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ABSTRACT Many image features have been proposed for image retrieval; hence, effectively fusing these
features to alleviate the large variation in performance among image queries when using single image
features has become a major challenge in remote sensing (RS) image retrieval. Because high-resolution
remote sensing images have abundant and complex visual contents, accurately measuring the similarity
between two images is another important problem. To address these challenges, we propose a novel RS image
retrieval method that uses query-adaptive feature weights to fuse features and utilizes two image similarities
to improve retrieval performance. First, we use the image rank similarity, which measures the similarity
between two images according to their corresponding top-m image lists from a reference image collection,
to calculate the similarity of each feature between a query image and each retrieved image. Then, we assign
a weight to each feature to fuse these features via our query-adaptive weighting method. Finally, we take the
query image and its neighborhood set selected from the retrieval dataset as the query class and utilize the
image-to-query class similarity to re-rank the retrieval results. Extensive experiments are conducted on two
publicly available RS image databases. Compared with the state-of-the-art methods, the proposed method
can significantly enhance the retrieval precision.

INDEX TERMS Content-based remote sensing image retrieval, query-adaptive, image rank similarity,
image-to-query class similarity.

I. INTRODUCTION
As sensor technology and remote sensing (RS) technology
improve, both the quality and quantity of RS images are
increasing quickly [1]. Researchers can now readily acquire
many high-resolution remote sensing (HRRS) images that
were captured from satellites or aircraft. To efficiently exploit
the rapid accumulation of RS images, it is necessary to
design robust and automatic tools for their retrieval, mining,
and management. Consequently, the adaption of content-
based image retrieval (CBIR) to this context has become a
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highly active research area in the RS community in the last
decade [2].

CBIR retrieves the relevant images for a query image
from an image database by measuring features that are
extracted from the images, rather than depending on the
accompanying text information. Among the content-based
remote sensing image retrieval (CBRSIR) methods, the tra-
ditional global feature descriptors of image content include
color, texture [2], [3], and shape [4]. However, the global
descriptors might fail due to the invariance expectation if an
image changes due to illumination variation, image trans-
lation, or truncation [5]. Many image retrieval methods
that are based on local features have been proposed for
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overcoming the shortcomings of global features. Most of
those methods extract image features from salient points of
their inputs via feature encoding techniques, such as bag
of words (BoW) [6], [7], vector of locally aggregated descrip-
tors (VLAD) [8], and improved Fisher kernel (IFK) [9]. The
most widely used method for point detection is based on the
scale-invariant feature transform (SIFT).

In recent years, convolutional neural networks (CNNs)
have dramatically improved the states of the art in image
object recognition [10], [11], image classification [12], and
image scene analysis [13], [14]. Inspired by this success,
various CBRSIR methods that are based on CNNs have been
put forward and seem to be becoming more popular than
SIFT-based models. Region-based cascade pooling (RBCP)
features, which were aggregated from convolutional layers
of pre-trained or fine-tuned CNN models, were proposed for
retrieving HRRS images [15]. Zhou et al. [16] introduced two
effective CNN schemes, one of which uses pre-trained CNN
architectures and the other a self-designed CNN model, for
extracting CNN features for retrieval. Ge et al. [17] devel-
oped two CNN features for retrieving HRRS images: one is
extracted directly from the outputs of high-level layers and
the other is aggregated from the outputs of mid-level layers
via average pooling. Wang et al. [18] proposed a graph-based
learning method with a three-layer framework for integrating
the strengths of query expansion and the fusion of holistic and
local features.

The retrieval features that are discussed above were used
to retrieve the images of the same scene or class from an
image database according to the feature similarity between
the query image and the retrieved images. There are many
similarity metrics of retrieval features. Similarity measures
may yield results that differ significantly using the same
retrieval feature in the same retrieval task. Therefore, select-
ing an effective similarity measure for a retrieval task is
of substantial importance. Most of the existing CBRSIR
methods are based on sorting of the similarities between a
query image and the retrieved images, namely, computing the
similarities of only pairs of images. However, these methods
ignore that a retrieved image with a high similarity score
may not belong to the same class as the query image because
RS images typically have complex backgrounds. In addition,
these methods discard the rich information that is encoded in
the relations among images, such as the potential class infor-
mation and similar degrees among them [19]. It was proved
that this information can be used to improve the retrieval
precision [18]. To utilize this information and overcome the
problems that are described above, two image similarity
measures, namely, the image rank similarity and the image-
to-query class similarity, are proposed in this paper. First,
the image rank similarity is used to calculate the similarity
between two images by considering the context information
of other images that are similar to them. When a query image
and a retrieved image are retrieved from the same image
collection, two top-m image lists are obtained. If the two
images are highly similar, there may exist many common

images in the two image lists. The image rank similarity takes
the number of common images and every image rank of the
common images into consideration to measure the similarity
between the two images. Second, the image-to-query class
similarity uses the potential class information of the images
that are most similar to the query image. The retrieved images
should be similar to all the images in the unknown image
class to which the query image belongs, not just to the query
image [20]. We use the k-nearest neighbors’ method to iden-
tify images that may belong to the query image class from an
image collection. The similarity between a retrieved image
and the query image is calculated as the average similarity
between the retrieved image and all images in the query class.

RS images often represent large natural geographical
scenes that have abundant and complex visual contents [21].
Therefore, it is highly difficult to accurately retrieve the
desired results for all types of RS images using a single
feature. It needs to combine some features effectively for
RSIR. However, different features may be suitable for dif-
ferent query images. Given a query image, we need to auto-
matically evaluate the effectiveness of a to-be-fused feature
so that suitable features are used, while unsuitable features
are ignored. Since we have no prior knowledge of the query
image, it is important that we estimate unsupervised the effec-
tiveness of a feature. In light of the above analysis, we put
forward a query-adaptive feature weighting method based
on an observation that suitable features have a higher head
and a lower tail in the score curve than unsuitable features.
The query-adaptive feature weighting method is a score-level
fusion scheme and can adaptively distribute weights among
the to-be-fused features for query images.

This paper proposes a suite of technical schemes for CBR-
SIR, which utilizes two image similarity measures and a
query-adaptive weighting method to combine multiple fea-
tures. The retrieval process of the proposed method is shown
in Fig.1. The main contributions of this paper are as follows:

i. A novel query-adaptive weighting method for remote
sensing image retrieval (RSIR) is developed. The
method utilizes the score curve shapes of features to
calculate the weight of each feature for various query
images. Our method computes weights on the fly and is
independent of the retrieval database; hence, it is highly
suitable for dynamic systems.

ii. We propose the new image rank similarity, which mea-
sures the similarity between two images according to
their corresponding top m image lists from a reference
image collection. The image features that are used to
compute image similarities are of various dimensions
and scales. Fusing these features requires normaliza-
tion procedures that can affect the retrieval accuracy.
Because the image rank similarity does not depend on
image features directly, it can be easily used in image
retrieval tasks.

iii. We combine the query-adaptive fusion method with
two similarities, namely, the image rank similarity and
the image-to-query class similarity for RSIR for the
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FIGURE 1. The retrieval pipeline of the proposed method. The retrieval process consists of four parts. In the first part, extract features of the query image
via fine-tuned CNN models, and retrieve the query image from image collection C based on Euclidean distance to get the top m images list of the query
image for each feature. In the second part, calculate the image rank similarity IRS between the top m images list of the query image and that of each
image in Collection C , and sort in decreasing order. In the third part, calculate weights for each weight via the query-adaptive weight method and
calculate the query-adaptive similarity QAS between the query image and each image in the retrieval database. In the last part, retrieve the query image
from the retrieval database according to the image-to-query class similarity, and get the final retrieval result.

first time. The experimental results showed that our
method can realize higher retrieval performance than
some state-of-the-art RS image retrieval methods.

The remainder of this paper is organized as follows:
Section II reviews related works on image similarity mea-
surement approaches and feature fusion in RSIR. Section III
presents the details of the proposed image retrieval frame-
work. The experimental results are analyzed in Section IV.
Finally, Section V presents the conclusions of this paper.

II. RELATED WORK
In this section, we will present the related work about image
similarity measure metrics in RSIR, and feature fusion in
RSIR in the following section.

A. IMAGE SIMILARITY MEASUREMENT APPROACHES IN
RSIR
An image similarity measure, which calculates the similarity
of extracted image features, is typically used to determine the
image similarity between two images [22]. The Euclidean
distance is one of the most common similarity measures in
image retrieval, which is used in [6], [8], [15]–[17], [23].
Other similarity measures have been used by researchers:
Ding et al. [3] used the angular similarity with weight
to calculate the similarity of eigenvalues in the frequency

domain. Xia et al. [23] used four similarity metrics, namely,
the Euclidean, cosine, Manhattan, and chi-square metrics,
for various feature types. The Euclidean and cosine simi-
larity metrics yielded superior experimental results in their
research. Chaudhuri et al. [24] proposed a graph similar-
ity by combining the node distance and the edge distance
of regions, which considers both region characteristics and
their relations. Graña and Veganzones [25] presented an
endmember-based distance measure, which is particularly
suitable for retrieving hyperspectral images, while Vegan-
zones et al. [26] developed a normalized dictionary distance.
Wang and Song [21] proposed a spatial scene semantic sim-
ilarity that considers the object area, attribution, orientation,
and topological features. These works used features that were
extracted from a single image and ignored the context infor-
mation among images.

These image similarities mentioned above directly use fea-
tures extracted from images. While some image similarities
measure the similarity between two images according to the
similarity of the ranked lists that result from using them as
queries. The Jaccard similarity between two ranking lists of
two images is defined as the size of the intersection divided
by the size of the union of two lists.

But The Jaccard similarity does not include order infor-
mation [27]. In [28], a Jaccard similarity considering dif-
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FIGURE 2. Comparison of the sorted score curve of suitable features and that of unsuitable features. For two queries in UCMD, the score lists in
(a) and (c) are obtained by the Googlenet-cls3_pool feature, and the score lists in (b) and (d) are obtained by the Vgg16-pool5 feature. We plot the
corresponding top 10 ranked images and the sorted scores for rank 1-100. Relevant images are marked in green, and irrelevant ones red. In
(b) and (c), the features produce good performance (AP = 0.7647 and AP = 0.8361), while the features in (a) and (d) lead to a bad performance
(AP = 0.2428 and AP = 0.2922). Note that well-sorted score curves have a higher score in the head and lower value in the tail than bad sorted
score curves, and the retrieval performance of a feature is related to the query image.

ferent depths was presented, which gives more weight to
the top ranked results than lower results. Webber et al. [29]
also proposed a similarity, rank-biased overlap (RBO), based
on a simple model in which the user compares the simi-
larity of the two ranking lists at incrementally increasing
depths. The weight of overlap measure is calculated accord-
ing to probabilities defined at each depth. But the incre-
mentally increasing depths may affect the performance of
speed. Chen et al. [27] exploited the ranking consistency
information among images obtained by Jaccard or RBO to
refine an existing ranking list. In [18], a similarity measure
that considers the spatial distributions of the image features
between two top-ranked image lists was proposed.

B. FEATURE FUSION IN RSIR
Over the last two decades, many image features have been
proposed, for example, BoW and CNN features. Because
a single feature is insufficient for completely characteriz-
ing the image information content [18], feature fusion is
often an efficient method that combines the complementary
advantages that are offered by each feature to enhance the
overall retrieval accuracy. Ge et al. [17] combined VGGM,
VGG16, GoogLeNet, and BoW features by assigning a global
weight to each feature. The global weights were obtained by
manual features and texture features as the node attributes
of a region to fuse them. Aptoula [2] directly combined four

texture descriptors into a single vector: the circular covariance
histogram (CCH), the rotation-invariant point triplets (RITs)
and two texture descriptors that are based on the Fourier
power spectrum (FPS) of an image’s quasi-flat zone (QFZ)
representation. Since a feature may differ in importance
among query images, the fusion of features via a global
approach in these methodsmay not be effective for improving
the image retrieval precision. Zhang et al. [22] proposed a
graph-based query-specific fusion approach for fusing the
retrieval results based on holistic and local features for image
retrieval. Wang et al. [18] proposed a three-layer framework
for RSIR that was inspired by the above method. However,
these methods require massive offline computations and the
retrieval systems are inflexible to database changes. There-
fore, their effectiveness cannot be preserved in an updated
retrieval database [30]. Zheng et al. [30] proposed a simple
yet effective fusion method for image search and person re-
identification. It is based on the hypothesis that the sorted
score curve of a suitable feature takes on an ‘‘L’’ shape,
whereas that of an unsuitable feature descends gradually.
Nevertheless, according to Fig. 2, this hypothesis is unsuit-
able for RSIR.

To alleviate the RSIR problem that is described above in the
existing methods, in this paper, we propose a query-adaptive
remote sensing image retrieval method that is based on
two image similarities. We use two similarities, namely,
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the image rank similarity and the image-to-query class sim-
ilarity, to improve the image similarity measure between the
query image and retrieved images. A new query-adaptive
weightingmethod is utilized to combinemultiple features and
enhance the retrieval precision.

III. OUR PROPOSED METHOD
Our proposed method mainly consists of four parts, which
are illustrated in Fig. 1. First of all, we will introduce the
CNN models and features, which used in our method. Sec-
ondly, we will present what the image rank similarity is
and how to calculate it based on the retrieval result using
Euclidean. And then, we will introduce our query-adaptive
feature weighting method. Next, image-to-query class simi-
larity will be introduced. Finally, we will summarize the pro-
cedure of the proposed method and analyze its computational
complexity.

A. CNN MODELS AND FEATURES
The hierarchical architecture of CNN models can learn
parameters automatically during the training process and can
automatically obtain high-level visual features for efficiently
representing images [31]. In recent years, many retrieval
methods that are based on CNN models have been pre-
sented and are gradually replacing methods that are based
on handcrafted low-level features [32]. Several successful
CNN models are utilized to extract high-level features in
this study: the famous VGGNet [33], GoogleNet [34], and
ResNet [35].

VGGNet won the second rank in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC-2014). VGGNet
includes several CNN models, such as VGG16 and VGG19.
VGG16 has presented good performance in the image
retrieval [15]–[17] [31], [36], [37].

GoogleNet is another CNN model that we selected for
RSIR, which was the winner of ILSVRC-2014. It widely used
for image recognition [17], [32], [36].

ResNet has achieved state-of-the-art performances inmany
computer vision tasks, which achieved the best perfor-
mance on the ILSVRC-2015. ResNet includes some CNN
models with different layers, and we chose the two mod-
els, Resnet50 and Resnet152, to extract features in our
method. The two models have been widely used in image
retrieval [32], [36], [37] and achieved better performance than
other CNN features. We select the four features from these
CNN models for RSIR according to related researches and
our experimental results. Many works [15]–[17], [36], [37]
have shown that these features can obtain good performance
in RSIR.

1) Googlenet-cls3_pool. This feature is derived from the
cls3_pool layer of GoogLeNet, which has dimensions
of 1× 1× 1024.

2) Resnet50-pool5. This feature is extracted from the
pool5 layer of Resnet50 and has dimensions of
1× 1× 2048;

3) Resnet152-pool5. The feature is extracted from the
pool5 layer of Resnet152 and has dimensions of
1× 1× 2048;

4) Vgg16-pool5. This feature is extracted from the
pool5 layer of VGG16 and its dimensions are reduced
to 1× 1× 2048 via a region-based cascade pooling
method [15].

B. IMAGE RANK SIMILARITY
Jaccard similarity is a common statistical measure that com-
putes the similarity between two ranked lists based on their
intersection and is defined by:

J (A,B) =
|A ∩ B|
|A ∪ B|

. (1)

The Jaccard similarity only considers the size of the inter-
section and neglects order information. We develop a simple
way to integrate order information into Jaccard similarity for
RSIR.

For two images Ii and Ij, we extract the corresponding
feature vectors, namely, Fi and Fj, using a feature extrac-
tor F , such as SIFT or CNN. The distance between the two
images can be obtained by computing the distanceD

{
Fi,Fj

}
between their feature vectorsFi andFj according to a distance
function D, for example, the Euclidean or cosine distance
function.

Let C = {I1, I2, · · · , IM } be a reference image collection
and Iq be a query image. We calculate the distanceD between
the query image Iq and each image in the collection C and
obtain an M × 1 distance vector P, where Pi,1 = D

{
Fq,Fi

}
is the distance between Iq and Ii for Ii ∈ C . Then, by sorting
the values Pi,1 in increasing order, we obtain a ranked list:
Lq = {I1, I2, · · · , IM }. Typically, the top m (m� M) image
list, namely, Rq = {I1, I2, · · · , Im}, is returned as the retrieval
result for the query Iq, in which the most similar images to the
query image in the collection C are listed first.

Consider a retrieved image Ir from the image collection C .
We also acquire a top-m ranked image list, namely, Rr . The
basic strategy of the image rank similarity is to measure the
degree of similarity between Iq and Ir according to the two
top-m image lists, namely, Rq and Rr , which are their retrieval
results from the same retrieval collection. If Iq and Ir are
similar, in the typical case, we observe that the top-m image
lists Rq and Rr have many images in common. If not, we do
not observe the same behavior. Therefore, the more similar
their ranked results are, the more similar the two images are.
In addition, we consider the number of images that appear in
both ranked results. Furthermore, we believe that the ranking
of images in these results is important for calculating the
similarity of the two images.

Denote by ai the rank of the ith image in the image list Rq.
If the ith image is also contained in the image list Rr and bi is
its rank in Rr , we define di as in (2).

di = |ai−bi| . (2)
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If not, di is calculated via (3).

di = |ai − 2m| . (3)

Then, the image rank distance from Rq to Rr can be defined
as (4).

D
(
−−−→
Rq,Rr

)
=

∑m

i=1
di

/(
(m−1)× m

2
+m× m

)
. (4)

Via the same approach, we can calculate the image rank
distance from Rr to Rq: D

(
−−−→
Rr ,Rq

)
.

Finally, the image rank distance between Rq and Rr can be
defined as in (5).

D
(
Rq,Rr

)
=

D
(
−−−→
Rq,Rr

)
+ D

(
−−−→
Rr ,Rq

)
2

. (5)

An increasing image rank distance corresponds to an
increasing disagreement between the rankings. The distance
is inside the interval [0, 1] and assumes the following values:
•0 if the agreement between the image rankings is perfect,

namely, if the two image rankings are the same;
•1 if the image rankings are completely independent.
We use the image rank distance D

(
Rq,Rr

)
to calculate the

image rank similarity (IRS) coefficient, which is denoted as
IRS (q, r), between Iq and Ir as follows:

IRS (q, r) = 1− D
(
Rq,Rr

)
. (6)

C. QUERY-ADAPTIVE FEATURE WEIGHTING
A score-level feature fusion scheme proposed in [30] is based
on the observation that the profile of a suitable feature should
exhibit an ‘‘L’’ shape while that of an unsuitable feature a
gradually descending curve. In the scheme, the initial score
cures are normalized according to reference curves trained on
irrelevant data. Then, feature weight is estimated as inversely
correlated with the area under the normalized score curve.
We cannot observe the phenomenon in RSIR according to
Fig. 2. Moreover, the method needs to build a huge reference
collection. We propose a new query-adaptive feature fusion
method for RSIR based on feature score cures.

In RSIR, a suitable feature for image retrieval can well
distinguish the relevant images from the irrelevant images;
hence, the relevant images have high similarities and the
irrelevant images have low similarities. With an unsuitable
feature, the relevant images and the irrelevant images have
close similarities and difficult to distinguish. We retrieve
two query images from the UC Merced Land-Use/Land-
Cover dataset (UCMD) using the Googlenet-cls3_pool fea-
ture and the Vgg16-pool5 feature. The distance function is
the Euclidean distance. The retrieval results are presented
in Fig.2. According to Fig. 2(c), the Googlenet-cls3_pool
feature, the average precision (AP) of which is 0.8361, is a
suitable feature for the second query image. Its sorted score
curve has a higher score in the head and a lower value in the
tail than the sorted score curve of the Vgg16-pool5 feature
(Fig. 2(d)), for which the AP is only 0.2922. We observe the

same phenomenon as in Fig. 2(a) and (b), namely, the sorted
score curve of the suitable feature is higher in the head and
lower in the tail than that of the unsuitable feature. In addition,
the Vgg16-pool5 feature is a suitable feature for the first
query image, while it is an unsuitable feature for the second
query image. For the Googlenet-cls3_pool feature, the result
is the opposite.

For an image query Iq, image Iq is retrieved from the image
collection C according to the feature F i and the distance
function D. We obtain a top-l ranked image list, namely,
Riq = {I1, I2, · · · , Il}, and an initially sorted score curve,
namely, S iq = {s

i
1,s

i
2, · · · , s

i
l}, with respect to feature F i,

where sil is the image rank similarity of the top l image of the
featureF i, namely, IRS (q, l), between image Iq and image Il .
We normalize the curve S iq via the following formula:

S̄ iq =
(
S iq −min

(
S iq
))2

(7)

where S̄ iq is the normalized score curve that is used to estimate
the feature effectiveness. The initially sorted score curves of
the two retrieved images in Fig. 2 are shown in Fig. 3(a)
and (c). Fig. 3(b) and (d) present their corresponding nor-
malized score curves. As shown in Fig. 3(b) and (d), after
normalization, suitable features have a large area under the
score curve. Therefore, we assume that the effectiveness of a
feature is positively related to the area under its normalized
score curve. To evaluate the assumption, we have collected
satisfactory and unsatisfactory normalized score curves of the
four features fromUCMD. Satisfactory score curves are those
for which AP exceeds 0.8 and unsatisfactory curves are those
for which AP is smaller than 0.3. The probabilities of satis-
factory or unsatisfactory normalized score curves are defined
as the ratio of the number of satisfactory or unsatisfactory
normalized score curves to all normalized score curves which
area under score curves are in the same range. We compute
the probabilities of satisfactory and unsatisfactory normalized
score curves against the area under the normalized score
curve. According to Fig. 4, the probability of an unsuitable
feature decreases as the area under its normalized score curve
increases. With this approach, we can estimate the effective-
ness of a feature according to the area under its normalized
score curve.

For an image query Iq with K features
{
F i
}K
i=1, we have K

initial sorted score curves
{
S iq
}K
i=1

. After curves
{
S iq
}K
i=1

have

been normalized to
{
S̄ iq
}K
i=1

, we calculate the query-adaptive

weight of the feature F i as follows:

wiq =
Ai∑K
k=1 Ak

(8)

where Ai, i = 1, · · · ,K is the area under the ith feature’s
score curve.

To obtain a global similarity measure, we employ the sum
rule to combine the scores of multiple features.
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FIGURE 3. Comparison of the initial and normalized score curves. (a) and (c) are the initial score curves from
Fig. 2 and (b) and (d) are the corresponding normalized score curves. In (b), AP of the Googlenet-cls3_pool feature
is 0.8361, AP of the Vgg16-pool5 feature is 0.2922, and the area under the Googlenet-cls3_pool curve is greater
than the area of under the Vgg16-pool5 curve. In (d), AP of the Googlenet-cls3_pool feature is 0.2428, AP of the
Vgg16-pool5 feature is 0.7647, and the area under the Googlenet-cls3_pool curve is smaller than the area under the
Vgg16-pool5 curve. Suitable features have a greater area under the score curve than unsuitable features.

FIGURE 4. Probabilities of satisfactory and unsatisfactory normalized score curves against the area under the normalized
score curve for the four features. The probability that a feature to be an unsuitable feature decreases as the area under its
normalized score curve increases.

Given a retrieved image Ir , the image rank similarity
score of Ir to Iq with respect to feature F i is denoted as
IRS i (q, r). Then, under the sum rule, the desired query-
adaptive similarity (QAS) between q and r is calculated as
follows:

QAS (q, r)=
∑K

i=1
wiq×IRS

i (q, r), where
∑K

i=1
wiq=1.

(9)

D. IMAGE-TO-QUERY CLASS SIMILARITY
For a query image Iq and a retrieval database RD with N
images, we calculate a query-adaptive similarity, namely,
QAS, to Iq for each image in RD. We sort the images in
descending order of their similarities and we select the top-
k similar images as the retrieval result Rq. If the similarity
QAS is not perfect, irrelevant images that are not of the same
class as image Iq may be found in the retrieval resultRq. The
objective of image retrieval is to retrieve the images of the
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same scene or class from a database. Chen et al. [20] assumed
that retrieved images should be similar to all the images that
belong to the same class as the query image, not just to the
query image. However, which images that belonged to the
class of the query image are unknown.An iterative framework
is used to find these images, in which the size of the query
class is incrementally increased according to the previous
retrieval results [20].

Here, we use the well-known k-nearest neighbor (kNN)
method to identify images that may be the same class as the
query image. LetNkNN (q, k) denote the neighborhood set of
the query image Iq that is obtained via this method and k is
the size of the neighborhood set. It is defined as follows:

NkNN (q, k) = {R ⊆ RD, |R| = k ∧ ∀x ∈ R, y ∈ RD− R :

QAS(q, x) ≥ QAS(q, y)} . (10)

Then, we take the query q and its neighbors NkNN (q, k)
as the query class. For a retrieved image Ir , we calculate the
image-to-query class similarity (IQCS) between r and q:

IQCS (q, r)=
1

k+1

(
QAS (q, r)+

∑
x∈NkNN (q,k)

QAS (r, x)
)
.

(11)

E. IMAGE RETRIEVAL PROCESSING
To improve the speed of image retrieval, we divide our
method into two parts: an offline part and an online part.
The offline part is processed beforehand. On the offline part,
we first finetune CNN models and extract CNN features of
images in the retrieval database RD; then we generate the
image collection C by randomly selecting a part of images
from the retrieval databaseRD, retrieve every image from col-
lection C using each feature and obtain four top-m image list
sets; finally, we compute the query-adaptive similarity QAS
matrix Â between any two images in the retrieval database
RD. On the online part, first of all, we calculate the image
rank similarity between a query image and retrieved images;
Then, we use the query-adaptive feature weighting method to
combine these features; We sort the retrieved images accord-
ing to the query-adaptive similarity QAS. Finally, we use the
image-to-query class similarity IQCS to improve the retrieval
result further. The online part is the retrieval process of a
query image, which is shown in Fig. 1. The detail of the two
parts are as follows:

1) THE OFFLINE PROCESS
Fine-tune
(1) the four pre-trained CNN models using a fine-tuning

database and obtain the four fine-tuned CNN models.
(2) Randomly select a part of images on the retrieval

database RD to build the image collection C .
(3) Extract four CNN features for every image in the image

collection C using the four fine-tuned CNN models
and obtain four feature sets: FC i, for i = 1, 2, 3, 4.
Then, retrieve every image from collection C using
each feature and the Euclidean distance and obtain four

top-m image list sets:RC i
=
{
Ri1,R

i
2, · · · ,R

i
M

}
for i =

1, 2, 3, 4.
(4) Apply the same approach as in collection C to every

image in the retrieval database RD and obtain four top-
m image list sets: RS i =

{
Ri1,R

i
2, · · · ,R

i
N

}
for i =

1, 2, 3, 4.
(5) Calculate the IRS matrix A between any two images

in RS i, i = 1, 2, 3, 4, and obtain four IRS matrices:
{A1,A2,A3,A4}.

(6) Compute the query-adaptive similarity QAS matrix Â
with sizeN×N between any two images in the retrieval
database RD.

2) THE ONLINE PROCESS
(1) Given a query image Iq, use the four fine-tuned CNN

models to extract the image features:
{
F1
q ,F

2
q ,F

3
q
,F4

q

}
.

(2) Retrieve image Iq from the image collection C using
the Euclidean distance with the four features and obtain
four top-m image lists:

{
R1q,R

2
q,R

3
q,R

4
q

}
.

(3) Calculate and sort IRS between Riq and Rir in RC i,

and compute the weight set
{
w1
q,w

2
q,w

3
q,w

4
q

}
for the

four features according to the four top-l image lists:{
R1q,R

2
q,R

3
q,R

4
q

}
.

(4) Calculate IRS between Riq and Rij in RS i for i =
1, 2, 3, 4 and j = 1, 2, · · · ,N and obtain four IRS sets:
IS i =

{
IRS iq,1, IRS

i
q,2, · · · , IRS

i
q,N

}
for i = 1, 2, 3, 4.

(5) Compute the query-adaptive similarity QAS between q
and each image in the retrieval database RD; QS =
{QAS (q, j)} for j = 1, 2, · · · ,N .

(6) Find the neighborhood set of the query image q,
namely, NkNN (q, k), from the retrieval database RD.

(7) Calculate the image-to-query class similarity IQCS
between q and each image inRD, namely, {QAS (q, j)} ,
for j = 1, 2, · · · ,N , sort them in descending order and
return the sorted result.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
In the online part of our method, the time complexity is
mainly attributed to five of the steps: (1) The time complexity
of calculating the Euclidean distance in the second step is
O(lM ), where l is the length of the feature and M is the
size of the collection C . The time complexity of sorting
is O(M logM ). (2) The time complexity of calculating and
sorting IRS in the third step is O(mM ) and O(M logM ),
respectively. (3) Similarly, the time complexity of calculating
in the fourth step is O(mN ). (4) The time complexity of the
fifth step is O(lN )+ O(mN ). (5) The time complexity of the
sixth step is O(N logN ). (6) In the seventh step, because the
QAS between the query and each retrieved image has been
calculated previously, the time complexity for calculating the
image-to-query class similarity is O(Nk) and that for sorting
is O(N logN ). Hence, the time complexity of the whole
online part is O (mN )+ O(lN ).
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The time complexity of the offline part in our
method mainly lies in calculating the four IRS matrices
{A1,A2,A3,A4}. The time complexity of this step isO(NNM ).

The space complexity of each part mainly lies to store four
IRS matrices

{
A1,A2,A3,A4

}
and QAS matrix Â, it requires

O(N 2). We neglect the time for fine-tuning the CNN models
and extracting the features.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
To evaluate the performance of our method, we consider two
standard criteria of retrieval evaluation: the average normal-
ized modified retrieval rank (ANMRR) [38] and the mean
average precision (mAP) [39]. ANMRR considers the rank-
ing information of relevant images among the top-retrieved
images. ANMRR ranges from 0 to 1; a lower ANMRR value
indicates a better retrieval performance [38]. The mAP is
the average of Average Precision. Average Precision is the
average of the precision value obtained for the set of top
images existing after each relevant image is retrieved [39].

1) RS IMAGE DATABASES
We use three datasets below in our method.

(1) UCMD [40]: The UC Merced Land-Use/Land-Cover
dataset is composed of 21 categories of land-use aerial
images that were collected from the United States Geo-
logical Survey (USGS) national map. Each category is
comprised of 100 images and each image has a size of
256× 256 pixels.

(2) PatternNet [41]: The high-resolution RS image dataset
is a recently released large-scale dataset, which con-
tains 38 classes of RS scene images that were gathered
fromGoogle Earth imagery or via the Google Map API
for the US cities. Each class has 800 samples with a size
of 256× 256 pixels.

(3) AID [42]: The Aerial Image Dataset is composed
of 30 types of aerial scene images that were selected
from Google Earth imagery. The numbers of sample
images range from 220 up to 420 among the satellite
scene types. The total number of samples in the AID
dataset is 10000 and each image has a size of 600×600
pixels.

2) PREPROCESSING AND PARAMETER SETTINGS
Our method is implemented under Matconvnet [43] and
MATLAB R2017a. It is run on a PC with an Intel
CPU i7-7700 CPU @ 3.60 GHz, 16 GB of physical memory,
and a graphics card GTX1080 with 8.0 GB of RAM. The
machine is run on Ubuntu 14.04.

In ourmethod, themain parameters depend on the expected
number of relevant images, namely, τ , which can be estimated
based on the database size and the number of classes. In the
image rank similarity, the parameterm, which determines the
image list length, is set to c_m×τ , where c_m is a coefficient.
The parameter l in the query-adaptive weight, which is the

length of the score curves, is set to c_l × τ . The parameter k
in the image-to-query class similarity, which determines the
number of neighbors of the query image is set to c_k × τ .
The following parameter values are used consistently for all
evaluations: c_m= 0.6,c_l= 1.1, and c_k= 0.3. Moreover,
we consider the whole retrieval database RD as collection C .
We select AID for fine-tuning the four CNN models. The

dataset is randomly split into training and testing data sets
with about an 80%/20% split. Regarding the fine-tuning pro-
cess, we adjust the number of classes of the outputs of the last
fully connected or convolutional layer to match the number
of AID classes, namely, 30. We randomly initialized the
weights of the last layer according to a Gaussian distribution
with mean 0 and variance 0.01. The weights are updated
via the adaptive moment estimation (Adam) optimization
algorithm [43] with a learning rate of 0.001, a momentum
of 0.9, and a weight decay of 0.0005.

The UCMD and PatternNet are used to evaluate the
retrieval performance. 20 percent of images on the two
datasets are taken as query images, and the others are used
as retrieval images.

B. ANALYSIS OF THE RETRIEVAL PERFORMANCE OF EACH
STEP
Retrieving an image from an RS dataset via our proposed
method involves four main steps: (1) Use the Euclidean
distance to obtain the top-m image lists for each feature.
(2) Calculate the image rank similarity score for each feature.
(3) Compute the query-adaptive similarity. (4) Calculate the
image-to-query class similarity. We conduct experiments to
evaluate the retrieval performance of each step.

1) RETRIEVAL RESULT COMPARISON
The top-20 retrieval results of each step for two RS images
are shown in Fig. 5 and Fig. 6. The first query image is
selected from the UCMD. The top-20 retrieval results of
Vgg16-pool5 using the Euclidean distance as the similarity
are shown in Fig. 5(a), for which the AP is 0.3845 and which
include 10 irrelevant images. Fig. 5(b) shows the result of
Vgg16-pool5 that was obtained using the image rank simi-
larity. Its AP increased by 0.3322 to reach 0.7167 and the
number of irrelevant images decreased from 10 to 2. The
results of fusing the four features via the query-adaptive
fusion approach are shown in Fig. 5(c), the AP of which
increased to 0.9007 and which include only one irrelevant
image. After using the image-to-query class similarity, the AP
of the final result is 0.9687 and there are no irrelevant images
in Fig. 5(d). According to Fig. 5, each step in our proposed
method improves the results over the previous step. This
conclusion also can be drawn from Fig. 6, in which the query
image is selected from PatternNet.

2) PERFORMANCE COMPARISON
We evaluate the retrieval performances on UCMD and Pat-
ternNet with mAP and ANMRR and the results are pre-
sented in Table 1. We observe positive gains with the
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FIGURE 5. Retrieval results comparison in each step. The first column is the query image from UCMD, (a) the top 20 result
of Vgg16-pool5 using Euclidean, (b) the top 20 results of Vgg16-pool5 using the image rank similarity, (c) the top 20
results of four features by the query-adaptive feature fusion, (d) the top 20 results of fusion feature using the image to
query class similarity.

FIGURE 6. Comparison of the retrieval results in each step. The first column contains the query image from PatternNet.
(a) The top-20 result of Resnet50-pool5 that were obtained using the Euclidean distance, (b) the top-20 result of
Resnet50-pool5 using the image rank similarity, (c) the top-20 result of four features via query-adaptive feature fusion,
and (d) the top-20 result of the fusion feature using the image-to-query class similarity.

mAP for all features in the image rank similarity step,
which range from +4.86% to +9.23% in UCMD and from
+8.66% to +14.82 in PatternNet. The ANMRR of all fea-
tures also decreases by between −0.0495 and −0.0763 in
UCMD and between −0.0751 and −0.1222 in PatternNet.
Hence, the image rank similarity can greatly enhance retrieval

accuracy compared to the Euclidean distance. In the query-
adaptive feature fusion step, mAP increases by at least
8.01 percent in UCMD and by at least 5.55 percent in Pat-
ternNet and the ANMRR decreases by at least 0.0672 in
UCMD and by at least 0.0469 in PatternNet. Therefore, our
query-adaptive weight fusion method can improve retrieval
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TABLE 1. Performance comparison for each step with mAP and ANMRR.

TABLE 2. Computation time of each step.

FIGURE 7. Impact of the value of parameter c_m on the retrieval performance with UCMD for various features. The results are (a) in terms of
mAP and (b) in terms of ANMRR. If c_m is in the range [0.5 0.7], the retrieval performances are similar. The optimal value for most features is
attained when c_m is approximately 0.6 in terms of mAP and 0.5 in terms of ANMRR.

performance. In the last step, the image-to-query class sim-
ilarity further improves the mAP by approximately 3%
and decreases the ANMRR by approximately 0.02 on both
datasets.

3) COMPUTATION TIME
The computation time of each step is listed in Table 2. The
total computation time of the main steps of our method is
10 milliseconds on UCMD and 1337 milliseconds on Pat-
ternNet. The image rank similarity step consumes most of
the computation time. The time increases as the number of
images in the retrieval dataset increases.

C. IMPACT OF THE PARAMETERS
To determine the optimal parameter values, we conducted
a set of experiments on UCMD and PatternNet to evalu-
ate the influence of the main parameters on the retrieval
performance.

The parameter c_m in the image rank similarity varies
in the interval [0.3 1.1] with a step size of 0.1. Fig. 7 and
Fig. 8 present the results of the mAP and the ANMRR for
various values of parameter c_m on both datasets. According
to the two figures, their performances are similar if c_m is
in the range [0.5 0.7] under both evaluation criteria. The
best results are obtained for most features when c_m is
approximately 0.6 in terms of mAP and 0.5 in terms of
ANMRR.

The parameter c_l in the query-adaptive weight varies in
the range [0.8 1.4]; the results are shown in Fig. 9. The
retrieval performance is slightly affected by the value of
parameter c_l in both datasets in terms of both evaluation
criteria. The best result is obtained when c_l is approximately
1.1.

The parameter c_k in the image-to-query class similar-
ity varies in the interval [0.1 1] with a step size of 0.1.
Fig. 10 shows the results of the mAP and the ANMRR on
UCMD and PatternNet for various values of parameter c_k .
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FIGURE 8. Impact of the value of parameter c_m on retrieval performance with Patternnet for various features. The results
are (a) in terms of mAP and (b) in terms of ANMRR. The retrieval performances are similar when c_m is in the range [0.5 0.7].
The optimal value for most features is attained when c_m is approximately 0.6 in terms of mAP and 0.5 in terms of ANMRR.

FIGURE 9. Impact of the value of parameter c_l on the retrieval performance for fused features on UCMD and PatternNet. The
results are (a) in terms of mAP and (b) in terms of ANMRR. The retrieval performance is slightly affected by parameter c_l in
both datasets. When c_l is approximately 1.1, the retrieval performance is optimal.

FIGURE 10. Impact of the value of parameter c_k on the retrieval performance for fused features on UCMD and PatternNet.
The results are (a) in terms of mAP and (b) in terms of ANMRR. When c_k is 0.3, the retrieval performance is optimal on both
datasets in terms of both evaluation criteria.
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TABLE 3. Performance comparison for various sizes of the collection C with mAP and ANMRR on patternnet.

TABLE 4. Computation times for various sizes of the collection C on patternnet.

TABLE 5. Performance comparison of feature fusion methods on UCMD.

The retrieval performance on both datasets is optimal when
c_k is 0.3 in terms of both evaluation criteria.

In addition, we analyze the effect of the size of the image
collection C on retrieval performance on PatternNet. We ran-
domly select a subset (40%, 60%, and 80%) of all images
in the retrieval database as the collection C . The precision
results are listed in Table 3 and the computation times for
various sizes of the collection C are listed in Table 4. Accord-
ing to the two tables, the precision increases slightly as the
proportion increases; mAP increases from 90.17% to 90.56%,
and ANMMR decreases from 0.0785 to 0.0759, while the
computation time increases sharply from 457 milliseconds to
1337 milliseconds. The results are the average values over
five runs.

D. COMPARISON WITH EXISTING METHODS
In this section, we compare the query-adaptive weight fusion
method with other methods and compare our final retrieval
results with the results of the other methods.

1) PERFORMANCE COMPARISONS WITH FEATURE FUSION
METHODS
Our proposed query-adaptive weight fusion method is com-
pared on UCMD with two methods: a graph-based query-
specific fusion approach (Graph) [22] and a global method
(Global) [17]. The main parameter, namely, k , in the graph-
based query-specific fusion approach is set to 80, which is the
true number of relevant images. The global method manually

assigns a global weight wi to each feature. We use a step
size of 0.1 for manual tuning for each feature combination.
According to Table 5, our method outperforms the other
methods on all feature combinations in terms of ANMRR.
Our method also outperforms the other methods in terms of
mAP, except for the combination of Resnet152-pool5 and
Vgg16-pool5. In addition, in our experiments, the global
manual weight tuning is highly sensitive to weight changes:
a small change in a feature weight may result in a substantial
accuracy change. Our query-adaptive weight fusion method
automatically determines feature weights and yields compet-
itive results compared with the other two methods.

2) PERFORMANCE COMPARISONS WITH FEATURE
SIMILARITIES
We compare the image rank similarity with Jaccard and RBO
onUCMDand the results are shown in Table 6. The parameter
p in RBO is set as 0.99. It can be seen that RBO can get
the best results when only using a single feature. When
query-adaptive feature fusion is used, IRS can get the best
result in terms ofmAP, 80.60%,while RBO can the best result
in terms ofANMMR, 0.1523. The speed of RBO is verymuch
slower than the other methods.

3) PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART
METHODS
We compare our proposed method with the state-of-the-
art RS image retrieval methods on UCMD, which is a
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TABLE 6. Performance comparison of RBO and IRS on UCMD.

TABLE 7. Performance comparison with state-of-the-art methods on
UCMD.

benchmark test dataset that is used in most related works.
The first four methods in Table 7 are based on hand-crafted
feature representations, e.g., BOW and LSL, and the oth-
ers use CNN features. According to Table 7, our proposed
method yields the best results in terms of ANMRR. The
ANMRR value decreases from 0.285 to 0.1291, which cor-
responds to a decrease of approximately 54%. Overall, our
proposedmethod is promising and can realize higher retrieval
performance.

V. CONCLUSIONS
In this paper, we propose a query-adaptive remote sensing
image retrieval method that is based on two image similar-
ities. We utilize the image rank similarity to measure the
similarity for each feature between a query image and each
retrieved image, which considers the number and image rank
of the common images in their corresponding top-m image
lists. Then, these similarities are fused via the query-adaptive
weighting method, which calculates weights on the fly and
is independent of the retrieval database. Finally, we obtain
the neighborhood set of the query image as the query class
via a k-nearest neighbor method and calculate the image-
to-query class similarity between the query image and each
retrieved image. We re-rank them to obtain the final retrieval
result. Experiments in which the performance of each step
was analyzedwere conducted and the results demonstrate that
the precision in the current step is higher than those in the pre-
vious steps. Therefore, the proposed method is effective for
remote sensing image retrieval. In addition, we investigated
the influences of various values of important parameters on

retrieval performance. Comparisons of the proposed method
with the state-of-the-art methods further demonstrated the
strength of our method, which realizes highly competitive
retrieval performance.

In future work, we will focus on (i) considering other
CNN models [29] and image features, (ii) combining our
query-adaptive weighting method with other supervised
methods [47], and (iii) considering an iterative approach that
utilizes the image rank similarity and the image-to-query
class similarity.
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