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ABSTRACT A light field image captured by a plenoptic camera can be considered a sampling of light
distribution within a given space. However, with the limited pixel count of the sensor, the acquisition
of a high-resolution sample often comes at the expense of losing parallax information. In this work,
we present a learning-based generative framework to overcome such tradeoff by directly simulating the light
field distribution. An important module of our model is the high-dimensional residual block, which fully
exploits the spatio-angular information. By directly learning the distribution, our approach can generate both
high-quality sub-aperture images and densely-sampled light fields. Experimental results on both real-world
and synthetic datasets demonstrate that the proposed method outperforms other state-of-the-art approaches
and achieves visually more realistic results.

INDEX TERMS Light field reconstruction, view synthesis, 4D convolution, high-dimension residual block,
generative adversarial networks, deep learning, computational imaging.

I. INTRODUCTION
In computer vision and three-dimensional imaging, light field
imaging has generated a lot of interest due to the designs of
various capturing systems [1], [2]. Compared to conventional
cameras, a light field camera (also known as a plenoptic
camera) allows one to capture both intensity values and direc-
tions of light rays from real-world scenes. The additional
information enables many applications, such as image refo-
cusing [3], depth estimation [4], [5], and novel view genera-
tion [6], [7]. However, there is an inherent tradeoff between
spatial and angular resolutions. The generally lower spatial
resolution of the light field image poses great challenges in
exploiting the advantages brought from additional angular
sampling [8], [9].

Taking advantage of the parallax between two neighboring
views, the captured light field scenes preserve high correla-
tions among the sub-aperture images (SAIs). Others address-
ing the light field super-resolution problem generally regard
geometry properties as the reconstruction priors, and warp
the neighboring views to the target view [10], [11]. The
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performance of these methods depends on accurate geometric
information of the scene as priors. However, approaches for
depth estimation have difficulties in providing accurate depth
estimation for pixel warping. Errors in this process give rise
to artifacts such as tearing and ghosting.

To mitigate the dependency on explicit depth or dispar-
ity information, many alternative approaches are based on
sampling and consecutive reconstruction of the plenoptic
function [12], [13]. Instead of using the disparity as auxiliary
information, they consider each pixel of the given SAI as a
sample of the light field distribution function. Recently, deep
learning has been proved to be a powerful technique in a wide
range of applications [14], [15]. With the availability of the
light field dataset [16], methods based on the convolutional
neural networks (CNNs) have been successfully applied to
light field super-resolution [17], [18]. Yoon et al. [19] estab-
lish the first deep learning framework LFCNN for both spatial
and angular super-resolution but do not exploit the correlation
among adjacent views. Wang et al. [20] regard the light
field as an image sequence and introduce the bidirectional
recurrent convolutional neural network to approximate the
correspondences of neighboring images. However, the image
sequence assumption reduces the complexity of light field
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FIGURE 1. Overview of the proposed LightGAN. The generator takes the low-resolution light fields as inputs and generates the
super-resolved counterparts, which are further judged by the discriminator together with the high-resolution labels. The results of
the discriminator are used to obtain the adversarial loss, and they are combined with the conceptual loss and the correlation loss
to supervise the generator training process.

angular correlation and changes the relations among the
surrounding SAIs, which consequently limits the reconstruc-
tion results.

Given the inherent geometric properties of light field data,
reconstruction algorithms should involve information from
both spatial and angular dimensions. However, existingmeth-
ods struggle to handle the uncertainty in recovering lost
high-frequency spatial details while preserving angular cor-
relation. In this paper, we propose a generative model to
effectively address the light field super-resolution problem.
The generative adversarial networks (GANs) are well known
for their powerful capacity in generating plausible-looking
natural images with high perceptual quality [21], [22]. Con-
sidering such benefits, we incorporate the high-dimensional
convolution (HDC) layers into the GAN framework to
learn the high correlations among the neighboring light
field views. The proposed model is tailored to the struc-
tural property of the light field, which therefore is named
LightGAN.

Fig. 1 presents an overview of the proposed LightGAN
framework. Our model is trained by minimizing the combi-
nation of the conceptual and correlation loss together with
the adversarial loss. Unlike other deep learning frameworks,
our model is particularly designed for light field data to
fully exploit the complete spatio-angular correlations, and
can address the low-resolution problem in both spatial and
angular dimensions.

II. RELATED WORK
Existing light field reconstruction methods can be mainly
divided into two different categories. Approaches of the
first class require an accurate estimation of geometry and
expensive computations [23], [24]. For instance, Bishop and
Favaro [25] design a Bayesian framework to recover the pix-
els in the super-resolved light field by efficiently exploiting
the geometric structure. Mitra and Veeraraghavan [3] take a

patch-based approach, and apply a fast subspace projection
technique to generate the disparity map and wrap the dis-
parity information into light field images by the Gaussian
mixture model. Later, Wang et al. [26] propose an algo-
rithm that relaxes the dependency of depth information in
projection-based models via a re-defined mapping function
between the disparity of certain pixel and its shearing shift.
The depth-based methods tend to fail in occlusion regions
or non-Lambertain surfaces where the depth information is
difficult to obtain.

In addition to the depth-dependent approaches, some alter-
native attempts focus on the projection and resampling of
light field data [27], [28]. Liang and Ramamoorthi [29] pro-
vide a theoretical analysis on the resolution limit of light
field and demonstrate that the lenslet-based cameras can
achieve spatial resolution above the microlens resolution.
Meanwhile, Cho et al. [30] illustrate the calibration proce-
dure of a raw light field image and they further propose a
dictionary-learning interpolationmethod for light field recon-
struction.

The second category makes the use of deep learning
frameworks. With the development of CNNs, backed by
having more and more light field datasets [31], [32], some
learning-based methods have been proposed recently and
show promising performance [33], [34]. Kalantari et al. [35]
introduce the CNNs to traditional pipeline and produce plau-
sible images. Zhang et al. [36] adopt a branched resid-
ual network for spatial super-resolution. Different branches
learn the relations of SAIs in different directions. All the
learned features are finally combined together to gener-
ate the enhanced light field. Farrugia et al. [37], on the
other hand, exploit a dictionary learning-based method
which learns the mapping between the low-resolution and
high-resolution patches. These methods exploit the angular
correlations, but not specially tailored for the light field
structure.
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FIGURE 2. Illustration of 2D, 3D and 4D convolution operations. a) Illustration of applying the 2D convolution on the 2D data, which
results in an image. b) Illustration of applying the 3D convolution on the 3D data, which results in a volume. c) Illustration of applying
the 4D convolution on the 4D data, which results in a 4D tesseract.

Recently, Yeung et al. [38] and Wang et al. [39] introduce
the 4D convolution to drive the network to learn the complex
correlations in angular dimensions. Compared with previous
models, the 4D convolution is more fit for light field data
and exhibits powerful ability in learning the high-dimensional
correlations, allowing the framework to be trained end-to-
end. Nevertheless, both of their models only focus on view
synthesis. By contrast, this paper presents a framework that
is based on HDC as well, but is able to enhance both spatial
and angular resolution.

III. METHODOLOGY
A. PROBLEM FORMULATION
Given a low-resolution light field IL(x, y, u, v) at the resolu-
tion of (X ,Y ,U ,V ), the goal of light field super-resolution is
to reconstruct its corresponding high-resolution counterpart
IH (x, y, u, v) at the resolution of (γsX , γsY , γaU , γaV ) which
can be formulated as

IL(x, y, u, v)
g
→ IH (x, y, u, v), (1)

where γs and γa correspond to the spatial and angular upscal-
ing factors, respectively. (X ,Y ) denotes the resolution in the
spatial dimensions, while (U ,V ) represents the resolution in
the angular dimensions. The function g(·) in Eq. 1 denotes the
recovery mapping between IL and IH , which is approximated
using a generative network in this study.

The objective of the GAN is to learn a distribution that
resembles the real data distribution [40]. Such a property is
desirable for our task aiming at simulating the light field dis-
tribution based on a few samples. The algorithm trains a dis-
criminator D to maximize the probability of correctly recog-
nizing the label and the enhanced light field, i.e. log(D(IH )).
Simultaneously, it also trains a generator G to minimize the
loss, given by log(1 − D(G(IL))). Therefore, the framework
is trained by optimizing the value function V (D,G), i.e.,

min
θG

max
θD

V (D,G) = EIH∼π (IH )
[
logD

(
IH
)]

+EIL∼πG(IL )
[
log

(
1−D

(
G
(
IL
)))]

,

(2)

where θG and θD represent the parameters of G and D,
respectively. E(·) is the expectation function. During the
optimization process, the generator G learns the mapping
g(·) in Eq. 1 and outputs a high-resolution light field that
resembles the original one. π (·) stands for the light field
distribution described in the training samples, while πG(·) is
the distribution of the inputs. We assume that the training set
is well-sampled from the real scenes. The idea behind this
formulation is that it builds up the generator G with the goal
of fooling a discriminator D that is trained to distinguish the
reconstructed and real scenes. This encourages the solutions
residing in the space of light field images, leading to results
that preserve the geometry information of the scene.

Our ultimate goal is to acquire a mapping function that
estimates the real light field distribution and generates
the high-resolution counterpart from a given low-resolution
input. To achieve this, we train a generative network
parametrized by 2 = {θi}, where i = 1, . . . ,L. Here,
θi denotes the weight and bias parameters of the ith layer
in the L-layer network. Therefore, for the training labels{
IHn
}
and corresponding low-resolution inputs

{
ILn
}
, where

n = 1, . . . ,N , the mapping parameters 2 is obtained by
optimizing a loss function L(·), such that

2∗ = argmin
2

1
N

N∑
n=1

L
(
G(ILn ;2), IHn

)
. (3)

Specifically in this work,L(·) is designed as a weighted com-
bination of several loss components, which encourages our
proposed model to learn the spatial details while preserving
geometry properties.

B. HIGH-DIMENSIONAL CONVOLUTION
Compared with 2D or 3D convolution, the HDC is operated
in the 4D space, leading to its strong capacity to fully cal-
culate the spatio-angular redundancy. In 2D CNN models,
the intrinsic limitation makes it hard to handle the problem
with more than two dimensions, as illustrated in Fig. 2.
Hence, most existing learning-based methods apply CNNs
on either SAIs [19], [35] or EPI images [41] to learn the
relations between neighboring views. Another assumption for
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FIGURE 3. Detailed framework for the proposed LightGAN. The generator is established by densely-connected multiple HDRB and HDC layers, while the
discriminator is constructed using a simple linear structure.

light field processing is to consider the 4D data as image
sequences. Several methods are based on this assumption and
apply the approaches from video processing to handle the
sequences [42], [43]. However, such an assumption omits
the relations between the spatial and angular coordinates.
The result is that these approaches have trouble approximat-
ing the correct EPIs of occluded or non-Lambertian regions,
which therefore causes ghosting or tearing artifacts near the
object boundaries. By contrast, the HDC layer shows its
potential in processing the light field image for multiple
applications, such as material recognition [16], view syn-
thesis [38], and super-resolution [34]. These achievements
are owed greatly to its ability to extract spatial representa-
tions preserving the angular correlations. As a consequence,
by incorporating the HDC layer, the proposed model can
make full use of the structural information to simulate the
original light field distribution.

C. NETWORK ARCHITECTURE
The GAN-based model maintains the ability to drive the
reconstruction towards image manifold [21]. For light field,
more importantly, the reconstruction should guarantee the
epipolar property of data. Therefore, in the proposed net-
work, we not only ensure that the generator can process
high-dimensional data, but also allow the discriminator to
witness the entire light field image in making the judgment.
The entire architecture of the proposed GAN is presented
in Fig. 3. Both the generator and the discriminator process the
light field data directly in 4D space. The generative network
is established using multiple high-dimensional convolutional
residual blocks (HDRB). As depicted in Fig. 4, each HDRB

FIGURE 4. Illustration of a high-dimensional residual block (HDRB).

is composed of two HDC layers [18] with the 3 × 3 angular
receptive field. With such a structure, the angular receptive
field of every HDRB will cover the entire 5 × 5 viewpoints,
allowing the module to learn the complete spatio-angular
structure and redundancy of a light field.

Furthermore, inspired by an earlier work on image recog-
nition [44], we design the HDRB module and use the Leaky
Rectified Linear Unit (LReLU) [45] as the activation function
The spatial upscaling operation is performed by a subpixel
convolution layer [46] while the angular pixel is upscaled
using the linear interpolation method. The output of the
generator network, together with real-world high-resolution
images, are fed into the discriminator network for training. As
Fig. 3 shows, the whole structure of the discriminator network
contains several HDC convolutional layers with increasing
filter depth from 64 to 512, which is the same as the net-
work proposed by Visual Geometry Group (VGG team) [47].
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FIGURE 5. Visualization of the geometric features extracted from different HDC layers of the proposed LightGAN.

However, we replace the fully-connected layers with a mean
layer (calculating the average output of the final convolu-
tion layer), which also supports the generator to converge
to a good solution according to the results, but dramatically
reduces the parameters compared with densely connected
layers.

D. HIGH-DIMENSIONAL FEATURE MAPS
As discussed in Section III-B, the HDC layer is able to
process the entire spatio-angular information of light field
data and extract the features preserving the angular correla-
tions. To figure out such a property, we dig into the learned
high-dimensional features and visualize the spatial appear-
ances and EPI patterns of these feature maps in Fig. 5. In the
figure, we compare the feature maps of three representative
light fields including two real-world scenes and one synthetic
scene. The first column gives the center view of each light
field. According to their view images, the selected samples
contain multiple types of surfaces, including the reflection
surfaces (i.e. bright regions in the ‘‘water’’ surface), transmis-
sion surfaces (i.e. dark regions in the ‘‘water’’ surface and the
‘‘glass’’ regions), and Lambertain surfaces (i.e. ‘‘wall’’ and
‘‘floor’’ regions, etc). The rest three columns exhibit the spa-
tial appearances and EPI patterns of the learned features. The

bright regions of the feature maps denote the places with high
activation. For example, the feature maps in the 2nd column
have higher activation near the object border. This indicates
that the features extracted from the 3rd HDC layer contain
edge features. Likewise, other layers can extract the reflection
features, occlusion features, texture features, etc. Although
the spatial appearances are diverse, one common property of
these high-dimensional features is they preserve the structural
information of light field, which can be demonstrated by
the feature EPIs presented in Fig. 5. The EPI patterns of
feature maps are close to the light field EPIs. Therefore,
the proposed generator, to some extend, ‘‘remembers’’ the
structural information in its learned features.

E. LOSS FUNCTION
The definition of our loss function is critical for the generator
network performance on light field reconstruction.We design
a novel spatio-angular loss function `SA to evaluate the
restoration results of light field. Such a spatio-angular loss is
formulated as a weighted combination of a spatial conceptual
loss `S , an angular correlation loss `A, and a generative
adversarial loss `G, i.e.,

`SA = α · `S + β · `A + γ · `G, (4)
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where the scalars α, β and γ denote the weights of each loss
term. The first term `S describes the conceptual differences
between each labels of SAI and reconstructed SAI. The sec-
ond term `A is defined based on the mean square error (MSE)
loss, which measures the `2 differences between the entire
reconstruction and corresponding label. The third term `G
is the inherent loss term of the GAN framework, which is
used to measure the stability of the competition between the
generator and the discriminator. These three loss terms are
further described below.

1) SPATIAL CONCEPTUAL LOSS
Inspired by the work of Ledig et al. on single image super-
resolution [21], we introduce the perceptual loss to describe
the spatial difference between each pair of corresponding
SAIs. Such loss is derived by applying the VGG loss `VGG
on each SAI. The motivation of employing the VGG loss
is based on the fact that the SAI can be easily perceived
by humans [48]. This reflects that every SAI contains the
core representations similar to a natural image. Therefore,
the expression of spatial conceptual loss term can be formu-
lated as

`S =
1
UV

U∑
u=1

V∑
v=1

(
φ
(
IHu,v
)
− φ

(
G
(
ILu,v
)))2

, (5)

where φ(·) denotes the mapping described in [21]. For clarity,
we define two notations IHu,v = IH (·, ·, u, v) and ILu,v =
IL(·, ·, u, v) to represent the SAIs (with angular coordinate
(u, v)) of IH and IL , respectively. As formulated in Eq. 5,
the conceptual loss is calculated on each pair of SAIs. One is
from the ground truth, and the other is from the reconstructed
light field.

2) ANGULAR CORRELATION LOSS
The angular correlation loss is defined based on the MSE,
which calculates the differences between the label EPIs and
output EPIs. Such a loss term can be formalized as

`A =
1
XU

X∑
x=1

U∑
u=1

(
EHx,u − G(E

L
x,u)

)2
. (6)

In this equation, we use the EPIs acquired by fixing a spa-
tial coordinate and an angular coordinate to calculate the
correlation loss. In other words, EHx,u = IH (x, ·, u, ·) and
ELx,u = IL(x, ·, u, ·). The EPI pattern describes the parallax
of each pixel in different images. As a result, the angular
correlation loss encourages the EPIs of generated light field
to be close to the ones of the original light field.

3) GENERATIVE ADVERSARIAL LOSS
The last loss term is the inherent generative adversarial loss.
For each input IL , the loss is computed as

`G = log
(
1− D

(
G
(
IL
)))

. (7)

TABLE 1. Quantitative Performance of the proposed network trained
using different loss terms on HCI new testset for spatial 4× task.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
In our LightGAN network, every convolution layer is com-
posed of 64 filters with 3 × 3 × 3 × 3 dimension in both
spatial and angular dimensions, respectively. The filters are
initialized using the method of Glorot and Bengio [49]. Fur-
thermore, we use the layout of the residual block proposed
by Gross and Wilber [50] with two 4D convolutional layers,
followed by batch normalization and the LReLU with a slope
α = 0.2 in the negative domain as the nonlinear activation
function.

We randomly select 100 scenes from the dataset Lytro
Archive [31] (excluding the Reflective and Occlusions cat-
egories) and Fraunhofer dataset [51] for training. The former
has 353 light field images that capture real-world scenes with
a Lytro Illum camera. In our experiment, we only select the
center 9 × 9 views to avoid the dark SAIs at the corner.
The latter is composed of 9 scenes captured with an ordinary
camera moving along two orthogonal directions (angular
dimension). The camera records the images from 21 vertical
camera positions and 101 horizontal camera positions, which
results in light fields with 21× 101 angular resolution.

In our experiments, the low-resolution training data are
obtained by downsampling according to

IL = δ
(
κ ∗ IH

)
+ η, (8)

where δ(·) is the nearest neighbor downsampling operator
applied on each view, κ denotes a Gaussian blurring kernel
with a window size of 7 × 7 and standard deviation of 1.2
pixels. We also put in additive noise η, with zero mean and
unit standard deviation.

B. TRAINING DETAILS
Our network takes a 4D patch of light field as the input
and outputs the corresponding super-resolved 4D patch. The
entire framework is implemented using the Tensorflow tool-
box and trained with the Adam optimizer. Initially, the learn-
ing rate is set to 10−5 and reduced by a factor of 0.1 every
10 epochs. The generator network and discriminator network
are updated alternately during the testing process until the
batch-normalization layer.
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FIGURE 6. Visual comparison for spatial 4× SR task on the real-world scene. We report the average PSNR and SSIM value for each algorithm. The red text
denotes the best result, while the blue one denotes the second best result.

FIGURE 7. Visual comparison for spatial 4× SR task on the synthetic scene. We report the average PSNR and SSIM value for each algorithm. The red text
denotes the best result, while the blue one denotes the second best result.

C. EFFECTIVENESS OF THE LightGAN
To evaluate the effectiveness of our model, we conduct the
ablation studies on different experimental settings which are
exhibited in Table 1. The proposed LightGAN is trained with
all three loss terms (S1), including the spatial conceptual
loss `S, the angular correlation loss `A and the generative
adversarial loss `G. The evaluations of our ablation studies
are from two aspects. First, to figure out the contribution
of GAN framework, we exam the performances of the gen-
erator trained with a discriminator or trained individually.
In Table 1, the settings without adversarial loss (i.e. S2, S5
and S6) mean that the generator is trained individually in
the corresponding experiments. On the other hand, in the
experiments with the settings S1, S3, and S4, the generator is
trained together with a discriminator. The Bicubic setting is
used as the baseline. By comparing the quantitative results
of settings S1 and S2, S3 and S5, S4 and S6, one can find
that the quantitative values tend to drop when adding the
adversarial loss for training. However, according the visual
results presented in Fig. 8, such a loss term on the other hand
contributes to more plausible visual results. Second, the abla-
tion studies also evaluate the impacts of different loss terms
on the network performance. For example, the angular cor-
relation loss `A encourages the network to reconstruct high

PSNR results which however, also tend to contain smooth
artifacts in the texture regions. The spatial conceptual loss `S
can also contribute to the visual results and one witnesses the
improvements by comparing the columns S2 and S6 in Fig. 8.

D. RESULTS AND ANALYSES
The proposed LightGAN learns to approximate the orig-
inal light field distribution, which allows it to deal with
both spatial and angular low-resolution problems. Therefore,
we conduct the evaluation on multiple tasks to illustrate the
effectiveness of our generative method.

For spatial resolution enhancement, we evaluate our
method in two aspects. First, we compare the perfor-
mance against several advanced methods specially designed
for light field, including LFCNN [19], LFNet [20],
BM PCA+RR [37], and Zhang et al. [36]. LFCNN enhances
the spatial and angular resolution separately, and for each
SAI, the model only makes use of the parallax information
from two neighboring views and omits the other views.
In addition, they use a primitive framework for the spatial
recovery, which results in a rough reconstruction. In both
Fig. 6 and Fig. 7, their results are quite close to the baseline
method (bicubic interpolation). Likewise, Wang et al. [20]
attempt to iteratively model the two adjacent views

116058 VOLUME 8, 2020



N. Meng et al.: LightGAN: A Deep Generative Model for Light Field Reconstruction

FIGURE 8. The visual reconstruction results correspond to the experiments with different settings in Table 1. As shown in the figure, the adversarial loss
tends to drive the generator to produce more plausible results by comparing the columns S1 and S2, columns S3 and S5, columns S4 and S6.

horizontally and vertically with LFNet. Benefitting from a
more sophisticated structure, their model achieves a slightly
higher quantitative results than LFCNN.

There are also approaches considering more than two
views for spatial reconstruction. Farrugia et al. [37] first rear-
range the SAIs to obtain an image sequence, and then train
their model to learn the linear projections between subspaces
based on the patch volumes of the sequence. Unfortunately,
the rearrangement has already destroyed the inherent struc-
tural property of the light field in the first step, let alone
the limited representative capacity of the linear projection.
On the other hand, Zhang et al. [36] choose to learn the
recovery mapping (as described in Eq. 1) directly with a
branched residual network. Each branch approximates the
correlations of views in one direction (e.g. horizontal, ver-
tical, and diagonal). The learned features are finally com-
bined to predict the HR light field. All of these techniques
exploit a pair or a sequence of SAIs each time, which
more or less simplifies the complex correlations among the
views.

By contrast, LightGAN can fully compute the entire
spatio-angular information and therefore conduct an accu-
rate reconstruction. This can be reflected both in spatial
details recovery and EPI pattern recovery. Fig. 6 and Fig. 7
present the visual reconstruction results for spatial 4× task
on real-world and synthetic scenes, respectively. Compared
with other super-resolution methods, LightGAN can generate
clear texture and maintain the epipolar property of the data.
Quantitative comparison is presented in Table 2, which lists
the peak signal-to-noise ratios (PSNR) values of different

TABLE 2. Quantitative evaluation (PSNR) on synthetic light field and
real-world light field for γs = 4. All numbers are measured in dB. Not all
of the Reflective and Occlusions scenes are used. In this study,
we randomly select 20 scenes from each category for evaluation and
report of the average PSNR values.

algorithms to illustrate their reconstruction results on both
real-world and synthetic scenes.

Given that the PSNR metric has its limitation to evalu-
ate the fidelity of the results in terms of our visual sense,
we make the second comparison with two state-of-the-art
single image super-resolution methods, namely, MSLap-
SRN [52] and RDN [53]. These two algorithms are state-of-
the-art methods particularly designed for single image super-
resolution, and they are applied on each SAI individually to
evaluate their performances on light field data. As shown in
Fig. 6, the method provides more realistic details (the ‘‘doo-
dles’’ on the billboards) compared with the other approaches.
However, these two methods are designed for single image.
That is they tend to omit the angular parallax information
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FIGURE 9. Visual results for 2× 2→ 8× 8 view synthesis task on a synthetic scene.

FIGURE 10. Visual results for 3× 3→ 9× 9 view synthesis task on a microscopy image.

which is proved to be helpful for spatial reconstruction by
many multi-view algorithms. In contrast, our method is able
to recover the details that quite approximate to the original
‘‘doodles’’ texture by considering both the spatial and angular
information.

Besides spatial reconstruction, we also evaluate our
method on view synthesis task. For each algorithm, we plot
the residual map of the generated view to make the difference
more visible. A darker blue means that the results resemble
the ground truth more. In Fig. 9 and Fig. 10, we present the
synthesis results on synthetic and real-world scenes, respec-
tively. The first scene is from the HCI new dataset [54]
(Platonic), which contains clear edges with a large range of
depth. This scene is used to illustrate the performances of
different algorithms on edge regionswhere occlusions appear.
Compared with Kalantari et al. [35] and Yeung et al. [38],
LightGAN can generate clearer edges as highlighted with
arrows in Fig. 9.
The second scene is from the EPFL dataset (Fountain

Pool), which contains a large region of non-Lambertian

surface (water). Although the three comparisonmethods have
competitive performances in terms of the residual maps,
the LightGANmethod provides more plausible spatial results
(red box region in Fig. 10). Likewise, the EPI patterns in both
figures are shown to demonstrate the recovery of correlations.
Kalantari et al. [35] and Yeung et al. [38] tend to give rough
spatial results, which subsequently impact their EPI results.
Wu et al. [42] fail to recover the non-Lambertian surface,
which leads to artifacts in the EPI pattern. In contrast, our
GAN-based model produces more realistic spatial details
with relatively sharp edges.

Fig. 9 and Fig. 10 also report the quantitative results. The
presented PSNR and SSIM values are the average values
calculated on each reconstructed views (exclude the input
views denoted by red squares in both figures). As shown in
the figures, although the proposed LightGAN is not trained
to pursuit the high quantitative results, our model can still
achieve the best performance compared with those learning
models trained using the MSE loss [35], [38], [42]. In addi-
tion, we also test the runtime of our proposed method on a
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FIGURE 11. Visual comparison for spatial-angular reconstruction. Both spatial and angular resolutions have been downsampled with the spatial factor
γs = 2 and the angular factor γa = 2 (generate 9× 9 views from 5× 5 views).

computer with and a NVIDIA Titan X GPU. The generator
of LightGAN takes about 10 seconds to reconstruct of a
light field with the resolution of 625 × 434 × 8 × 8 from
a 625 × 434 × 2 × 2 light field input which is much faster
than Kalantari et al. [35] and Wu et al. [42].
Last but not least, we evaluate the performance on

spatio-angular recovery, i.e. 2× spatial and 2× angular
enhancement. Method 4DCubic is presented as a base-
line, and the label images are displayed in the last col-
umn in Fig. 11. As discussed in spatial comparison,
LFCNN tends to provide a smooth reconstruction. Gul and-
GunturkciteGul2018Spatial adopts multiple CNNs but they
choose to conduct the recovery pixel-by-pixel. Such a strat-
egy ignores the consistency of neighboring spatial pixels, and
therefore results in the jagged artifacts near the object edges.
Our algorithm, however, generates clearer edges, especially
in the region with regular structures such as the ‘‘windows’’
and ‘‘roof’’ regions in Fig. 11.

V. CONCLUSIONS
In this paper, we propose a generative framework for
light field reconstruction. In order to fully calculate the
spatio-angular redundancy, we incorporate the HDC layers
both in the generator and the discriminator, allowing the net-
work to learn the direct mapping between the low-resolution
and high-resolution light fields. By combining the angu-
lar correlation loss with the spatial perceptual loss and
the adversarial loss, the proposed model is able to recover
high-frequency spatial details with good visual fidelity.

The proposed generative framework is specially designed
for light field processing and therefore it can handle a series
of reconstruction problems, including spatial SR and view
synthesis. We compare the performance of our model against

state-of-the-art methods in both tasks. Experimental results
show that our model is capable of simulating the local light
field distribution in addition to enhancing the spatial or angu-
lar resolutions, and outperforms other state-of-the-art algo-
rithms in most situations, especially when applied to scenes
with complex occlusions and non-Lambertian surfaces.
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