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ABSTRACT Finding substitutes for sulfur hexafluoride (SF6), a gas with extremely high global warming
potential, has been a persistent effort for years in the field of high voltage power equipment, which focuses
on the evaluation of the electrical strength and boiling temperature for the practical purpose. Following up
the previous proposed linear regression models, this work introduces machine learning algorithms including
artificial neural network (ANN) and random forest (RF) as the potential approaches to predict the electrical
strength and boiling temperature. Based on a series of descriptors derived from the molecular structure
of 74 molecules, the performance of three different methods: multiple linear regression, artificial neural
network and random forest are compared and assessed in terms of the sensitivity to the sample size, prediction
accuracy and stability, and the interpretability of predictors. Considering the available data are limited,
random forest shows superior performance with higher robustness and efficiency. The same approaches were
applied to the boiling temperature and random forest produced better results as well. Besides, the variable
importance ranked by RF improves understanding of the correlation between the molecular properties and
electrical strength. It provides important insights to analyze the properties of the SF6 substitutes during the
design and synthesis of the new eco-friendly gases in power equipment.

INDEX TERMS SF6 substitutes, artificial neural network, random forest, electrical strength, boiling
temperature.

I. INTRODUCTION
Sulfur hexafluoride (SF6), a synthetic gas first commercially
used in 1947, has been used on many occasions including
the power system, which brought great revolution in the field
of high voltage power equipment since 1967 [1] due to its
high electrical strength and arc quench ability. However, SF6
can effectively absorb the infrared radiation, especially the
wavelength around 10.5 mm. Additionally, different from
the natural greenhouse gas like CO2 or CH4, the chemical
dissociation and photolysis of SF6 are difficult and its life-
time could reach 3200 years. Therefore, its impact on the

The associate editor coordinating the review of this manuscript and

approving it for publication was Xue Zhou .

environment can be accumulated and the global warming
potential (GWP) of SF6 is evaluated to be 23500 times of
CO2. In 1995, this high GWP value of SF6 was widely
known [2] and it is listed as one the 6 green gases in Kyoto
Protocol [3].

Since 1997, considerable efforts have been made to reduce
SF6 emission by improving the sealing of the device, develop-
ing the gas processing or designing the recycling system. The
yield of SF6 was decreased from 9000 tons per year in 1996 to
around 1000 tons per year now, despite the increasing
installed capacity of power equipment. Based on the statistics
from US National Oceanic and Atmospheric Administra-
tion (NOAA) in 2009 [4], the atmospheric concentrations
of SF6 could reach 50 ppt with an increasing rate of 8.7%,
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leading to the global warming by 0.02◦, which is considerably
lower than CO2 (0.8◦).
However, considering its long lifetime, reducing the usage

of SF6 is quite necessary. Much research has been done
to seek for an alternative to substitute SF6 in the field of
high voltage power equipment [5]–[9]. In the case of gas
insulated switchgear (GIS), gas insulated line (GIL), gas
insulated transformer, high voltage circuit breaker (HVCB),
etc., the crucial parameter is the electrical strength [10]. In the
meantime, it is necessary to consider the boiling tempera-
ture in practical use because the power equipment could be
installed in low temperature area where the risk of liquefac-
tion must be taken into account. This problem can be solved
by mixing other gases to some extent, but we still want to
identify gases with lower liquefaction temperature, as well
as higher electrical strength, for the applicability in a wider
range of industrial occasions. Therefore, this work proposes
potent approaches to predict both the electrical strength and
boiling temperature [11] of the SF6 substitutes based on
machine learning algorithms including artificial neural net-
work (ANN) and random forest (RF). It should be empha-
sized that the arc quenching performance is also an important
parameter in some power equipment like the switch gears
[12]. However, the arc quenching is quite complicated and
randomly influenced by several behaviors coupling with each
other, like fluid dynamics, electro-magnetic field, radiation,
particle transport and interaction between the arc plasma and
the material. Yet there is no certain criterion to assess the arc
quenching performance. Therefore, this work just focuses on
the electrical strength that is the key parameter in all kinds of
power equipment.

II. MOTIVATION FOR ADOPTING ANN AND RF
For the topic of SF6 alternatives, natural gases were first
investigated, like N2 and CO2. N2 molecule has very large
vibrational cross sections of the electron impact, which
could reduce the electron energy efficiently by the collisions
between the electrons and molecules. Nevertheless, unlike
SF6, CO2, CH4 or O2, N2 cannot attach the electrons to form
the negative ion, making its electrical strength only 0.38 of
SF6. Therefore, SF6/N2 mixture seems to be a choice due to
the synergistic effect. Still, industries do not tend to use this
mixture since the electrical strength would saturate (around
0.85 of pure SF6) when the ratio of SF6 in this mixture is
higher than 50% [13]. Additionally, mixed gas leads to the
difficulty of the recycling and purification process. CO2 is
another option and has been used in the real products by ABB
company [14]. Despite its relatively low electrical strength
(0.35 of SF6), its dissociation products, like CO and O2, are
to the benefit of the arc quench performance. In general,
although N2 and CO2 are potential, the inferior electrical
strength to SF6 limits their applications in many occasions,
because increasing the size of the equipment to enhance the
insulation is contradictory to the demand of miniaturization
nowadays.

Lately, many fluorinated gases were introduced as the insu-
lation medium with low GWP. These gases have similar or
even superior electrical strength to SF6. Since 2015, the syn-
thetic gases announced by 3M company, known as C5F10O
and C4F7N have drawn close attention [15], [16]. It indicates
that by properly designing the molecular structure, we can
invent potent gases to replace SF6.
In this case, the problem exists that what the relationship is

between the molecular structure and the electrical strength or
the boiling temperature. As mentioned by Rabie et al. [16],
the breakdown experiment could be quite expensive, consid-
ering the expense for the gasmanufacturing. Theoretical anal-
ysis also seems not feasible because the breakdown process
includes the electron diffusion, drifting and reactions, which
also need the experimental data of electron impact cross
sections to obtain accurate results. A simple way to predict
the properties of the gases even before it is manufactured is
necessary to efficiently seek for the SF6 replacement in the
future.
The molecular properties can determine the electrical

strength and boiling temperature in many ways, and estab-
lishing an empirical model is considered regardless of the
detailed physical mechanism. As in [17], many previous
works indicated that some of the molecular properties can
influence the electrical strength and boiling temperature
to some extent [18]–[22]. The potent properties could be
the integrated optical absorption spectrum [21], polarizabil-
ity, ionization energy [16], other properties presented in
[22] and the positive surface area in our previous work
[23]. Rabie et al.’s work [16] is quite promising by testing
67 molecules and the best correlation coefficients R2 were
0.71 and 0.92 for polar molecules and nonpolar molecules,
respectively. In their work, the fitting formula for polar
molecules and nonpolar molecules are different, and for all
the 67 molecules, R2 drops down to around 0.5. In Yu et al.’s
work [22], 43 molecules were tested and the correlation coef-
ficient R2 could reach 0.985. However, after we tested all the
67 molecules in [16] based on Yu et al.’s work, R2 decreased
to 0.67, which will be discussed in detail in later sections.
Therefore, to get the acceptable R2 in different conditions,
the fitting formula should be deliberately modified.
In the past few decades, the nonlinear statistical meth-

ods based on machine learning algorithms such as artificial
neural network (ANN), support vector machine (SVM) and
random forest (RF) have already been developed and used
in the field of electrical engineering in some cases [24]–[34].
If the machine learning algorithms can be used to learn the
relationship between the electrical strength or boiling tem-
perature and the molecular properties, it could achieve better
efficiency and accuracy with good stability. Additionally,
the physical mechanism of how the molecular proper-
ties influence the electrical strength has already been dis-
cussed in Rabie et al.’s work [16], and thus this work
mainly focuses on the prediction methods and results by
ANN and RF.
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III. CALCULATION METHOD
A. MOLECULAR PROPERTIES AS ‘PREDICTORS’
This work follows and compares the results by
Rabie et al. [16] and Yu et al. [22] Several properties were
investigated as ‘predictors’ to evaluate the electrical strength
or boiling temperature of various gases. In [16], the pre-
dictors were more straightforward and included those can
be directly derived based on the molecular structure, which
were: polarizability α, dipole moment µ, vertical ionization
energy εiv, adiabatic ionization energy εia, vertical electron
affinity εav, adiabatic electron affinity εaa, molecular mass
m, electron number Ne, highest occupied molecular orbital
energy HOMO and lowest unoccupied molecular orbital
energy LUMO. In [22], the electrostatic potential surface
Vs(r), together with the molecular properties (including the
surface area As, polarizability α and electronegativity χ

defined as (-ELUMO-EHOMO)/2), were used based on a series
of equations: the statistical variance of the surface potential as
in (1), the average deviation 5 of Vs(r) as in (2), the param-
eter ν based on (1) as in (3).
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where the positive and negative symbols on Vs(r) refer to the
positive and negative potentials, respectively, n andm refer to
the numbers of the potentials.

In our previous work involving 36 gases, it was found that
the Pearson correlation coefficient (PCC) [35] between the
positive surface area and the electrical strength could reach
0.905. Therefore, in section IV-B the final prediction model
includes the positive surface area, as well as the molecular
volume Vm. The specific calculation method will be intro-
duced in the next section. The Pearson correlation coeffi-
cient (PCC) can measure a linear relationship between two
variables x and y. It is formally defined as in (4).

r =

∑
(xi − x̄)

∑
(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(4)

where x̄, ȳ denotes the mean of two variables. Namely, r is
calculated by covariance of x and y divided by the product of
their standard deviations.

B. CALCULATION OF THE MOLECULAR PROPERTIES
To ensure the consistency of the data, we used the same
data of predictors as in Rabie’s work. However, Yu’s work
only includes 43 gases and here the data of electrostatic

FIGURE 1. Electrostatic potential distribution and molecular surface of
C4F7N (blue line is the molecular surface).

potential surface Vs(r) not mentioned in that work were cal-
culated based on density functional theory (DFT), in which
the molecular structure was in the electronic ground state
[16] and optimized by Gaussian09 program with the B3LYP
function and 6-311g∗ set [36]–[38]. Then the electrostatic
potential distribution plotted by [39] as in Fig. 1 can be
derived. It is also necessary to define the molecular surface
as in the blue line of Fig. 1, and in this work the van der
Waals surface was adopted [40]. Then equation (5) rigorously
defines the electrostatic potential around the molecular sur-
face.

Vs (r) =
∑
A

ZA
|RA − r|

−

∫
ρ
(
r ′
)
dr ′

|r ′ − r|
(5)

where ZA is the charge of nucleus A, RA is the location
of nucleus A, and ρ is the electron density varying with
the location. Additionally, the total surface area As and the
molecular volume Vm were both derived from the molecular
surface in Fig. 1.

As mentioned above, the positive surface area (PA) has a
good correlation with the electrical strength. In this work,
the positive surface area is the integration of the area around
the molecular surface, where the value of electrostatic poten-
tial is positive. Correspondingly, the negative surface area
can be calculated. However, the PCC between the negative
surface area and the electrical strength is only 0.32 as in [23],
which will not be considered here.

C. THE TOPOLOGY AND CALCULATION OF ARTIFICIAL
NEURAL NETWORK
The toolbox of neural fitting (nftool) provided byMatlab was
adopted, which is to solve the input-output fitting problem
with a two-layer feed-forward neural network by modifying
the weights and parameters to minimizing error function of
validation samples. And it is easy to approach. There are
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several other topologies of neural network available. Still,
in this work the quantity of the sample is too small. This work
is straightforward and focuses on the introduction of neural
network to predict properties. Therefore, the other compli-
cated topologies were not used. According to the introduction
in Matlab, this network has sigmoid hidden neurons and
linear out neurons, which can fit multi-dimensional mapping
problemswell and be proper to solve the current problemwith
several predictors as the input and the electrical strength or
boiling temperature as the output.

In this work with the above toolbox, to establish the net-
work, dozens of samples were used and they were randomly
divided during the training: 80% as the training samples, 10%
as the validation samples and 10% as the testing samples.
It should be noted that since the samples were divided ran-
domly, the network could differ with different training, some
of which could result in low correlation. Therefore, it is nec-
essary to choose the final network carefully considering the
small sample quantity due to the lack of test results. During
the fitting, the number of hidden neurons was set as 20 and
two training algorithms Levenberg-Marquardt and Bayesian
Regularization back propagation were tried. Although the
former calculation is more efficient, the later can obtain a
better result for some noisy and small sample problems. After
the networkwas obtained, it was used to predict other samples
to check its own validity.

D. THE TOPOLOGY AND CALCULATION OF
RANDOM FOREST
Random forest (RF) is an ensemble learning technique
derived from classification and regression trees (CART) [41].
RF shows a good performance in regression of small numbers
of observations [42]. It consists of a large number of trees
that are generated by the bootstrap sample of training data.
At each node, the best split point of each tree is created
within a randomized subset selected from all input predic-
tors. There are two key features in RF: out-of-bag (OOB)
data and variable importance. Approximately one third of
the overall training data which are not included in bootstrap
sample are called out-of-bag (OOB). They can be used to
compute an unbiased estimation of the generalization error
[41]. This measure is similar to k-fold cross-validation and
can avoid overfitting. The assessment of variable importance
according to the mean decrease in accuracy can also provide
a more advanced understanding of the relationship between
observations and response compared with linear models [42].

In this work, three parameters of RF were optimized and
set as follows. The number of trees (ntree) was set to 1000.
The number of variables to try at each split (mtry) and min-
imum size of terminal nodes (nodesize) were both set to 3.
The randomness of RF introduced by growing trees from
different bootstrap samples and by selecting mtry split points
randomly can decrease the correlation of different trees and
improve the predictive ability. The ‘Random Forest’ package
within Matlab environment software was implemented [43].
After the random forest was constructed, other independent

FIGURE 2. Comparison between the predicted and measured electrical
strength Er trained by 67 samples as in Rabie’s work and tested by 2
samples based on ANN (Bayesian Regularization).

samples were applied to validate the generalization capability
of this regression model.

IV. PREDICTION OF ELECTRICAL STRENGTH
Same as Rabie et al. [16], 67 molecules with test results of
electrical strength relative to SF6 (Er ) were chosen as the
training samples as in Table 1. And 66 training data of boiling
temperature (TB) were completed in this work. In Table 1,
the compound ID (CID) was given to avoid the confusion
of isomers and can be clearly checked on the web site [44].
The test samples will be discussed in the following separated
sections.

A. FOLLOW-UP OF PREVIOUS WORK
1) FOLLOW-UP OF RABIE’S WORK
In Rabie et al.’s work, 67 molecules were tested and divided
as 18 nonpolar molecules (µ = 0) and 49 polar molecules,
with best R2-values equal 0.92 and 0.71, respectively. The
advantage of their work is that the fitting formula was quite
simple. Still, the prediction should be done separately based
on the dipole moment of molecules, which reduces the num-
ber of training samples in either group. Following their work,
this work took the dipole moment µ directly as the input in
the neural network, as well as the polarizability α, vertical
ionization energy εiv, adiabatic ionization energy εia, vertical
electron affinity εav, adiabatic electron affinity εaa, molec-
ular mass m, electron number Ne. The advantage of neural
network is that it is not necessary to sort the gases by the
dipole and we can use all the 67 gases as the samples together.
As in Fig. 2, with neural network, the polar and nonpolar
molecules can be trained together and the R2-value could
reach 0.91 by training the 67 samples as in Table 1.

In the nftool of Matlab, as mentioned above, during
the establishment of the network, 80% of the 67 samples
were chosen randomly for training and 10% were used

VOLUME 8, 2020 124207



H. Sun et al.: Prediction of the Electrical Strength and Boiling Temperature of the Substitutes for Greenhouse Gas SF6

TABLE 1. Training set with the experimental data of Er and Tb and all the molecular properties.

for validation and test, respectively. After the network is
established, it is still necessary to further test it with the
samples other than 67 molecules in Table 2. In this section,
the widely investigated two gases were used for test, which
were C5F10O, commercially known as 3M Novec 5110,
and C6F12O. The predicted Er of the two gases were
1.88 and 2.36, whereas the measured values were 2.2 and

2.8, indicating the neural network can potentially predict the
electrical strength sufficiently.

2) FOLLOW-UP OF YU’S WORK
To further test the feasibility of the ANN, we also followed
up Yu et al.’s work [22], using the exact same training sam-
ples. Fig. 3 shows the comparison between the predicted and
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TABLE 2. Test set with the experimental data of Er and Tb and all the molecular properties.

measured electrical strength Er trained by 43 samples as in
Yu’s work and tested by 30 other samples as in Table 1 and 2.
According to Yu et al., with the fitting formula as in (6),
the R2-value could reach as high as 0.985. Unfortunately,
when (6) was adopted to predict the other 30 molecules,
the dispersion can be clearly seen in Fig. 3(a) and theR2-value
of the 73 molecules sharply drops to around 0.67. Similar
problem can be found in Fig. 3(b) based on neural network:
by the 43 samples the network with the R2-value of 0.97 can
be easily achieved but the R2-value of the 73 molecules drops
to 0.68.

Er = 0.36A2s + 0.054νs2tot − 1.975+ 0.33αχ + 0.36 (6)

As in Yu’s work, when the molecules with different structures
were included, for example the F-containingmolecules, mod-
ifications on the fitting formula are necessary.

B. RESULTS
1) PREDICTORS
To increase the electrical strength of the insulation gas,
the one important factor is the electronegativity, which
requires the molecule to capture electrons during the colli-
sion. Hence, it is necessary to evaluate the possibility of the
molecule to interact with the electrons. In our previous work,
it was found that the positive surface area (PA) [23], indicating
the total area where the value of electrostatic potential is
positive as mentioned above, has a good correlation with
the electrical strength. The PA has the potential to describe
the possibility of collisions between molecules and electrons.
Based on the 67 molecules from Table 1, its PCC could reach
0.675. PCC of molecular volume Vm is even higher as 0.754.
As investigated by Rabie, the polarizability α and molecular
mass m are also potential predictors, of which all the PCCs
are around 0.66. Although the correlation of dipole moment
µ is quite low, it is necessary to be considered to distinguish
whether themolecule is polar as in Rabie’s [16]. Additionally,

following Yu’s work, HOMO and LUMO are also considered
in this work. In total, as in Fig. 4, 7 predictors were employed
to construct the model and predict Er . It is worth noting that
the value of all 7 predictors can be calculated by density func-
tional theory (DFT) based on the specific molecular structure
for whether known molecules or new molecules designed to
replace SF6.

2) MULTIPLE LINEAR REGRESSION
Referring to the aforementioned two traditional linear regres-
sion models from Rabie et al. and Yu et al. [16], [22], in our
previous work [45], we attempted to combine 7 predictors in
various possible polynomial functions and finally, selected
4 predictors which had better correlation to establish a new
regression model with R2 of 0.686 as in (7)

Er = 1.106Vm + 3.047χ + 0.262PA · µ− 0.907 (7)

where the part PA · µ was introduced and only worked if
molecules are nonpolar which can simplify the form of for-
mula to avoid separating polar and nonpolar particles.

74 samples as shown in Table 1 and 2 were used to
fit the formula. The results were assessed quantitatively by
the root mean square error (RMSE) and the coefficient of
determination (R2) as shown in Fig. 5. The coefficient of
determination (R2), also called the multiple correlation coef-
ficient, indicating the proportionate amount of the dependent
variable explained by the independent variables, is defined
as [46], [47]

R2 =
SSR
SST
=

∑n
i=1 (Pi −Mave)2∑n

i=1 (Pi −Mave)2 +
∑n

i=1 (Pi −Mi)2
(8)

where SSR is the sum of squared regression and SST is the
sum of squared total. In the latter expression, Pi, Mi,Mave
denote predictive value, measured value and the average of
measured value, respectively, and i is the number of samples.
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FIGURE 3. Comparison between the predicted and measured electrical
strength Er trained by 43 samples as in Yu’s work and tested by 30
samples based on ANN (Bayesian Regularization).

3) ARTIFICIAL NEURAL NETWORKS
Two different training algorithms, Levenberg-Marquardt and
Bayesian Regularization back propagation were utilized for
training the network based on 7 predictors and 5 predictors
without µ and LUMO, respectively. Reducing predictors to
5 was meant to maintain a similar procedure with the RF
algorithm which will be explained in detail in later sections.
For every attempt of learning, 60 samples were imported as
training inputs which were randomly selected from the entire
dataset including 67 samples. After running the network, 7
independent samples as in Table 2 were used as testing input
to measure network generalization. Considering the error cre-
ated by different initial conditions and sampling, the network
was retrained for 10000 times and the average value of R2 and
RMSE were shown in Table 3.
It should be noted that when changing into Bayesian Regu-

larization algorithm with 7 predictors, the R2-value of testing

FIGURE 4. PCCs between the electrical strength and 7 predictors in this
work based on the 67 molecules in Table 1.

FIGURE 5. Comparison between the predicted and measured electrical
strength Er trained by 74 samples based on multiple linear regression.

TABLE 3. Average value of R2 and RMSE for ANN.

samples could reach 0.803 and RMSE sharply drops from
0.806 to 0.376. Such results indicate that the choice of train-
ing algorithm has a great influence on the models’ accuracy.
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FIGURE 6. The best performance of comparison between the predicted
and measured electrical strength Er based on (a) Levenberg-Marquardt
(b)Bayesian Regularization trained by 60 samples and tested by
7 samples for 7 predictors.

Nevertheless, for the same algorithm, changing the quantity
of the predictor does not influence the results remarkably.
In addition, Fig. 6 shows the comparison between the pre-
dicted andmeasuredEr of two types of networks with the best
performance among 10000 networks. The predicted value is
expected to be as close as possible to the measured, while the
black line in the figure is y=x that represents the ideal result.

4) RANDOM FOREST
In terms of the RF, the method of calculating the average
value of R2 and RMSE were consistent with that of the ANN,
namely executing the loop that selecting 60 samples ran-
domly to construct the RF and testing by the same 7 indepen-
dent samples for 10000 times. Furthermore, according to the
variable importance ranked by RF as in Fig. 7, some predic-
tors obtained the lower rate of the mean decrease in accuracy.
This demonstrated that the correlation between them and

FIGURE 7. Predictor variable importance according to the mean decrease
in accuracy ranked by RF between the electrical strength Er and 7
predictors in this work based on the 67 molecules in Table 1.

FIGURE 8. The best performance of comparison between the predicted
and measured electrical strength Er trained by 60 samples and tested by
7 samples based on RF for 5 predictors.

electric strength might not be so strong. We evaluated the
performance of the RF regression model by removing the
weakest predictor one by one. Finally, the model eliminating
two least promising variable, dipole moment µ and LUMO,
was proved to be the most effective as shown in Fig. 8.
In Table 4, averaged R2 of testing samples with 5 predictors is
as high as 0.826 whereas the value is 0.774 with 7 predictors,
and the RMSE drops from 0.291 to 0.260.

C. DISCUSSION
A comparative analysis of the predictive performance of three
different regression models, which are multiple linear regres-
sion, the ANN and RF, is discussed in this section.

The multiple linear regression and RF regression models
exhibit some differences in ranking 7 predictors according to
their relative contribution, and ANN is a black-box technique
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FIGURE 9. Scatter diagram (a) based on ANN (Bayesian Regularization)
for 7 predictors (b) based on RF for 5 predictors compared by 50 and
60 training samples between the training and testing R2 retrained for
10000 times.

TABLE 4. Averaged value of R2 and RMSE for RF.

and does not provide information about the role of predictors
in the modeling. As in Fig. 4 and Fig. 7, Vm, α and PA have
good correlation and both µ and LUMO perform not well.
As to the one most important predictor m in the linear model,
its value is lower in RF but it is still important. However,
the value of HOMO in the linear model is quite low but it
is more significant in RF. This may suggest that a nonlinear
and more complex association between HOMO and electric
strength exists and is better recognized by the RFmodel, even
though the direction of the association cannot be revealed

FIGURE 10. Scatter diagram compared by RF of 5 predictors and ANN
(Bayesian Regularization) of 7 predictors between the training and testing
R2 retrained for 10000 times of 60 training samples.

FIGURE 11. Distribution of RMSE compared by RF of 5 predictors and
ANN (Bayesian Regularization) of 7 predictors retrained for 10000 times
of 7 testing samples.

from the RF [48]. On the other hand, the robustness of the
ANN responds poorly to the reduction of the number of
input predictors which was described in section IV-B. On the
contrary, for the RF, the smaller number of predictors offers
the better predictive ability. The reason for this behavior is
likely that the importance allocated to µ and LUMO are
quite low, and if these two weak predictors replace a related
stronger predictor, it will bring the unbalance when selecting
the split of trees and increase the error [42].

From the point of the sample size, Fig. 9 shows the sen-
sitivity of ANN and RF models to the size of data. Besides
the result of 60 samples, the R2 was computed using smaller
50 training samples which were also selected randomly and
the same 7 testing samples. With the decrease of sample size,
the distribution of RF appears to be more scattered but that of
ANN is ambiguous. It indicates that increasing sample size
can significantly improve the prediction accuracy of the RF.
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FIGURE 12. PCCs between the boiling temperature and 7 predictors in
this work based on the 66 molecules in Table 1.

With regard to the assessment of generalization, on the one
hand, the two nonlinear regression models produce higher
accuracy than the multiple linear regression model. For fur-
ther exploration, comparing Fig. 6(b) and Fig. 8, the fitting
capability of two models with the best performance for ANN
and RF are both excellent. However, as shown in Fig. 9,
among ANN results, the R2 of training data can reach as high
as 0.95 or even higher, but it performs not as stable as RF.
The average value of R2 for testing data is 0.803 for ANN
which is also lower than 0.826 of RF from Table 3 and 4.
Additionally, there are a few points in the lower left corner
of the figure that have worse performance, although these
points only account for 0.13% of all results. This is because
the neural network assigned the initial weights and biases
randomly at the beginning which may cause great deviation
from the measurement in ANN. Therefore, for the practical
purpose, the network should be carefully selected to avoid
overfitting. As for RF, the error is relatively smaller but one
has to be aware that it generally tends to partly underestimate
the Er especially for larger molecules as in Fig. 8.
On the other hand, we also make statistical analysis for two

methods of the R2 distribution with the total of 10000 calcu-
lation results as in Fig. 10. Despite a part of networks show
good results, the overall distribution of R2 is scattered which
demonstrates the predictive ability of ANN is not robust
enough. Besides, the accuracy of training data for ANN is
generally lower whereas the RF maintains a higher level both
for training and testing. Similarly, a good statistical result of
RMSE achieved by the RF is shown in Fig. 11.
To sum up, threemodels show distinct results. Themultiple

linear regression model reflects a positive but relatively
weak relationship between the dependent variable and the
predictors which suggests the existence of nonlinear trend.
ANN could achieve high prediction accuracy, but only for a
few specific cases and others are not stable enough, which
is probably due to the lack of training samples since no

FIGURE 13. Comparison between the predicted and measured boiling
temperature TB using (a) ANN (Bayesian Regularization) (b) RF trained by
66 samples in Table 1 and tested by 17 sample in Table 2 for 7 predictors
in Fig. 12.

more than 100 sets of data are available. It is promising for
ANN if more observations of the electrical strength can be
obtained and new predictors are found as the input. Based
on the present study, the best performance of regression
is implemented by RF. It is quite robust and stable with
good prediction accuracy. The parameters of OOB data and
variable importance make RF more effective and can also
avoid overfitting.

Besides, it should be emphasized that no absolute judgment
can be made to decide which method is the best for all types
of problems because the performance of different methods
might vary with different datasets. Considering the available
data, RF is the most recommended method to predict the
electrical strength.

V. PREDICTION OF BOILING TEMPERATURE
As mentioned in section I, for the industrial purpose the
boiling temperature must be taken into account because in
cold areas the liquidation should be avoided. This section
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discusses about the boiling temperature TB at 1 atm predicted
by ANN and RF. Fig. 12 separately shows the PCCs between
the boiling temperature and various predictors, based on
the 66 molecules from Table 1 (the boiling temperature of
C2F6S1 is not available). The PCCs are generally higher
compared with Fig. 4, especially for the polarizability of
which PCC could be over 0.8. The reason is that the polariz-
ability will greatly enhance the Van der Waals’ force, which
will increase the boiling temperature. However, the correla-
tion between PA and boiling temperature is weak. The reason
is that the boiling temperature is related to the intermolecular
attractive forces and PA does not influence the forces directly.

By combing all the predictors in Fig. 12, the R2-value
trained by the 66 molecules could easily reach 0.951 in ANN
and 0.966 in RF as in Fig. 13, indicating a better predic-
tion of the boiling temperature compared with the electrical
strength. The test samples also have good agreement with the
test results. Combined with RMSE, it can be observed RF
performs better which is consistent with results of Er .

VI. CONCLUSION
A. POTENTIAL AND CHALLENGE OF RF
As discussed above, three different models were presented
to predict Er and comparative analysis of results was car-
ried out from different perspectives. Considering the limited
data, RF outperforms the ANN and multiple linear regres-
sion methods with higher stability and prediction accuracy.
It can also estimate the importance of different features
which demonstrates that this method has the potentiality to be
applied in designing and synthesizing the new eco-friendly
gases in power equipment. RF shows good applicability to
predicting the electrical strength as well as boiling temper-
ature in this work. Still, challenges of using RF exist. The
outliners underestimated by RF are probably due to the lack
of training samples since no more than 100 sets of data are
available. It encourages further development to obtain more
test data on the electrical strength and find new predictors as
the input.

B. DISCUSSION ABOUT THE IMPACT
ON THE ENVIRONMENT
The goal of this work is to find eco-friendly gas to substitute
SF6 as the insulation gas in the power industry. Therefore,
the impact of the gases on the environment should be checked.
Table 5 lists the lifetime and GWP (at 100 years) of the
36 molecules [49]. Comparing with the data of predictors
in Table 1, unfortunately it can be seen that all the predictors
in this work have 30very weak correlation with the lifetime
or GWP. In contrast, the GWP is strongly dependent on the
radiative efficiency and the reactivity with the other particles,
for example the reactions with the hydroxyl radical OH [31].
To predict the impact on the environment, future work should
be done to check the feasibility of introducing the RF. Addi-
tionally, the decomposition products of the larger molecules
after discharge [50], which contains CF4 [51], should also be
considered.

TABLE 5. Values of lifetime and GWP of 36 molecules.
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