk|k−1
i=1 where τ is the pruning threshold.

The residual set
{
N
(
xi,k ;mi,k ,P i,k

)
, ρi,k , lD,(i,k), lT ,(i,k)

}Nk
i=1

after pruning is transmitted to next time step and is exploited
as the input of next recursion where Nk is the number of
hypothesized targets at time step k .
Similar to the R-GLMB filter, the proposed filter affords

the target track by using the track label to distinguish each
target. Unlike the R-GLMBfilter that searches the K best 2-D
assignments to determine whether a target is died, or surviv-
ing and detected, or surviving and undetected; the proposed
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TABLE 1. Initial state vectors of targets and their appearing and
disappearing times.

filter finds an optimal 2-D assignment to associate each mea-
surement to either a target or clutter. Both the proposed filter
and the R-GLMBfilter need solving 2-D assignment problem
at each time step, but the latter requires a larger computational
load than the former. More importantly, the proposed filter
selects either the predicted probability density of a target or
one of its multiple updated probability densities as its state
distribution at each time step. Therefore, the number of state
distributions or hypothesized targets propagated to next time
step in the proposed filter approximates that of real targets.
Due to this fact, the proposed filter propagates significantly
less Gaussian items than the GM-PHD filter, CBMeMber
filter, R-GLMBfilter and LMBfilter. Similar to theMDMTB
filter, the AM-MDMTB filter may afford a large existence
probability for amissed target. It may provide state estimation
of an existing target if this target is undetected at a time.

IV. SIMULATION RESULTS
In this section, we reveal the performance of the pro-
posed AM-MDMTB filter by comparing this filter with the
GM-PHD filter [7], CBMeMber filter [9], LMB filter [28],
R-GLMB filter [30] and MDMTB filter [10], and exploit the
OSPA distance [35] with c = 100 m and p = 2 as the
assessment criteria.

The considered scenario is a 2-D surveillance field [−1000
m, 1000m]×[−1000m, 1000m]. Each targetmoves at a con-
stant velocity with state vector xi,k = [ηki,x , η̇

k
i,x , η

k
i,y, η̇

k
i,y]

T

where ηki,x and ηki,y are its position component, and η̇ki,x and
η̇ki,y are its velocity component.
Example 1: There are twelve targets occurring from four

specific positions at different times in this example. The
initial state vectors of these twelve targets and their appearing
and disappearing times are shown in Table 1.

The moving of each target follows (21) where Fk−1 and
Qk−1 are given by

Fk−1 =


1 1tk 0 0
0 1 0 0
0 0 1 1tk
0 0 0 1



FIGURE 2. Real trajectories of the twelve targets.

Qk−1 =



1t4k
4

1t3k
2

0 0

1t3k
2

1t2k 0 0

0 0
1t4k
4

1t3k
2

0 0
1t3k
2

1t2k


σ 2
v (45)

where1tk = tk− tk−1 is the interval and1tk = 1 s, and σv is
the standard deviation of process noise and σv = 2 ms−2. The
real trajectories of these twelve targets are shown in Fig. 2.

We consider two cases of linear observation and nonlinear
observation in Example 1.

A. CASE OF LINEAR OBSERVATION
In this case, the observation is a noisy 2-D position vector of
each target, and each observation follows (22) where Hk and
Rk are given by

Hk =

[
1 0 0 0
0 0 1 0

]
, Rk =

[
1 0
0 1

]
σ 2
w (46)

where σw = 2 m. The detecting probability and average
clutter density are set to pD,k = 0.9 and λc = 6.25 × 10−6

m−2 (i.e., Nc = 10), respectively.
To track the twelve targets, we use four birth models{
N
(
xbi,k ;m

b
i,k ,P

b
i,k

)}4
i=1

in the proposed filter, GM-PHD
filter, CBMeMber filter, MDMTB filter, LMB filter and
R-GLMB filter where mb

1,k = [0, 0, 0, 0]T , mb
2,k =

[400, 0,−600, 0]T , mb
3,k = [−800, 0,−200, 0]T , mb

4,k =

[−200, 0, 800, 0]T and Pbi,k = diag
(
[30, 10, 30, 10]T

)2. The
other parameters of the proposed AM-MDMTB filter are
set to ρbi,k = 0.03, τ = 10−5 and ηc = 0.75; and other
corresponding parameters of the GM-PHDfilter, CBMeMber
filter, LMB filter, R-GLMB filter and MDMTB filter are
identical to those in [7], [9], [28], [30] and [10], respectively.
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FIGURE 3. Average OSPA distance of the six filters in case of linear
observation.

TABLE 2. Average OSPA distance (m) of different clutter densities in case
of linear observation.

We perform the proposed AM-MDMTB filter, GM-PHD
filter, CBMeMber filter, LMB filter, MDMTB filter and
R-GLMB filter for 150 Monte Carlo runs. Fig. 3 shows the
average OSPA distance over 150 Monte Carlo runs, which
suggests that the AM-MDMTB filter performs best among
the six filters at pD,k = 0.9 and λc = 6.25 × 10−6 m−2

due to the fact that its average OSPA distance is the least at
most times. Fig. 3 also shows that several peaks appear in the
curves of the R-GLMB filter, LMB filter and AM-MDMTB
filter because of excessive or inadequate state estimations.

To show the effect of clutter density on the performance of
these filters, we perform the AM-MDMTB filter, GM-PHD
filter, CBMeMber filter, R-GLMB filter, LMB filter and
MDMTB filter for 150 Monte Carlo runs at different clutter
densities and a constant detecting probability of 0.9. The
average OSPA distance over 150 Monte Carlo runs and
average performing time for a Monte Carlo run are shown
in Table 2 and Table 3, respectively.

The average OSPA distance in Table 2 indicates
the R-GLMB filter, LMB filter, MDMTB filter and
AM-MDMTB filter perform better than the GM-PHD fil-
ter and CBMeMber filter because the latter two filters are
prone to discard the information of missed targets due to
their weak memory, which results in the consequence that
their OSPA distances are obviously larger than those of the
former four filters. According to the average OSPA distance,
the AM-MDMTB filter performs better than the MDMTB

TABLE 3. Average performing time (s) of the six filters in case of linear
observation.

filter at each clutter density. The main reason is that the
former uses a 2-D assignment to associate individual mea-
surements with either a target or clutter. The experimental
result in Table 2 also reveals that the AM-MDMTB filter
performs better at clutter densities of 0.625 × 10−6 m−2,
3.125×10−6 m−2, 6.25×10−6 m−2 and 9.375×10−6 m−2,
but slightly worse at clutter densities of 12.5 × 10−6 m−2

and 15.625 × 10−6 m−2 than the R-GLMB filter and LMB
filter. This phenomenon implies that the AM-MDMTB filter
is applicable to low and moderate clutter densities while the
R-GLMBfilter and LMBfilter are applicable to a high clutter
density.

The average performing time in Table 3 indicates that the
R-GLMB filter and LMB filter require a significantly larger
computational load than the MDMTB filter, AM-MDMTB
filter, GM-PHD filter and CBMeMber filter at each clutter
density, while the performing time of the AM-MDMTB filter
is the least among the six filters. The main reasons are as
follows:

(1) The number of hypothesized targets or state distribu-
tions in the proposed AM-MDMTB filter approximates the
number of real targets, whereas the R-GLMB filter, LMB
filter, GM-PHD filter and CBMeMber filter propagate much
more hypothesized targets or Gaussian terms than real targets
to next time step. The more the number of hypothesized
targets or Gaussian terms is, the larger computational load
is required.

(2) The R-GLMB filter, LMB filter and proposed
AM-MDMTB filter need solving the 2-D assignment prob-
lem in the filter recursion. Solving the 2-D assignment prob-
lem to find the K best solutions in the R-GLMB filter and
LMB filter can be accomplished by the optimizing Murty’s
algorithm [36] with a complexity of O

(
K (Mk + 2Nk|k−1)3

)
,

while solving the 2-D assignment problem to search an opti-
mal solution in the proposed AM-MDMTB filter is accom-
plished by the Hungarian algorithm with a complexity of
O
(
(Mk + Nk|k−1)3

)
. Due to a lower complexity, searching an

optimal solution in the proposed AM-MDMTB filter requires
a less computation than finding the K best solutions in the
R-GLMB filter and LMB filter.

The recursion of the LMB filter consists of LMB predic-
tion, conversion from LMB to δ-GLMB, δ-GLMB update
and conversion from δ-GLMB to LMB [28]. The additional
conversions from LMB to δ-GLMB and from δ-GLMB to
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TABLE 4. Average OSPA distance at different observation noises.

LMB in the LMB filter result in its performing time being
larger than the R-GLMB filter.

To demonstrate the effect of the measurement noise on
the tracking performance of these filters, we use different
measurement noises and a clutter density of 6.25×10−6 m−2

to generate the measurement, and perform 150 Monte Carlo
runs for each filter to obtain the average OSPA distance.
The experimental result in Table 4 indicates that the average
OSPA distance of the six filters increases with the increase of
observation noise and that the proposed AM-MDMTB filter
performs best at each observation noise because it provides a
least OSPA distance at each measurement noise.

B. CASE OF NONLINEAR OBSERVATION
In this case, the measurement consists of the bearing and
range, and is given by

zj,k =
[
θj,k
rj,k

]
= h(xi,k )+ uk

=

arccos
 ηki,x − sx√

(ηki,x − sx)
2 + (ηki,y − sy)

2


√
(ηki,x − sx)

2 + (ηki,y − sy)
2

+uk (47)

where (sx , sy) = (−500 m,−600 m) is the position of a radar,
uk denotes the observation noise, and θj,k and rj,k denote the
azimuth and range, respectively.

We exploit the linearization strategy of nonlinear function
to deal with the nonlinearity of observation equation (47),
and replace the predicted observation vector Hkmi,k|k−1 and
observation matrix Hk in (33), (34), (35) and (36) with the
predicted observation vector h(mi,k|k−1) and Jacobian matrix
H i,k respectively, where

H i,k =
∂h(x)
∂x

∣∣∣∣
x=mi,k|k−1

(48)

The detecting probability and clutter density are set to pD,k =
0.9 and λc = 1.4105 × 10−3 rad−1m−1 (i.e., Nc = 10), and
covariance matrix Rk in (33) and (36) is given by

Rk =
[
σ 2
θ 0
0 σ 2

r

]
(49)

where σθ = 0.0087 rad (i.e., σθ = 0.5◦) and σr = 2 m.
We perform the proposed AM-MDMTB filter, GM-PHD
filter, CBMeMber filter, LMB filter, MDMTB filter and
R-GLMB filter for 150Monte Carlo runs. The average OSPA
distance and performing time are shown in Fig. 4 and Table 5,

FIGURE 4. Average OSPA distance of the six filters in case of nonlinear
observation.

TABLE 5. Average OSPA distance and performing time of the six filters in
case of nonlinear observation.

TABLE 6. Average OSPA(2) error of the three filters in case of nonlinear
observation.

respectively. Similar to the conclusion in case of linear obser-
vation, the experimental results in Fig. 4 and Table 5 also
suggest that the AM-MDMTB filter performs best among the
six filters because it has a smallest average OSPA distance
and takes a least performing time.

To reveal the performance of the proposed AM-MDMTB
filter on track label, we exploit the OSPA(2) error [37] with
c = 100 m, p = 2 and scan window length Lw = 5
as the assessment criteria to compare this filter with the
R-GLMB filter [30] and LMB filter [28]. Unlike the OSPA
distance for evaluating the difference between the estimated
and true multi-target states, the OSPA(2) error was proposed
to assess the dissimilarity between the estimated and true sets
of tracks [37]. The average OSPA(2) error of the R-GLMB,
LMB and AM-MDMTB filters over 150 Monte Carlo runs
at the detecting probability of 0.9 and clutter density of
1.4105× 10−3 rad−1m−1 in case of nonlinear observation
is shown in Fig. 5 and Table 6. The results in Fig. 5 and
Table 6 indicate that the AM-MDMTB filter performs best
among these three filters because its average OSPA(2) error is
the least.
Example 2: This example aims to test the performance of

the six filters on tracking the close targets. In this example,
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FIGURE 5. Average OSPA(2) error in case of nonlinear observation.

FIGURE 6. Real trajectories of the ten targets.

ten targets appear at t = 1 s and disappear at t = 101 s.
They move closely and cross their paths at t = 50 s. The real
trajectories of these ten targets are shown in Fig. 6.

Ten birth models
{
N
(
xbi,k ;m

b
i,k ,P

b
i,k

)}10
i=1

are used in

this example, where mb
1,k = [−800, 0, 0, 0]T , mb

2,k =

[−800, 0,−100, 0]T , mb
3,k = [−800, 0, 100, 0]T , mb

4,k =

[−800, 0,−200, 0]T , mb
5,k = [−800, 0, 200, 0]T , mb

6,k =

[0, 0,−800, 0]T , mb
7,k = [−100, 0,−800, 0]T , mb

8,k =

[100, 0,−800, 0]T , mb
9,k = [−200, 0,−800, 0]T , and

mb
10,k = [200, 0,−800, 0]T . The other parameters of differ-

ent filters are identical to those in Example 1.
The average OSPA distance and performing time of the six

filters over 150 Monte Carlo runs are shown in Fig. 7 and
Table 7. The result in Fig. 7 and Table 7 indicates that the
MDMTB filter, R-GLMB filter and GM-PHD filter deterio-
rate in performance for tracking the close targets, while the
AM-MDMTB filter performs best because its OSPA distance
and performing time are the least.

FIGURE 7. Average OSPA distance of the six filterss.

TABLE 7. Average OSPA distance and performing time of the six filters.

V. CONCLUSIONS
In this study, an AM-MDMTB filter is presented by repre-
senting the association of the measurement and the target
as an optimal 2-D assignment problem. In the presented
AM-MDMTB filter, the Hungarian algorithm is employed
to solve the 2-D assignment problem to assign each mea-
surement to either a target or clutter. By the introduction of
detecting label, a handling method for missed detections is
also developed and is applied to this filter. Unlike the GM-
PHD, CBMeMber, LMB and R-GLMB filters that propagate
multiple state distributions or Gaussian items of each target to
next time step, the proposed AM-MDMTB filter propagates
a state distribution or Gaussian item of each target to next
time step. The number of hypothesized targets or state dis-
tributions in the proposed AM-MDMTB filter approximates
the number of real targets, therefore it requires a smaller
numerical computation than the GM-PHD filter, CBMeM-
ber filter, LMB filter and R-GLMB filter. Simulation results
demonstrate that the proposed AM-MDMTB filter has a less
average OSPA distance than the GM-PHD, CBMeMber and
MDMTB filters, and a less average OSPA distance at low and
moderate clutter densities and a slightly larger average OSPA
distance at a high clutter density than the R-GLMB filter
and LMB filter. This phenomenon suggests that the tracking
performance of the proposedAM-MDMTBfilter is the best at
low and moderate clutter densities. The experimental results
also illustrate that the proposedAM-MDMTBfilter requires a
less performing time than the other filters, which is important
for reducing the delay of data processing. A future research
scope of the proposed filter is to extend its application in real
tracking systems.
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