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ABSTRACT Multiple-input multiple-output (MIMO) radars are essential in many Internet-of-Things (IoT)
applications. Gain-phase error calibration is an important branch in MIMO radar. Existing calibration
algorithms are only suitable for white Gaussian noise scenario, however, spatially colored noise is more
practical in engineering implementation. In this paper, we stress the problem of direction finding and
sensor self-calibration in a bistatic MIMO radar in the co-exist of unknown gain-phase error and spatially
colored noise, and a covariance tensor-based parallel factor analysis (PARAFAC) estimator is proposed.
To suppress the spatially colored noise and exploit the multi-dimensional structure of the array measurement,
a covariance tensor is firstly established and the temporal cross-correlation operation is followed. Then
the PARAFAC decomposition is carried out to obtain the factor matrices. Thereafter, automatically paired
direction estimation is achieved via least squares. Finally, the element-wise multiply/divide technique and
the Lagrange multipliers are adopted to obtain the gain-phase error vectors. The algorithm is analyzed in
terms of identifiability and Cramer-Rao bound (CRB). Numerical simulations results show the effectiveness
and improvement of the proposed estimator.

INDEX TERMS Gain-phase error, spatially colored noise, colocated multiple-input multiple output radar,
parallel factor analysis, sensor calibration.

I. INTRODUCTION
Internet-of-Things (IoT) is one of the most important
infrastructures in our future smart cities. The concept of IoV
can be spread in a wide area, e.g., Internet-of-Vehicles [1],
[2], Internet-of-Industry [3], [4]. It is really a complex system
that integrates sensors, wireless communications, computa-
tions, big data, et al. The super integration ability enables IoT
to provide safe, comfortable and convenient life for human
begin. Sensors are the most fundamental units in IoT, they are
usually utilized to sense the necessary information, and thus
assist to make suitable command to the IoT system. Source
positioning using sensor or sensor array is an interesting topic
in IoV with numerical applications [1], [2]. For example,
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to provide unmanned drive service, to offer real-time navi-
gation and to call for emergency rescue. This topic is espe-
cially attractive in colocated multiple-input multiple output
(MIMO) radars, since it always involves high-dimensional
signal processing andmultiple parameter estimation. Accord-
ing to its sensor distribution, colocated MIMO radar can be
divided into two different classes, namely monostatic config-
urations and multi-static geometries. Direction finding is the
most fundamental task in colocatedMIMO radars. In amono-
static configuration, it means to get the direction-of-arrival
(DOA) of the targets, whereas in a multi-static configuration,
it requires to get both the DOA and direction-of-departure
(DOD) of the targets.

Till now, various estimation strategies have been proposed
for MIMO radars, such as multiple signal classification
(MUSIC) [5], Capon, subspace fitting, estimating signal
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parameters via rotational invariance technique (ESPRIT)
[6], least squares (LS) [7], maximum likelihood (ML) [8],
tensor approaches [9]–[12], optimization-aware algorithms
[13]–[15]. With respect to tensor approaches, there are two
main tensor decomposition frameworks, called higher-order
singular value decomposition (HOSVD) and parallel factor
analysis (PARAFAC) decomposition. The former is highly
similar to the traditional eigendecomposition method but
can obtain subspaces that are more accurate than the tra-
ditional ones, the latter factorizes a tensor to rank one
tensors, i.e., factor matrices than form the tensor. Usually,
tensor-based approaches provides better estimation perfor-
mance than matrix-based ones, as they can explore the
inherentmulti-dimensional nature of the tensormeasurement.
However, as illustrated in the literature, these algorithms
can only work well in the presence of ideal scenarios,
e.g., white Gaussian noise, well-calibrated sensors.
Nevertheless, non-ideal backgrounds often encounter MIMO
radar, such as spatially colored noise, gain-phase errors, sen-
sor mutual coupling [16]. Usually, mutual coupling effect can
be easily eliminated via using sparse sensor manifold (such as
coprime arrays [17], [18]), but the effect of gain-phase errors
and spatially colored noise cannot be easily removed. Many
efforts have been devoted to solve these two problems.

When unknown gain-phase errors exist in MIMO radar,
the transmit/receive directionmatrices would be coupled with
the gain-phase matrices, thus results in decreased estimated
performance. To this end, some self-calibration algorithms
have been presented. In [19], a reduced-dimensional MUSIC
method has been given. It is suitable for arbitrary sensor
manifold, but it needs exhaustive spectrum grid search, which
means it is computationally inefficient and cannot avoid the
drawback of off-grid problem [8]. In [20], an ESPRIT-like
algorithm has been proposed, which is capable to provide
closed-form solution for joint DOD and DOA estimation.
A propagator method has been driven in [21], which does
not require the eigen-decomposition calculation in [19], [20].
Another low-complexity calibration algorithm has been pro-
posed in [22], which relies on two well-calibrated sensors.
However, the subspace-based method are complex, since
they often involve high-dimensional optimization problem.
Taking the tensor nature of the measurement into consid-
eration, a PARAFAC estimator has been proposed in [23].
It first perform PARAFAC on the array signal to estimate
the factor matrices, and then it estimate the gain-phase
errors via the Lagrange multiplier method. Based on the
previous estimated gain-phase error, joint DOD and DOA
estimation are obtained via least square algorithm. The
PARAFAC estimator offers more accurate performance than
the matrix-based approaches in [19]–[22]. However, the gain-
phase error estimations cannot avoid the cumulative effec-
tive. All the above mentioned methods require at least two
well-calibrated sensors at both the transmit and receive (T/R)
end. An improved PARAFAC version has been proposed in
[24], which only require one calibrated sensor in the T/R end.

However, the array manifold must be strict non-linear,
making it is unsuitable for engineering application.

When faced with unknown spatially colored noise,
the covariance matrix of which is no longer scaled with
the identity matrix, thus the traditional methods will invalid.
To obtain the noiseless covariance matrix, several de-noising
frameworks have been proposed. In [25]–[28], the spa-
tial cross-correlation strategies have been utilized. Herein,
the transmit array is grouped into two ormore non-overlapped
subarrays, as the array noise (after matched filtering) cor-
responding to different transmit antenna is uncorrelated, the
noise’s spatial covariance matrix is full of zeros. In [29]–[30],
the temporal cross-correlation schemes have been derived,
in which the array measurements are divided into two parts,
each part associate with different pulse index. As the noise is
temporal uncorrelated, the cross-correlation of the two parts
is equal to a zero matrix. In [31], the covariance differencing
methods have been discussed, the spatially colored noise is
suppressed via covariance differencing, however, the signal
counterpart keeps invariant under the differencing transfor-
mation. Generally, the spatial cross-correlation strategies are
computationally economic, however, they always provide
poor estimation performance, as they cannot avoid the virtual
aperture loss. Both the temporal cross-correlation algorithms
and the covariance differencing approaches can make full use
of the virtual degree-of-freedom of a MIMO radar, but the
covariance differencing approaches are more complex than
the former, since the estimated angles are the unambiguous,
so they require additional pair calculation.

It should be emphasized that, as mentioned previously,
the gain-phase error problem and the spatially colored noise
problem have been stressed separately in MIMO radar, but
they are more likely to appear together in engineering appli-
cation. To the best of our knowledge, no work has taking this
problem into consideration. Inspired by the tensor structure of
the array measurement from aMIMO radar, a fast PARAFAC
estimator is given for sensor calibration and direction find-
ing. The main contributions of this paper are summarized as
follow:
• We take both gain-phase error and spatially colored
noise into consideration. As far as we know, this is
the first time that both imperfect scenarios are dis-
cussed. To solve this problem, the spatially colored
noise is firstly eliminated, then tensor decomposition is
performed for signal analysis. After which parameter
estimation and gain-phase error calibration are carried
out.

• We proposed a novel PARAFAC algorithm for joint
DOD and DOA estimation. The noiseless covariance
measurement is rearranged into a third-order PARAFAC
model, a fast PARAFAC decomposition is proposed to
obtain the corrupt direction matrices. Joint DOD and
DOA estimation is accomplished via solving a LS fitting
problem, thus to obtain closed-form and automatically
paired solutions.
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• We proposed a new gain-phase error calibration
algorithm. The element-wise multiply/divide technique
is estimate the gain errors, while the Lagrange multi-
pliers is utilized to obtain the phase error. Unlike the
pervious calibration algorithm, the proposed method is
free from the cumulative effect. Besides, the algorithm
is analyzed in terms of identifiability and Cramer-Rao
bound (CRB).

• We validate the effectiveness of the proposed algorithm
via numerical simulation. Compared with existing cal-
ibration algorithms, the proposed algorithm is robust
against spatially colored noise, thus it provides more
accurate parameter estimations. Numerical computer
examples validate the effectiveness of the proposed
estimator.

Notations: Lowercase bold letters, e.g., a, capital bold let-
ters, e.g., A, and boldface calligraphic letters, e.g., A,
denote vectors, matrices and tensors, respectively. (·)T , (·)H ,
(·)−1, and (·)† account for transpose, Hermitian transpose,
inverse, and pseudo-inverse, respectively; ‖·‖F denotes the
Frobenius norm.⊗ and� account for the Kronecker product
and the KhatriRao product, respectively; phase (·) returns
the phase of a vector in radian; vec (·) denotes vectoriza-
tion; E [·] is to get the mathematical expectation of a vari-
able. diag (a) returns a diagonal matrix with the diagonal
entities are the elements of a. δ (·) is the delta function
with δ (0) = 1 and δ (n 6= 0) = 0. The element-wise
divide and element-wise multiply are denoted by ./ and .×,
respectively.

II. PRELIMINARIES AND SIGNAL MODEL
A. TENSOR PRELIMINARIES
Before we give the signal model, we introduce some
preliminaries concerning tensors and tensor operations
(please refer to [12] and the references therein for more
details).
Definition 1 (Matrix Unfolding): The mode-n matrix

unfolding operation of an N-order tensor X ∈ CI1×···IN

is denoted by [X ]n, where the (i1, . . . , in)-th element of
X maps to the (in, j)-th element of [X ]n, with j = 1+∑N

k=1,k 6=n (ik−1) Jk and Jk =
∏k−1

m=1,m 6=n Im.
Definition 2 (Mode-n Tensor-Matrix Product): The

mode-n product of X ∈ CI1×I2×···IN by a matrix A ∈ CJn×In ,
is denoted by Y = X×nA, in mode-n matrix unfolding
format, it can be expressed as [Y]n = A [X ]n.
Definition 3 (The Properties of the Mode Product): The

properties of the mode product are shown as follows:

X×n·A×m·B = X×m·B×n·A, m 6= n

X×n·A×m·B = X×n·(B·A) , m = n (1)[
X×1·(A1)×2 · · · (AN )

]
n = An·[X ]n·[AN⊗· · ·An+1
⊗An−1 · · ·⊗A1]T (2)

Definition 4 (PARAFAC Decomposition): The PARAFAC
decomposition of an N-order tensor X with rank-K is

FIGURE 1. Illustration of a bistatic MIMO radar.

given by

X = I×1 (A1)×2 (A2)×3 · · ·×N (AN ) (3)

where I ∈ CK×K ···K is a diagonal tensor with the
(k, k, . . . , k)-th entities are ones and zeros elsewhere, An ∈
CIn×K is a full column rank matrix. In matrix format, (3) can
be expressed as

[X ]n = An [AN�· · ·An+1�An−1 · · ·�A1]T (4)

Definition 5 (Generalized Tensorization of a PARAFAC
model): For a PARAFAC decomposition model in (3), let the
order sets Qj =

{
oj,1, oj,2, . . . , oj,M

}
for j = 1, 2, . . . , J

be a partitioning of the dimensions Q = {1, 2, . . . ,N },
the generalized tensorization ofX is denoted by a new tensor
XQ1,Q2,...,QJ ∈ CT1×T2×···TJ with

XQ1,Q2,...,QJ = I×1 (B1)×2 (B2)×3 · · ·×J (BJ ) (5)

where Bj = Aoj,1�Aoj,2�Aoj,Mj , Tj is the row dimension
of Bj.

B. SIGNAL MODEL
We consider a general bistaticMIMO radar scenario, in which
the MIMO radar is equipped with M transmit sensors and N
receive sensors, as illustrated in Fig. 1. To simplify the data
model, we assume both the transmit array and the receive
array are uniform linear arrays (ULA) with half-wavelength
distributing. Besides, we suppose that the transmit sen-
sors omit mutually orthogonal pulse waveforms sm (t) ,
m = 1, 2, . . . ,M , i.e.,∫ T

0
sm (t) s∗n (t)dt = δ (m−n) (6)

where t is the fast time index, T is the pulse duration. Assume
that K targets appearing in the far-field of MIMO radar, the
DOD and DOA for the k-th target are denoted by ϕk and θk ,
respectively. The reflected echo from the k-th target is

rk (t, τ ) = bk (τ ) aTt (ϕk) s (t) (7)

where τ is the pulse index, bk (τ ) = bkej2π fkτ is
the target characteristic coefficient corresponding to the
k-th target, bk and fk stand for the reflection ampli-
tude and Doppler frequency shift of the k-th target
at (ϕk) =

[
1, e−jπ sin(ϕk ), . . . , e−j(M−1)π sin(ϕk )

]T
∈

CM×1 is the associate transmit steering vector, s (t) =
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[s1 (t) , s2 (t) , . . . , sM (t)]T is the waveform vector. The
captured signal at the receive end can be expressed as

x (t, τ ) =
K∑
k=1

bk (τ ) ar (θk) aTt (ϕk) s (t)+w (t, τ ) (8)

where ar (θk) =
[
1, e−jπ sin(θk ), . . . , e−j(N−1)π sin(θk )

]T
∈

CN×1 is the associate receive steering vector, w (t, τ ) is the
array noise, which is assumed to be spatially correlated with
unknown covariance matrix Q, i.e.,

E
{
w (t1, τ )wH (t2, τ )

}
= Qδ (t1−t2) (9)

Matching x (t, τ ) with sm (t) yields [30]

ym (τ ) =
∫ T

0
x (t, τ ) s∗m (t)dt

=

K∑
k=1

bk (τ ) ar (θk) amt (ϕk)+nm (τ ) (10)

where amt (ϕk) is the m-th entity in at (ϕk), nm (τ ) =∫ T
0 w (t, τ ) s∗m (t)dt is the matched array noise. Let
y (τ ) =

[
yT1 (τ ) , y

T
2 (τ ) , . . . , y

T
M (τ )

]T and n (τ ) =[
nT1 (τ ) ,n

T
2 (τ ) , . . . ,n

T
M (τ )

]T , then we have
y (τ ) =

K∑
k=1

bk (τ ) [at (ϕk)⊗ar (θk)]+n (τ )

= [At�Ar ] b (τ )+n (τ ) (11)

where b (τ ) = [b1 (τ ) , b2 (τ ) , . . . , bK (τ )]T is the target
reflection coefficient matrix, At = [at (ϕ1), at (ϕ2) . . . , at
(ϕK )] ∈ CM×K and Ar = [ar (θ1) , ar (θ2) , . . . , ar (θK )] ∈
CN×K are the corresponding transmit direction matrix and
receive direction matrix, respectively. (11) ignores the sensor
errors in MIMO radar. Taking the gain-phase error in both
the transmit array and receive array, (11) is re-written as
follows [19]

y (τ ) = [(C tAt)�(CrAr )] b (τ )+n (τ )

=

[
Ãt�Ãr

]
b (τ )+n (τ )

= Ãb (τ )+n (τ ) (12)

where C t = diag {ct }, Cr = diag {cr }, Ãt = C tAt and
Ãr = CrAr , Ã = Ãt�Ãr . Assume the first mt transmit
sensors and the first nr receive sensors have been well-
calibrated, then the gain-phase error coefficient vectors cor-
responding to the transmit sensors and the receive sensors are
denoted by ct = [1, 1, . . . , 1 , ρmt+1t , . . . , ρMt

]
and cr =[

1, 1, . . . , 1, ρnr+1r , . . . , ρNr

]
, with mt and nr ones in them,

respectively, where ρnt/r = gnt/re
jpnt/r , gnt/r ∈ R and pnt/r ∈ R

are the associate gain error and phase error, respectively.
Namely, {

C t = GtP t
Cr = GrPr

(13)

where Gt = diag
{
1, 1, . . . , 1, gmt+1t , . . . , gMt

}
,P t =

diag {1, , 1, . . . , 1pmt+1t , . . . , pMt
}
,Gr = diag {1, 1, . . . , 1 ,

gnr+1r , . . . , gNr
}
, Pr = diag

{
1, 1, . . . , 1, pnr+1r , . . . , pNr

}
.

Suppose that the target Doppler frequencies are different, then
the covariance matrix of y (τ ) is given by

Ry = E
{
y (τ ) yH (τ )

}
= ÃRbÃ

H
+Rn (14)

where Rb = E
{
b (τ ) bH (τ )

}
is the covariance matrix of

the target reflection coefficient, which is a diagonal matrix,
Rn = E

{
n (τ )nH (τ )

}
is the noise covariance matrix. Now

we focus on the noise counterpart, note that n (τ ) can also be
expressed as

n (τ ) =
∫ T

0
s∗ (t)w (t, τ ) dt (15)

then the noise covariance matrix is given by

E
{
n (τ )nH (τ )

}
=E
{∫ T

0

∫ T

0

[
s∗ (t1)⊗w (t1, τ )

] [
s∗ (t2)⊗w (t2, τ )

]Hdt1dt2}
= E

{∫ T

0

∫ T

0
[s (t1) s (t2)]T⊗

[
w (t1, τ )wH (t2, τ )

]
dt1dt2

}
=

∫ T

0

∫ T

0
[s (t1) s (t2)]T⊗E

{[
w (t1, τ )wH (t2, τ )

]}
dt1dt2

=

∫ T

0

∫ T

0
Iδ (t1−t2)⊗Qδ (t1−t2) dt1dt2

= I⊗Q (16)

where I is an identity matrix. In practice, L snapshots can be
collected, i.e., τ = τ1, τ2, . . . , τL , and the covariance matrix
of y (τ ) can be estimated via

Ry =
1
L

L∑
l=1

y (τl) yH (τl) (17)

From (16) we observe that the noise covariance is not scaled
with the identity matrix, thus traditional subspace methods
will fail to work, neither the matrix/tensor decomposition
approaches could correctly work. Nowwe face two problems,
how to suppress the spatially colored noise, and how to
calibrate the transmit/receive sensors.

III. THE PROPOSED FRAMEWORK
The proposed algorithm can be divided into two main steps:
to eliminate the noise first, and to calibrate the sensors
follows. In what follows, we will show the details of the two
steps.

A. DE-NOISING
Aswe have reviewed previously, several de-noising strategies
are available to eliminate the effect of spatially colored noise.
In order not to hurt the virtual aperture of MIMO radar,
and taking the computational complexity into consideration,
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herein we chose the temporal cross-correlation method. It can
be seen that

E
{
n (τ1)nH (τ2)

}
= E

{∫ T

0

∫ T

0

[
s∗(t1)⊗w (t1, τ1)

] [
s∗ (t2)⊗w (t2, τ2)

]H dt1dt2}
=

∫ T

0

∫ T

0
[s (t1) s (t2)]T⊗E

{[
w (t1, τ1)wH (t2, τ2)

]}
dt1dt2

=

∫ T

0

∫ T

0
Iδ (t1−t2)⊗Qδ (t1−t2) dt1dt2

= [I⊗Q] δ (τ1−τ2) (18)

which implies that the noise associate with various pulses
are uncorrelated. Inspired by the above result, we divide the
matched array measurement into two different subsets, one is
Y1 = [y (τ1) , y (τ2) , . . . , y (τL−1)], and the other one is Y2 =
[y (τ2) , y (τ3) , . . . , y (τL)]. According to (18), the covariance
matrix of Y1 and Y2 is

R̃y = E
{
Y1YH2

}
= ÃR̃bÃ

H
n (19)

where the covariance matrix R̃b = E
{
b (τ1) bH (τ2)

}
=

diag
{
b1ej2π f11τ , b2ej2π f21τ , . . . , bK ej2π fK1τ

}
,1τ = τp−

τp+1, p = 1, 2 . . . ,L−1. It is obvious that the noise term is
removed from(19). However, the tensor structure is ignored
in (19), to make full use of the multi-dimensional structure,
the PARAFAC decomposition is established, which will be
shown below.

B. PARAFAC DECOMPOSITION
According to [30], R̃y can also be arranged into PARAFAC
decomposition model as

R̃y = I×1Ãt×2Ãr×3Ã
∗

t×4

(
Ã
∗

r R̃b
)

(20)

In the above PARAFAC decomposition model, R̃b is connect
with Ã

∗

r . Actually, R̃b can be combined with any of the factor
matrices Ãt , Ãr , Ã

∗

t and Ã
∗

r . In fact, R̃y can be interpreted
as the symmetrical Hermitian unfolding of R̃y. There are
two main technique for tensor decomposition, one is Tucker
decomposition, and the other one is PARAFAC decompo-
sition. Generally speaking, the PARAFAC decomposition
method is superior to Tucker decomposition, since the former
can get the estimations of the factor matrices, whereas the
latter can only get the improved subspace estimation. In this
paper, the PARAFAC decomposition technique is chosen
for tensor decomposition. PARAFAC decomposition for the
model in (20) tries to solve∥∥∥Z−R̃y

∥∥∥
F
, Z = I×1Ât×2Âr×3Â

∗

t×4

(
Â
∗

r R̂b
)

(21)

which can be accomplished via quadrilinear alternative least
squares (QALA). However, QALS suffers from the slow
converge speed. It is well-known that a third-order PARAFAC
decomposition model can be solved via the fast algo-
rithm COMFAC [12], [30]. To accelerate the convergence,
we construct another PARAFAC decomposition model.

Define Q1 = {1}, Q2 = {2}, Q3 = {3, 4}, according to
Definition 5, R̃y can be arranged into a third-order tensor
Y as follows

Y = I×1Ãt×2Ãr×3Ãt,r (22)

where Ãt,r = Ã
∗

t�

(
Ã
∗

r R̃b
)
. Obviously, (22) presents a

third-order PARAFAC decomposition model. In mode-n
matrix unfolding format (as shown in Definition 4), Y can
be rewritten as

[Y]T1 =
[
Ãt,r�Ãr

]
Ã
T
t (23)

[Y]T2 =
[
Ãt,r�Ãt

]
Ã
T
r (24)

[Y]T3 =
[
Ãr�Ãt

]
Ã
T
t,r (25)

For a third-order PARAFAC decomposition model, the
trilinear alternating least squares (TALS) technique is an
effective solver to estimate the three factor matrices. For the
factor matrices Ãt , Ãr and Ãt,r in (22), TALS tries to fit the
following problems simultaneously

min
∥∥∥[Y]T1−

[
Ãt,r�Ãr

]
Ã
T
t

∥∥∥
F

(26)

min
∥∥∥[Y]T2−

[
Ãt,r�Ãt

]
Ã
T
r

∥∥∥
F

(27)

min
∥∥∥[Y]T3−

[
Ãr�Ãt

]
Ã
T
t,r

∥∥∥
F

(28)

TALS treats two of the factor matrices as known
parameters, then it tries to update the rest factor matrix via
least squares (LS) technique. TALS update all the factor
matrices successively, based on the previously obtained factor
matrices. The iterations in TALS will repeat before algorithm
convergence. It is assumed that K is known. Otherwise, it can
be estimated from some of the existing methods. For the
factor matrix Ãt , the LS solutions is

Â
T
t =

[
Ãt,r�Ãr

]†
[Y]T1 (29)

where Ãr and Ãt,r are previously estimated in the last itera-
tion. Similarly, the LS updates for Ãr and Ãt,r are given by

Â
T
r =

[
Ãt,r�Ãt

]†
[Y]T2 (30)

Â
T
t,r =

[
Ãr�Ãt

]†
[Y]T3 (31)

To speed up the convergence, we chose the fast version of
TALS, the COMFAC algorithm [12], [30], for PARAFAC
decomposition. In COMFAC, it first compresses the tensor
into a smaller one, and the iterations are process in the low-
dimensional space, which quickly converge after only a few
iteration.
As it is known to us, matrix decompositions are usually not

unique, unless additional constrains are enforced, e.g, orthog-
onality. Unlike matrix decomposition, PARAFAC decompo-
sition is always unique under mild condition. Theorem 1
gives the uniqueness condition of PARAFAC decomposition.
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For the PARAFAC decomposition model in (22), if the
k-rank of the factor matrices Ãt , Ãr and Ãt,r (denoted by
kr
(
Ãt
)
, kr

(
Ãr
)
, and kr

(
Ãt,r

)
, respectively) satisfy

kr
(
Ãt
)
+kr

(
Ãr
)
+kr

(
Ãt,r

)
≥ 2K+2 (32)

then the estimation of Ãt , Ãr and Ãt,r , denoted by Ât , Âr and
Ât,r , are unique up to permutation and scaling of columns.

The permutation and scaling effect in PARAFAC
decomposition can be expressed as

Ât = Ãt511+E1

Âr = Ãr512+E2

Ât,r = Ãt,r513+E3

(33)

where 5 is a permutation matrix (as shown in (33), all the
estimated factor matrices share the same permutationmatrix),
E1, E2, and E3 stand for the fitting errors, 11, 12, and
13 are scaling matrices, which are diagonal matrices with
111213 = Ik .

C. ANGLE ESTIMATION
Once Ât and Âr have been achieved, the LS technique can be
utilized again to obtain direction estimation. It is obvious that
the phase of at (ϕk) is

−phase (at (ϕk)) =
[
0, π sin

(
ϕk
)
, . . . , π (M−1) sin

(
ϕk
)]T
(34)

which has linear characteristic. Let ãt (ϕk) be the k-th
column of Ãt , and let āt (ϕk) be the vector comprimes the
first mt element of ãt (ϕk). Since there are at least two
well-calibrated sensors in both the transmit/receive array, and
let ht = −phase (āt (ϕk)), it is easy to find

P tb = ht (35)

with

P t =


1 0
1 π
...

...

1 (mt−1) π

, b =
[
b0
b1

]
(36)

where b0 is a scaler that we do not care about. Let the
estimation of ht is ĥt . The LS solution of b is

b̂ = P†
t ĥt (37)

Let b̂1 be the estimated b1, the k-th DOD can be estimated
via

ϕk = arcsin
(
b̂1
)

(38)

In a similar way, we can get the receive gain-phase error
matrix and the k-th DOA. As we pointed out previously,
Ât and Âr share the same permutation matrix, the estimated
DOD and DOA are paired automatically.

D. SENSOR CALIBRATION
In what follows, we only explain the principle of sensor
calibration and angle estimation from the estimated transmit
direction matrix Ât . Firstly, we focus on gain error vectors
estimation. For the first column and the second column of Ât ,
denoted as ât (ϕ1) , ât (ϕ2). According to(33), we have{

ât (ϕ1) ≈ GtPat (ϕa)
ât (ϕ2) ≈ GtPat (ϕb)

, a, b ∈ {1, 2, . . . ,K } (39)

Then, we construct{
ât (ϕ1) .

/
ât (ϕ2) = at (1)

ât (ϕ1) .×â
∗

t (ϕ2) = G2
t at (1)

(40)

where1 = ϕa−ϕb. Thereafter, the transmit gain error vector
can be estimated via

ĝt =
√(

ât (ϕ1) .×â
∗

t (ϕ2)
)
.
/(
ât (ϕ1) .

/
ât (ϕ2)

)
(41)

Next we will focus on phase error estimation. Let C t,1 and
C t,2 are the diagonal matrices consisted of the first and last
M−1 entities of ct . Define U t = diag {ut } = C t,1C−1t,2 . Let
Ãt,1 and Ãt,2 denotes the first and last M−1 rows of Ãt . It is
obvious that the following invariant properties are established

U t Ãt,1 = Ãt,28t (42)

where 8t = diag
(
ejπ sinϕ1 , ejπ sinϕ2 , . . . , ejπ sinϕK

)
. There

are two unknown matrices in (42), to estimate them we need
to solve

min
U t ,8t

∥∥∥U t Ãt,1−Ãt,28t

∥∥∥
F

(43)

Following the Lagrange multiplier in [23], we can get

ût = V−1t Et
(
ETt V

−1
t Et

)−1
ht (44)

where V t =

(
I−Ãt,1Ã

†
t,1

)
�

(
Ã
∗

t,2Ã
T
t,2

)
, Et consists of the

first mt−1 columns of a (M−1)×(M−1) identity matrix,
ht is a mt−1 column vector with all the entities are ones.
According to the structure of ut , the gain-phase error of the
p-th (p = mt+1,mt+2, . . . ,M ) element cpt is given by

cpt = 1

/ p∏
q=mt

ut (q) (45)

where ut (q) denotes the q-th element of ut , from which we
can get the phase error of the transmit gain-error phase error
vector. It can be seen from (45) that the estimated gain-phase
error vector cannot avoid the cumulative effective, this is why
we estimate the gain error coefficient from the element-wise
operation.
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IV. ALGORITHM ANALYSIS
A. IDENTIFIABILITY
The maximum target number that the proposed algorithm
can identify is constrained by (32). Usually, we have
kr
(
Ãt
)
= M ,

(
Ãr
)
= N , kr

(
Ãt,r

)
= MN . There-

fore, the proposed algorithm can identify at most K =

(MN+M+N−2) /2. While the PARAFAC method in [23]
can detect K = (M+N+L−2) /2 targets, and the ESPRIT
approach in [20] can detect min {M (N−2) ,N (M−2)} tar-
gets. Therefore, the proposed method may have lower iden-
tifiability than PARAFAC or ESPRIT, but we will show that
it has better estimation accuracy than them in the simulation
section.

B. STOCHASTIC CRB
We assume the entities of the spatially colored noise
covariance matrix Q are parameterized by a vector
σ = [σ1, σ2, . . . , σP]T, where σp(p =1,2,. . . , P) are real
constants. Inspired by [19] and [30], we can get the stochastic
CRBs on joint DOD and DOA estimation in the presence of
spatially colored noise and gain-phase noise, which are given
by

CRBSTO (θ, ϕ) =
1
L

[
H−MT−1MT

]−1
(46)

with

H = 2Re
{(
D̃
H
5⊥
Ã
D̃
)
⊕

(
R̆
T
b⊗12×2

)}
(47)

M = 2Re


 J

T
((

D̃
H
θ 5
⊥

Ã

)
⊗

(
R̃
−1
ĂRb

)T)
Q̃
∗

JT
((

D̃
H
ϕ 5
⊥

Ã

)
⊗

(
R̃
−1
ĂRb

)T)
Q̃
∗


 (48)

J =
[
vec{e1eT1 }, vec{e2e

T
2 }, . . . , vec{eke

T
k }

]
(49)

Q =
[
vec{Q̃

′

1}, vec{Q̃
′

2}, . . . , vec{Q̃
′

p}

]
(50)

where D̃ = [D̃θ , D̃ϕ], D̃θ = Q−1/2,Dθ , D̃ϕ = Q−1/2,Dθ .
Dθ = C

[
at
(
ϕ1
)
⊗
∂ar (θ1)
∂θ1

, . . . , at
(
ϕK
)
⊗
∂ar (θK )
∂θK

]
and Dϕ =

C
[
∂at(ϕ1)
∂ϕ1
⊗ar (θ1) , . . . ,

∂at(ϕK )
∂ϕK
⊗ar (θ2)

]
, C = C t⊗Cr .

5⊥
Ã
= I−5Ã with 5Ã = ĂĂ

†
Ă = Q−1/2Ã, R̆b =

RbĂ
H
R̃
−1
ĂRb, R̃ = Q−1/2R̃yQ−1/2, 12×2 denotes the 2×

2 matrix filled with ones. Q̃
′

p = Q−1/2Q′pQ
−1/2 and

Q′p =
∂Q
∂σp

.

V. SIMULATION RESULTS AND DISCUSSIONS
To show the effectiveness of the proposed estimator,
numerical simulations results are presented. In the sim-
ulations, we consider a bistatic MIMO radar config-
ured with M = 8 transmit sensors and N = 8 receive
sensors, both of which are ULAs with half-wavelength
spacing. The transmit gain-phase error vector is ct =[
1, 1, 1, 1.21ej0.12,1.1ej0.35,0.89ej0.98, 1.35ej2.65,, 0.92ej1.97

]
and the receive gain-phase error vector is
cr = [1, 1, 0.94ej1.12, 1.23ej2.35, 1.49ej0.58,0.75ej0.65,

FIGURE 2. Scatter results with SNR = 20 dB(a) transmit gain error.
(b) receive gain error.(c) transmit phase error. (d) receive phase error
(e) DOD and DOA results.

0.52ej1.22, 2.1ej0.89]. Assume that there are K = 3 uncor-
related point target appearing the same range bin of the
radar system, and the DOD-DOA pairs are (20◦, 10◦),
(35◦,−15◦) and (60◦, 0◦), and L snapshots are collected.
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FIGURE 2. (Continued) Scatter results with SNR = 20 dB(a) transmit gain
error. (b) receive gain error.(c) transmit phase error. (d) receive phase
error (e) DOD and DOA results.

The signal-to-noise ratio (SNR) is defined as the signal power
to the noise power after matched filtering. The covariance
matrix of the spatially noise is Q with the (m, n)-th entity
of which is given by Q (m, n) = e−|m−n|α , where α is the
‘colored’ coefficient that control the noise covariance. In each
simulation, 200Monte Carlo rails are carried out. To compare
with existing closed-form solution, the performance of the
ESPRIT approach in [20] and the PARAFAC approach in [23]
are added.

In the first example, we illustrate the scatter results of the
proposed PARAFAC estimator with SNR = 20dB, where
α = 0.1 and L = 500 are considered. Fig.2 show the gain-
phase errors results and the direction estimation results. It can
be seen that the gain-phase errors can be accurately recov-
ered and the angles can be correctly estimated and paired
automatically.

In the third example, we test the root mean square
error (RMSE) on direction estimation at various SNR
(the definition of RMSE is given in [23]), where α = 0.1 and
L = 500. The results are shown in Fig.3. It is seen
the PARAFAC method preform worse than ESPRIT at low

FIGURE 3. RMSE vs. SNR on direction estimation.

FIGURE 4. RMSE vs. L on direction estimation.

SNR regions, but it would provide much better performance
than the latter when SNR is relative high. Notably, the estima-
tion accuracy of the proposed estimator is much better than
ESPRIT and PRAFAC. It shows that the PARAFAC method
may provide very close estimation performance to the pro-
posed estimator when SNR is larger than 20dB, as spatially
colored noise effect become weak at high SNR regions.

In the fourth example, we compare the RMSE performance
at different snapshot number L, where α = 0.1 and
SNR = 10dB. The result is illustrated in Fig 4. It depicts
that the performance of all the algorithms would be improved
with increasing L. Besides, tensor methods (PARAFAC and
the proposed estimator) offer much better performance than
the matrix-based algorithm (ESPRIT), this is caused by
the fact that tensor approaches could make full use of the
multi-dimensional structure of the array measurement.
In addition, the proposed estimator outperform all the com-
pared methods.

In the fifth example, we test how the spatially colored
parameter α affect the estimation performance. Fig 5 presents
the RMSE comparison results, where L = 500 and
SNR = 0dB. It should be noticed that Q ≈ I when α � 1.
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FIGURE 5. RMSE vs. α on direction estimation.

FIGURE 6. RMSE vs. SNR on direction estimation with Gaussian white
noise.

FIGURE 7. RMSE vs. SNR on gain-phase error estimation with Gaussian
white noise.

Results show that the proposed algorithm is insensitive to α,
as RMSE of the proposed estimator barely changes with α.
However, both ESPRIT and PARAFAC are sensitive to the

spatially colored noise parameter. As expected, the proposed
estimator offers better estimation accuracy than the compared
algorithms.

Finally, we compare the RMSE performance of various
versus SNR at Gaussian white noise. Simulation conditions
are the same to that in the third example. The RMSE per-
formance on direction estimation and RMSE performance on
gain-phase error estimation are depicted in Fig. 6 and Fig. 7
(gain-phase error estimation of ESPRIT is not given as it has
not been reported in the reference), respectively. A similar
observation can be obtained with that with colored noise. The
proposed algorithm can achieve better direction estimation
performance than all the compared methods.

VI. CONCLUSION
In this paper, we stress the problem of joint DOD and DOA
estimation in bistatic MIMO radar with gain-phase errors
and spatially colored noise. A fast PARAFAC algorithm is
proposed, which is not sensitive to spatially colored noise.
Joint DOD and DOA estimation can be easily estimated
via Ls technique form the well-calibrated sensors, and the
gain-phase errors can be achieved via element-wise oper-
ations and Lagrange multipliers. Simulation results show
the proposed estimator offers much better estimation perfor-
mance than the existing close-form solutions. The proposed
estimator should have a bright prospect in actual applications.
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