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ABSTRACT The human face is one of the most viewed visual objects in a person’s life and is used for
identifying a person through facial landmarks, which includes the eyes, nose, mouth, and ears that make
up a face. It is also possible to communicate nonverbally through the movements of facial landmarks; that
is, change of facial expression. Thus, facial landmarks play a crucial role in human-related image analysis.
Automatic facial landmark detection is a challenging problem in the field of computer vision, and various
studies are underway. The emergence of Deep Neural Networks has played an important role in solving
difficult problems in computer vision. Semantic segmentation is a field in which images are classified into
pixel units and has also developed rapidly by incorporating deep learning. In this paper, we propose a method
for accurately extracting facial landmarks using semantic segmentation. First, we introduce a semantic
segmentation architecture for sophisticated landmark detection, and datasets composed of facial images
and ground truth pairs. Then, we suggest how improve the performance of pixel classification by adjusting
the imbalance of the number of pixels according to the face landmark. Through extensive experiments,
we evaluated our approach using the metrics pixel accuracy and intersection over union.

INDEX TERMS Facial landmark, semantic segmentation, deep neural networks, network architecture, pixel
unbalance, weighted feature map.

I. INTRODUCTION
One of the most common visual objects that people encounter
in their lifetimes is human faces. People can identify individ-
uals using facial landmarks: the features that make up a face,
such as eyes, nose, and mouth. Humans express their feelings
using facial expressions by moving their facial landmarks
and can understand the emotions of other people by reading
their facial expressions. The appearance and movement of
facial landmarks facilitate non-verbal dialogue. Therefore,
recognizing facial landmarks plays an essential role in iden-
tifying a person or analyzing a person’s emotions. Therefore,
identifying facial landmarks in images of people is essential
for human-related image analysis. Various studies into the
detection of facial landmarks have been carried out, but the
task is still challenging because of variations in face images
caused by factors such as pose, lighting, and occlusions [1].
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Deep Neural Networks (DNNs) [2] have been shown to
be effective in solving challenging computer vision problems
such as image classification and object recognition. DNNs
have been used in facial landmark detection research, and
detection performance has significantly improved with their
use [3]. Studies have identified several key points that repre-
sent facial landmarks [4]–[7]. These studies generally extract
five or 68 landmark points. The five points mark the specific
position ofmajor landmarks such as the eyes, nose, andmouth
and the 68 points even represent the approximate shape of
the face landmarks. These approaches have the advantage of
being able to detect landmarks quickly and accurately, and it
is even possible to process the data in real-time in a general
hardware environment [8], [9]. These technologies can be
used for various purposes such as face identification [10], [11]
and emotion recognition [12], [13]. Although using five
or 68 points is useful and practical, this approach does not
detect hair, which plays a significant role in identifying an
individual. Furthermore, it does not detect detailed landmark
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FIGURE 1. SegNet based facial landmark extraction: Bad cases include (c) misunderstanding the background and identifying it as hair, (d) inaccurate
detection of side face landmarks, and (e) inaccurate facial landmark detection of the eyebrow and nostril.

shapes such as distinguishing the pupils from the whites of
the eyes or detecting the exact shape of the eyebrows.

To detect these more detailed landmarks, in our previous
work [14], [15], we used semantic segmentation, a widely-
used approach to computer vision, which involves classifying
each pixel in an image. In these studies, we used two CNN
models; (i) The first model is Faster R-CNN [16] to find a
region of the face in the image. The face region is cropped
and resized. (ii) The second model is SegNet [17], [18] that
performs semantic segmentation using the processed image
as input. The model is known to be effective for extracting
the detailed shape of an object; its backbone architecture is
VGG16 [19]. In terms of pixel accuracy, the model accurately
extracts facial landmarks. However, as shown in Figure 1,
there are some drawbacks to face landmark detection. For
instance, it cannot reliably identify the side face landmarks.
Also, if a landmark occupies a small proportion of the pixels
in an image, such as a pupil or an eyebrow, the shape may be
inaccurate. Such pixels are sometimes identified as belonging
to the wrong class.

To overcome these problems and make the model more
robust and accurate, we propose a new semantic segmentation
architecture, a pixel balancing method, and a pixel classifi-
cation scheme. We added a shallow semantic segmentation
model to refine the results of a basic semantic segmentation
model. There is no public facial landmark dataset appropri-
ate for semantic segmentation, so we constructed a dataset
manually. The dataset consists of face image and ground truth
pairs, with ground truth made up of nine classes that represent

specific facial landmarks. The distribution of classes among
the pixels is highly unbalanced.

To balance the pixel distribution during the training pro-
cess, we applied an area-based class weight, which represents
the ratio of the number of pixels of a class and the number
of occurrences of that class. Finally, we calculated a class
weight for pixel-wise classification and applied it to feature
maps from the Softmax layer, to improve classification per-
formance. The paper is organized as follows: Section 2 intro-
duces several studies related to facial landmark detection and
semantic segmentation. Section 3 describes our algorithm in
detail, and in Section 4, we evaluate our approach experimen-
tally. Finally, Section 5 concludes this paper.

II. RELATED WORKS
The purpose of this paper is to describe an approach for
accurately extracting facial landmarks using semantic seg-
mentation, regardless of the size of the face or its direction.
Facial landmark detection and semantic segmentation are
both challenging tasks and have been studied widely.

A. FACIAL LANDMARK DETECTION
Feng and colleagues proposed a framework for detecting
facial landmarks in a wild dataset in 2017 [6]. They used
two publicly available CNN-based face detectors, dlib and
MTCNN, and two proprietary detectors. The bounding boxes
established by the face detectors were aggregated to improve
detection accuracy. Then, these authors used cascaded shape
regressors to estimate pose and preprocess the images.
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Finally, the researchers used a cascaded shape regressor to
locate the facial landmarks. Ranjan and colleagues described
a CNN model called HyperFace in 2017, which performed
face detection, landmark localization, pose estimation, and
gender recognition [7]. They used one backbone CNN archi-
tecture and added various output layers such as regression
and classification layers after the fully-connected layer to
enable their model to achieve multiple goals. Tang and
colleagues detected facial landmarks using semi-supervised
learning based on CNNs in 2018 [20]. The model needed
only an image as input and solved the problem of occlu-
sion of large areas by detecting visible facial components
while existing face detectors failed to detect faces. Zhu
and colleagues developed Occlusion-adaptive Deep Net-
works (ODNs) in 2019 to solve the occlusion problem [21].
ODNs extract feature maps using the residual blocks, and
then use the extracted feature maps as input into two CNN
modules: A Geometry-aware Module and a DistillationMod-
ule. Finally, facial landmarks are extracted from the fea-
ture maps concatenated from the modules by passing them
through a Low-Rank Learning module and a fully-connected
layer. Jackson and colleagues performed semantic segmen-
tation on facial images in 2016 [22]. They designed two
semantic segmentation architecture based on fully convo-
lutional networks (FCNs) [23]. The first one is for facial
landmark points detection, and the second one is for semantic
segmentation. The detected points are used as a guideline
for semantic segmentation. Also, there is no pixel annotated
facial dataset so that they created pixel annotated dataset
using a public facial dataset with 68 key points.

B. SEMANTIC SEGMENTATION
Long and colleagues proposed FCNs, the first deep learning
based semantic segmentation model in 2015 [23]. In FCNs,
an 11-convolution layer is substituted for the fully-connected
layer that was used for image classification in the gen-
eral CNN model for pixel-wise classification. They also
skipped the layer method to improve accuracy during the
up-sampling process. To solve the problem of low reso-
lution in bilinear interpolation, which is used in FCNs,
Noh and colleagues developed DeconvNet, which added a
deconvolutional network symmetrical to the convolutional
network [24]. Simultaneously, they used the switch vari-
able concept to remember the location of the max value
during the max pooling calculation, and locate its position.
Badrinarayanan and colleagues developed SegNet [17], [18],
a network that combines the advantages of DeconvNet and
U-net. It reduces parameterization by removing the fully-
connected layer used in DeconvNet. In addition, it reduces
memory cost by using pooling indices as opposed to copy-
ing and cropping the entire feature set, as in U-net [25].
Hengshuang Zhao and colleagues proposed Pyramid Scene
Parsing Network (PSPNet) in 2017 [26]. In PSPNet, a CNN
model is used to obtain the feature map of the last con-
volutional layer. Then, different sub-region representations
are collected from the feature map through Pyramid Pooling

Module. The sub-region representations are up-sampled and
concatenated with the feature map from the last convolutional
layer. Also, they adopted an auxiliary loss to help optimize
the learning process. Chen and colleagues proposed a seman-
tic segmentation architecture called DeepLab in 2015 [27].
DeepLab uses ‘‘atrous convolution’’ to expand the receptive
field without increasing the amount of computation needed,
and the use of fully-connected CRFs maximizes the accuracy
of pixel-level classification. In 2017, these authors developed
DeepLab v2 [28]. The researchers introduced the concept
of atrous spatial pyramid pooling (ASPP), in which the last
fully-connected layer of the end encoder is replaced with
convolution layers with various atrous rates. In DeepLab
v3 [29], they used the deeper encoder and proposed a method
for obtaining dense feature maps using atrous convolution.
Subsequently, they announced DeepLab v3+ [30]. DeepLab
v3+ uses the Xception [31] backbone and U-Net architec-
ture. They also introduced the concept of ‘‘atrous separable
convolution’’. Jun Fu and colleagues proposed the Stacked
Deconvolutional Network (SDN) architecture in 2019 [32].
They defined multiple shallow deconvolutional networks as
SDN units. SDN units are stacked one by one to integrate con-
textual information, and to produce fine-grained recovery of
localization information. To improve the flow of information
and gradient propagation, the researchers designed inter-unit
and intra-unit connections.

Jingdong Wang and colleagues proposed a high-resolution
network (HRNet) in 2019 [33], [34]. The proposed net-
work generates multi-scale feature maps to strengthen high-
resolution representations. Since the last convolution, every
different size of feature map is up-sampled to the size of the
largest feature map, and all of the same size feature maps are
concatenated.

III. PROPOSED METHOD
In this work, we aimed to extract facial landmarks pre-
cisely, using semantic segmentation. To achieve this aim,
we designed a semantic segmentation architecture and con-
structed a dataset including face image and ground truth
image pairs, for training. Then, we applied an area-based
class weights to balance the pixel distribution between classes
and introduced weighted feature maps for reflecting the char-
acteristics of the data. The overall flow of our FLSNet model
is shown in Figure 2. A detailed description of each step is
presented in the next section.

A. ARCHITECTURE
The model architecture described in this paper consists of
two semantic segmentation models as shown in Figure 2. The
first semantic segmentation model extracts facial landmarks
roughly as feature maps, and these feature maps are then used
as the inputs to the second model. As shown in Figure 3,
feature maps from the encoder in the first model were con-
catenated with feature maps from the corresponding encoder
of the second model, which has the same size feature maps.
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FIGURE 2. Overall architecture of our FLSNet.

FIGURE 3. Semantic segmentation architecture of our FLSNet.

The feature maps from the decoder are similarly concatenated
with corresponding feature maps.

The input of the second model is the feature maps from
the decoder of the first model, and the second model decoder
obtains feature maps from the encoder of the second model.
The feature maps, therefore, reflect the characteristics of
adjacent feature maps. Thus, we do not need to connect all
the feature maps densely. Therefore, we concatenate only the
encoder feature maps to the encoder feature maps, and the
decoder feature maps to the decoder feature maps.

The second model is shallower than the first because the
final feature maps from the first model extract facial land-
marks reasonably well if trained properly. The second model,
therefore, does not need to learn all of the features of the input
images; it just corrects some minor differences between the
results of the first model and ground truth. In Figure 3, the
backbone model is SegNet with VGG16. We set the depth of

the second model to almost half that of the first model, and
the basic architecture is SegNet, as in the first model.

B. DATASET
There are no public data appropriate for the semantic seg-
mentation of facial landmarks, so we manually constructed
a facial landmark dataset. The dataset consists of 386 face
images from the Figaro hair dataset [35], 323 from the Helen
dataset [36], 107 from the AFW dataset [37], 151 from the
LFPW dataset [38], 106 from the LFW dataset [39], 124
from the 300W dataset [40] and 592 face images, includ-
ing various ages, genders, and races. Based on the col-
ors shown in Table 1, we constructed ground truth images
corresponding to the face images as shown in Figure 4.
Figure 4 (a) shows the original face images, and Fig-
ure 4 (b) shows the ground truth of the corresponding face
images.
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FIGURE 4. An example facial landmark dataset: Collected images on the first row, the Figaro hair dataset images on the second row, and the
Helen dataset images on the last row.

TABLE 1. R, G, B values of facial landmarks.

C. TRAINING
Images can have a different sized face if images are taken
as full-length photos, or zooms in to the face. Particularly in
the case of full-length and high-resolution images, the face
can be too small to use directly. Using the face from these
images leads to distortionwhen resizing the images, and some
landmarks may be smaller than the convolution filter, making
it hard to train the model. To make the model robust to size,
direction, and some obscuration of the face, we needed to

train our model with images taken at various sizes and direc-
tions. To obtain a variety of facial images, we cropped the
face images in various sizes and locations. Images cropped at
various locations may be missing some landmarks. A model
trained with these data could extract facial landmarks well,
even when some landmarks were missing as in Figure 5.

As previously mentioned, the model consists of two
semantic segmentation models. The second model uses fea-
ture maps from the first model. If the performance of the first
model is reasonable, it means the model creates fine-grained
feature maps. When using high-quality feature maps, the
second model will be trained faster. Therefore, we trained
Seg-Net with the VGG 16 model first, and then trained a
shallow semantic segmentation network using the pre-trained
model.

D. METRIC
The loss function used in this work was pixel-wise-cross-
entropy, a metric that is widely used for the semantic seg-
mentation task. However, the pixel distribution of the dataset
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FIGURE 5. Cropped images and corresponding ground truth pair examples. In (b), the first and second images are the same size, but are cropped in
different locations, while the last image is of a different size and location.

for facial landmark semantic segmentation is significantly
unbalanced. To deal with this imbalance, we used weighted
pixel-wise cross-entropy. In previous work [14], [15], we cal-
culated class weights by using median frequency balancing
(MFB) method [41]. In the method, the frequency of a class
c represents the ratio between the number of pixels in the
class and the total number of pixels in the dataset images
that contain that class. The class weights for N classes are
calculated by Equation 1.

frequency (c) =
NoP(c)
NoP(Ic)

weight(c) =
median(F)
frequency(c)

(1)

Here, NoP(c) indicates the number of pixels in a class c of
N classes, and NoP(Ic) represents the total number of pixels
in the set of images that contain the class c. F is a set of N
frequencies.

Intuitively, if the number of pixels occupied by a specific
landmark class is small and the class appears in many images,
then, its frequency becomes smaller, and weight becomes
larger. Although this approach helps to solve the problem of
imbalance among pixels in different classes, when that the
class has a very small number of pixels, weight becomes
excessively large, even though the class does not occupy
much of the image. This situation can lead to overfitting,
so it is necessary to limit the weight of the class to prevent
it. Thus, when calculating class weight, we consider the ratio
between the number of class pixels and the class occurrence;
that is, how many times the specific class cluster appears
in all images. For example, in the case of a face image
of a person looking straight ahead, as shown in the first
image in Figure 1 (a), the class occurrence is as follows: one
background, one hair, two eyebrows, two whites of eye, two
pupils, two nostrils, one lip, and one inner mouth. In the face
in the profile shown in the fourth image of Figure 1 (d), there

is one background, one hair area, one eyebrow, one white
of eye, one pupil, one nostril, one lip and zero inner mouth.
The class weight based on the occurrence is calculated using
Equation 2.

area (c) =
NoP(c)

Occurence(c)

weight(c) =
median(A)
area(c)

(2)

where Occurrence(c) is the number of occurrences of a given
class c, A is a set of N areas.

As shown in the equation, area(c) means the number of
pixels when given class c is once occurred, which means the
average area occupied by the class c. MFB gives the large
class weight when class c is small. On the other hand, the
area-based class weight gives the large class consider not
only the size of the class but also its occurrence. Therefore,
it prevents a very small class from having a large class weight.
We refer to this area-based class weight calculation method
as Median Area Balancing (MAB).

Figure 6 shows the comparison of the proposed weight
with the median frequency balancing weight in an extremely
unbalanced dataset. Figure 6 (a) shows the pixel distribution
among the classes, and Figure 6 (b) shows the class weight
calculated using two methods. As shown in the figure, the
pixel distribution among classes is extremely unbalanced, and
the large weights that appear under the median frequency
balancing are reduced.

E. CLASSIFICATION METHOD
The pixel classification result of the semantic segmentation
is determined from the feature maps that pass through the
Softmax layer. The feature maps have the same number of
channels as the number of classes, and each channel repre-
sents a specific class. If the feature maps computed from the
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Softmax layer are called FM, the class can be expressed as
Class = argmax

c {FM (c)}, where c is the channel.
When classification performance is measured by Intersec-

tion over Union (IoU), which is a popular evaluation metric
for semantic segmentation, the IoU of the class that occupies
large pixel areas in the image has a high value because it can
generally be trained easily. In the facial landmark dataset, for
instance, the number of pixels of hair, skin, and background
classes occupy more than 95% of the image pixels Figure 6
(a). The IoU of these three classes is the highest of all
of the classes. The channels representing the corresponding
classes amongst the feature maps obtained from the Softmax
layer are more accurate than other classes. When classifying
boundaries where several classesmeet, the values of the chan-
nels corresponding to the classes may appear similar. In gen-
eral, class feature maps with high pixel occupancy are more
accurate than those with low pixel occupancy. Therefore,
even if the value of the low occupancy class is slightly higher,
there is a high probability that it belongs to a high occupancy
class. We improved the quality of semantic segmentation by
assigning weights in order to select a feature map of a high
occupancy class when the values of feature map channels are
similar. In Section 3. D, we introduced the area of a landmark
class, the average number of pixels of the class in the images.
Area is the number of pixels when the class occurs once, and it
becomes larger as the pixel occupancy of the class becomes
larger. Equation 3 shows how to weight feature maps using
area.

FMw(c) =
area(c)

1
N

N∑
k=1

area(k)

× FMo(c) (3)

Here, FMo and FMw denote the original and weighted
feature maps, respectively and N denotes the number of
landmark classes in the dataset. As shown in Figure 2,
the calculated weights are multiplied channel-wise with
the feature maps and the result is used for pixel-wise
classification.

IV. EXPERIMENTS
In the previous section, we described our pixel annotated
facial landmark dataset and three methods that we used to
build our FSLNet for improving semantic segmentation accu-
racy, which are class weights, shallow network and weighted
feature map. These methods can be used individually or in
combination. In this section, we describe several experiments
that we performed to evaluate the performance and applica-
bility of our model. At first, we build a variety of combina-
tions of the three methods and compare their performances
to show that using them all gives practically the best perfor-
mance. Then, we compare our method with other well-known
semantic segmentation methods. Finally, we show that our
model performs well for other datasets.

For quantitative evaluation of landmark extraction, we used
two metrics: pixel accuracy and IoU. Pixel accuracy and IoU

FIGURE 6. Comparison of weights calculated by MFB and MAB.

can be defines as follows:

Pixel accuracy = TP/(TP+ FN)

IoU = TP/(TP+ FN+ FP)

where TP, FP, TN, and FN represent true positives, false
positives, true negatives, and false negatives, respectively.

In image segmentation, the IoU is usually preferred over
pixel accuracy as it is not as affected by the class imbalances
that are inherent in foreground/background segmentation.
Overall, our method improves IoU while maintaining the
pixel accuracy.

The pixel-annotated facial landmark dataset, as discussed
in the Dataset section, was used for network training. The
entire dataset consisted of 1,789 facial images. In general,
the effectiveness of training increases as the size of the
dataset increases. So, to increase the size of the dataset,
we first divided it into a training set of 1,432 images and
a training set of 357 images. Then, by cropping the images
in each set in diverse ways, we increased the number of
images in the training and test sets to 59,428 and 5,876,
respectively.

The experiments were conducted on an Intel Xeon
E5-2680v4 CPU, with 128GB DDR4 memory and two
NVIDIA RTX TITAN. The mini-batch size was 48 on
VGG16 backbone networks and 12 on other deeper networks.
The number of epochs was 500 for all models. When training
the shallow network-added model, we set the number of
epochs to 100 and used our class weights. The backbone
architecture was SegNet with VGG16.
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TABLE 2. Pixel accuracy comparison of three methods in facial landmark extraction.

TABLE 3. IoU comparison of three methods in facial landmark extraction.

A. EVALUATING THREE METHODS
In the first experiment, we evaluate the effectiveness of
the three methods in the extraction of facial landmarks.
By applying eight different combinations of three methods
to the original SegNet architecture, we built eight different
models. We compared their facial landmark extraction per-
formance in terms of pixel accuracy and IoU. The base-
line was the original SegNet that did not use any of our
methods.

Tables 2 and 3 show their pixel accuracy and IoU for
nine different facial landmark classes, respectively. The first
and last rows in the tables represent the original SegNet and
our FLSNet, respectively. The original SegNet showed very
low IoU scores for small-sized landmarks such as eyebrows,
whites of eyes, and nostrils, even though their pixel accuracies
were higher than 0.9. Figure 1 shows such examples in (c) and
(e). In the figure, the nostrils and eyebrows were extracted too
larger than the ground truth. On the other hand, our FLSNet
gave the best IoU scores for major landmark classes while
maintaining the pixel accuracy.

Next, we examine how eachmethod contributed to improv-
ing the performance of facial landmark extraction. For this,
we calculate the performance ratio when each method is
not used and when it is not used. Hence, if the ratio
is greater than 1.0, the performance is improved by the
method.

1) CLASS WEIGHTS
To consider different sizes of facial landmarks, we proposed a
new area-based class weight method called MAB. To see the
effect of our class weight method, we calculated the perfor-
mance ratio when MAB was used and when MFB was used
using the tables 2 and 3 assuming the rest of the conditions
are the same. Table 4 shows the ratio of pixel accuracy and
IoU for each class. As we mentioned earlier, the ratios greater
than 1.0 indicate improved performance. The table shows that
the pixel accuracy improved slightly, while IoU improved
significantly especially for small landmarks.

Figure 7 shows two landmark extraction results by the
original SegNet trained withMFB and ourMAB for one face.

In the figure, while the nostril in (c) is clearly larger than
the ground truth in (b), the nostril in (d) is very similar to
the ground truth. Hence, the IoU of the original SegNet is
significantly lower than that of SegNet with MAB. Over-
all, we achieved more accurate facial landmark extraction,
in particular for small landmarks, by using our class weight
method.

2) ADDITONAL SHALLOW NETWORK
The purpose of adding a shallow network is to fine-tune the
feature maps from the first semantic segmentation network.
The benefits of using the shallow network can be seen in
Table 5. In the table, pixel accuracy improves less than 5%,
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TABLE 4. Landmark extraction performance comparison of class weight method.

TABLE 5. Landmark extraction performance comparison of shallow network method.

TABLE 6. Landmark extraction performance comparison of weighted feature maps.

FIGURE 7. Landmark extraction results by MFB and MAB.

while IoU improved by more than 20% without the weighted
feature maps, and more than 5% with the weighted feature
maps. These improvements comes from the shallow network
reducing misclassification. Figure 8 shows the effects of
adding a shallow network. In the figure, original SegNet
classified part of the hair as an eyebrow, while adding a

shallow network eliminated this problem. This effect can be
seen in other classes with very small pixel occupancy, such
as the inner mouth. This kind of class shows both low pixel
occupancy and low occurrence. So, if a model misclassifies
such class, its IoU will drop dramatically. In contrast, if the
class is classified correctly, its IoU will increase significantly.
Figure 8 (b) shows the effect of adding a shallow network in
extracting the inner mouth.

3) WEIGHTED FEATURE MAP
Classes that occupy a large area in the image are relatively
easy to train, and in facial landmarks, the background, hair,
and skin correspond to those classes. Weighted feature map
assigns a larger weight to them to improve the classification
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TABLE 7. Comparison of landmark extraction performance according to the Original SegNet.

FIGURE 8. Landmark extraction quality comparison of original SegNet
and SegNet with a shallow network.

FIGURE 9. Facial landmark extraction by applying weighted feature maps
to original SegNet.

performance of some ambiguous area, such as boundaries
of classes. After all, it prevents the region of a small class
from becoming too large by judging that the ambiguous
part belongs to the large class, which greatly improved the
IoU of small classes. Table 6 shows how pixel classifica-
tion performance improved by using weighted feature maps.
Overall, pixel accuracy dropped slightly, but IoU was greatly
improved.

Figure 9 shows the result of applying the SegNet with our
weighted feature map to the images in Figures 7 and 8. It can
be seen that small landmarks such as eyebrows and nostrils
were extracted more accurately than ever.

4) APPLYING MULTIPLE METHODS
So far, we showed that each of our three methods contributed
to the precise extraction of facial landmarks. In any case, IoU
was improved significantly compared to the original SegNet.
In addition, Table 7 shows the performance improvement of

FIGURE 10. Facial landmark extraction using all three methods.

landmark extraction when class weight, extra shallow net-
work and weighted feature map are applied to the original
SegNet in that order. Our FLSNet, which used all three meth-
ods, achieved the best mIoU, while the pixel accuracy did not
change much. Figure 10 shows the result of facial landmark
extraction when using all three methods.

The problems that were observed in the original SegNet
were almost solved, and the quality of landmark extraction
was improved, especially for small landmarks. Figure 11
shows 20 different sample images and their ground truth
images used in the experiments, and Figure 12 presents
landmark extraction results by applying the three methods
sequentially.

In the figure, we can see that the landmark extraction
quality was improved gradually as we applied those methods
sequentially.

B. COMPARISION WITH OTHER METHODS
In this section, we compare our model with six well-known
semantic segmentation methods in terms of IoU. The meth-
ods we considered in this experiment are FCNs, SegNet,
PSPNet, Deeplab v3+ with Xception, Deeplab v3+ with
InceptionResNetv2, and HRNet. For evaluation, we trained
other semantic segmentation networks using the seman-
tic segmentation dataset that we constructed in the previ-
ous experiments. Comparative evaluation were done under
the same conditions except the mini-batch size because
of the memory limitation. Table 8 summarizes the results.
As shown in the table, all methods showed very good
performance for the large-sized landmarks such as hair
and skin. However, for small-sized landmarks, our method
showed overwhelming performance, and achieved the
highest mIoU.
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TABLE 8. Comparison of seven methods in terms of IoU.

TABLE 9. Comparison with other model using the dataset in [22].

FIGURE 11. 20 samples used in experiments and their ground truth images.

C. EVALUATION WITH OTHER DATASET
As mentioned before, there is no public facial land-
mark dataset. But, Jackson and colleagues constructed
a dataset for semantic segmentation based on a pub-
lic facial dataset that includes 68 key points for each
facial image. For each facial landmark, they created a
closed shape by connecting the points that represents the
landmark.

Using the dataset, they proposed FCNs based facial land-
mark extraction method. The main idea of the method is
offering facial landmark points to the semantic segmentation

model as a guideline. Unfortunately, as many face images
in our datasets do not include landmark points, they are
not enough for training. Instead, we trained our model
using the dataset used in [22]. Table 9 shows the com-
parison results. The table indicates that for eyebrows and
eyes, Jackson’s method showed better performance, and
for skin, both Jackson’s method and our method showed
equally good performance. For the other classes, our method
showed better performance. Overall, our method outper-
forms Jackson’s method in terms of mIoU for most facial
landmarks.
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FIGURE 12. Facial landmark extraction result for 20 sample images. (a): Original SegNet (b): Training using our class weights (c): Adding a shallow
network to (b) (d): Using weighted feature maps to (c).

V. CONCLUSIONS
The aim of the work described in this paper was to develop
algorithms for robust facial landmark extraction. To achieve
this aim, we first constructed a facial landmark dataset for
semantic segmentation. Then, we developed a semantic seg-
mentation architecture for robust facial landmark extraction.
Next, we introduced a balancing scheme to coordinate pixel
imbalance in the training process, and a data augmentation
method to make the model robust in the multi-scale face.
We also improved the quality of pixel classification by apply-
ing weights to the feature maps from the Softmax layer. In the
experiments, using several semantic segmentation models,
we demonstrated that our approach is effective for the quan-
titative detection of facial landmarks. The metric which we

investigated, mean intersection over union (mIoU) of the
facial landmarks, especially the IoU of small landmarks such
as eye pupils and whites, improved significantly. Qualita-
tively, it is apparent that the landmarks extracted by our
approach are cleaner and more accurate than the originals.
Our approach has two main contributions. The first one is
an improved semantic segmentation method: adding a shal-
low network and using our novel class weights in training,
introducing a classification method by applying weights to
feature maps, and producing a facial landmark dataset for
semantic segmentation. The second contribution is improving
human face-based technology such as individual identifica-
tion, by merging our approach and previous research into
extracting facial landmarks.
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In future research, we will investigate the validity of our
approach using facial landmark datasets as well as public
data. In this work, we used the weighted feature maps sep-
arately from the training process. However, it is possible that
performance could be improved by using the maps directly
to train the semantic segmentation model. We will, therefore,
research the use of weighted feature maps for training.
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