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ABSTRACT Due to the irregularity and inconsistency of 3D point clouds, it is difficult to extract features
directly from them. Existing methods usually extract point features independently and then use the max-
pooling operation to aggregate local features, which limits the feature representation capability of their mod-
els. In this work, we design a novel spatial-related correlation path, which considers both spatial information
and point correlations, to preserve high dimensional features, thereby capturing fine-detail information and
long-distance context of the point cloud. We further propose a new network to aggregate the spatial aware
correlations with point-wise features and global features in a learnable way. The experimental results show
that our method can achieve better performance than the state-of-the-art approaches on challenging datasets.
We can achieve 0.934 accuracy on ModelNet40 dataset and 0.875 mean IoU (Intersection over Union) on
ShapeNet dataset with only about 2.42 million parameters.

INDEX TERMS 3D point clouds, feature extraction, point correlations, neural network.

I. INTRODUCTION
Object recognition is one of the most classical and funda-
mental problems in computer vision. It is very useful as a
preprocessing step in various computer vision applications,
such as image classification and segmentation [1], [2], 3D
reconstruction [3], [4], object detection [5] and pose estima-
tion [6]. In general, the process of object recognition can be
formulated in terms of labeling problems. The performance
in 2D domain has been significantly improved due to the rapid
development of convolutional neural networks. However, it is
still difficult to directly apply classic conventional operations
on 3D point clouds due to the irregularity and inconsistent
of point clouds. To deal with the problem, some alternative
approaches project 3D point sets into volumetric grids or
multiple 2D image views to take advantage of using 3D con-
volution. But in this case, it will lead to high computational
cost and information loss.

Recently, many researches focus on point-based networks
which directly process point cloud data to improve mem-
ory efficient. The pioneering work, PointNet [2], proposed
to learn point-wise features using the multi-layer percep-
tron (MLP) and global features using the max pooling layer.
It is a simple yet computationally efficient model for extract-
ing features from point clouds. However, unlike classification
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tasks, segmentation tasks require both global context under-
standing and local details of points. Since the features in
PointNet are learned independently, it is difficult to capture
the local context and the mutual interactions between points,
which limits its performance. To learn richer neighboring
context information, many hierarchical structure-based net-
works have been introduced. PointNet++ [7] proposed a
hierarchical network to capture local features. They used
PointNet to aggregate local neighborhood information, that
is, points in a local region were treated independently. As a
result, they ignored the relationships among points, which
may lose rich information and limit feature representation.
PointConv [8] used spatial coordinates to learn the convo-
lutional kernel weights and density distributions for point
clouds. However, their performance is limited due to a lack
of geometric information. LSANet [9] constructed spatial
relations in the neighborhood to capture local geometric fea-
tures. They took the spatial distribution of the local region
into account, thus handling geometric transform robustly.
Despite considerable progress, their work lacks long-distance
contextual information, which may limit their performance.

To address the above problems, we propose a spatial-
related point correlation network that extract feature from
point clouds effectively and efficiently. Our aim is to use point
connections to extract rich contextual information, which
includes local details as well as long-range contexts. Specifi-
cally, we first propose a novel spatial-related correlation path
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(SRC path), which constructs two parallel branches to cap-
ture high dimensional detail information. Each point feature
extracting from SRC path is related to dense correlation and
spatial distribution. Then, we construct a simple yet efficient
network based on SRC path to combine the point-wise fea-
tures, fine-detail features and global features together, which
can better describe features at different levels. Furthermore,
we introduce an adaptive fusion block to adjust the channel
weights of the combined features in a learnable way. Our
method has three advantages. First, instead of generating
point features from a local neighborhood, we build dense
point connections with spatial awareness to capture discrim-
inative features. Second, we do not need to explicitly select
representative points and search for their neighbors. Third,
our method can preserve high dimensional features and better
describe the details for point clouds. The contributions of the
proposed method are summarized as follows:

1. We introduce a SRC path which is capable of modeling
point correlations both in feature space and in spatial
space.

2. We design an efficient method to implement SRC path.
It greatly reduces the parameters while still retaining
high dimensional features.

3. A simple and efficient network based on SRC path
is proposed, which can be used as a basic module to
extract features from point clouds in other applications.

4. We have conducted experiments on two challenging
tasks to verify the effectiveness of our method. The
experimental results show that our network is compet-
itive against other state-of-the-art models.

II. RELATE WORKS
PointNet [2] first proposed a network to directly process-
ing raw point clouds. It is computationally efficient and
has achieved great results in many 3D tasks, but it lacks
local context modeling abilities. To integrating local fea-
tures, many hierarchical structure based method have been
proposed. PointNet++ [7] used a farthest sampling layer to
select centroid points and employed multi-scale grouping and
multi-resolution grouping to get the neighboring regions. [10]
used k-means clustering and k-Nearest Neighbor to generate
neighborhoods in world space and feature space, respectively.
3PNet [11] introduced a point-wise pyramid pooling module
to capture multi-scale information and applied a recurrent
neural network to get long-distance contexts. PointSIFT [12]
introduced a novel module to implement scale awareness and
orientation encoding. It generated local neighboring points
from eight spatial directions to implement orientation encod-
ing. However, these methods have not fully exploited the rela-
tionships between different points, thus rich information may
be lost when aggregating local features from neighborhood
points.

PointCNN [13] proposed to learn a feature transformer
that can permute the point set into a canonical order and
applied convolutional operations on the transformed points.
Inspired of image convolution, KPConv [14] proposed a new

point convolution and its deformable version. KPConv can
use any number of kernel points, which gives it a lot of
flexibility. The convolution weights were carried by kernel
points and their range of influence is defined by the corre-
lation function. KCNet [15] presented kernel correlations to
extract neighborhood information and employed local high
dimensional features through recursive feature aggregation.
DGCNN [16] employed point relationship to improve the
representation of local feature. It established a pair relation-
ship between the center point and its neighboring points and
dynamically updated the relationship of different layers in the
network. However, it did not explicitly consider spatial infor-
mation. PointWeb [17] proposed a novel module to find the
interactions between points. They explored the relationships
between all pairs of the points in a local area to extract the
local information. Huang et al. [18] employed a novel hier-
archical data augmentation strategy to improve the learning
of deep features and reduced feature dimensions with a non-
linear manifold learning to remove redundant information.
Li et al. [19] introduced a novel geometry-attentional network
for ALS point cloud classification. They proposed GA-Conv
to learn an embedding from low-level geometric information
to high-level local features and construed a dense hierarchical
architecture based on GA-Conv to capture multiple scale
information.

Although hierarchical structure-based methods can inte-
grate local features, it has three limitations that restrict their
performance. First, the performance of hierarchical structure-
based methods is sensitive to the certain points and radius
selections. Second, since point clouds are unordered with-
out explicit neighboring information, most previous methods
require high extra computational cost in the selection of
centroid points and search of neighboring points. It limits
the efficiency of hierarchical structure-based models. Third,
each local region is processed separately, thus the feature is
limited to the current neighborhood. Different from existing
methods, we efficiently construct high dimensional point cor-
relations to exhaust rich contextual information. This strategy
enhances the point feature extraction ability of our model.
Thus, our model can better describe detail information for
point clouds.

III. PROPOSED METHOD
Our method is motivated by the following facts. First, due
to the lack of structural information and long-range contexts,
the performance of existing methods for extracting point
cloud features is limited. Second, most existing methods need
neighboring feature pooling operations to enlarge receptive
fields and capture wider context, resulting in a low dimension
of the feature map. Third, shared MLP operations on points
at different positions utilize the same weights, thus there is a
lack of consideration of spatial distribution when extracting
features.

To deal with these problems, we introduce a SRC
path to capture long-distance contextual information for
each point, which consider both spatial information and
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FIGURE 1. Overall framework of the proposed method.

point correlations. The spatial information is learned accord-
ing to the point coordinates, while the point correlations are
determined by the entire feature space, which can incorporate
detail features as well as long range contexts. We further
combine point-wise features, fine-detail features and global
feature togethers, as shown in Fig. 1. This strategy enhances
the feature representative ability of our model. Therefore,
it can better describe the details of point clouds. Inspired by
the T-Net in PointNet [2], we first apply a 3×3 transformation
matrix to the coordinates of points to align the point cloud,
and then use the adjusted points as input. In the following
subsections, we will elaborate on our model. Note that the
proposed method can also be served as the basic feature
extraction block for other types of models.

A. SRC PATH
Most of the existing methods use adjacent points or patches
to extract local features. This structure has limited expres-
sions for long-distance connections. In order to improve
the ability in modeling discriminative features, we construct
dense connections tomodel the relationship between different
points in the point set. We employ two parallel branches in
SRC path. The first branch is used to extract spatial aware
weights and the second branch is used to capture contex-
tual information. The structure of SRC path is illustrated in
Fig.2. Unlike previous methods that used shared MLP and
symmetric functions to extract local features, we focused
on modeling point correlations with long range connections,
preserving detailed information. In this way, since all points
are involved, the features can be learned more thoroughly.
We then combine the two branch outputs so that the output
of SRC path is determined by both spatial coordinates and
point correlations. Let the 3D point data denote by x ={
(xPi , x

F
i )|x

P
i ∈ R

3, xFi ∈ R
M , i = 1, . . . , n

}
, here xPi and xFi

represent the coordinates and additional feature of the point,
respectively. n is the number of points and M is the feature
dimension. The output feature of point i is fomulated as:

Fi = ωPi ⊗ f
F
(
xFi , �

)
(1)

where ωPi denotes the spatial aware weight. f F refers to the
enhanced feature of xFi which involves point correlations. �
denotes the feature set of all points and⊗ is the element-wise
multiplication.

1) SPATIAL WEIGHT BRANCH
The spatial aware weight can be seen as a nonlinear function
of the point coordinate and it can be learned through the
spatial weight branch. We use a shared MLP to learn the
weight for each point, which is expressed as:

ωPi = f
P
(
xPi
)
= MLP(xPi ,W

P) (2)

HereWP is the parameters of theMLP. In order to preserve
permutation invariance, we share the same weight WP for
all points. For a point cloud, the parameters in the spatial
weight branch are the same, but the input xPi is different. Thus,
the output ωPi computed from the branch is different. In this
way, we can get spatially related output from this branch,
which is determined by the learned parameters and the point
coordinates. Then we use the spatial aware weight to re-
weight the correlations learned by feature branch, as shown in
Equation (1). That is, by combining spatial weights with point
correlations, we can take the spatial distribution into account
in the feature extracting process.

2) POINT CORRELATION BRANCH
The enhanced features for xFi is given by:

f F
(
xFi , �

)
= f C

(
xFi , �

)
+ xFi (3)

where f C is the point correlation information that is learned
through the second branch, as illustrated in Fig. 2. A residual
connection is used to reinforce the input feature. The main
challenge of f c is the model size and computational cost.
To address this problem, we first use 1 × 1 convolutions
to reduce the feature map from M-dimensional space to
1 dimensional space. To preserve permutation invariance,
we apply the same weight to all points in the point set.
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FIGURE 2. The structure of SRC path. It uses densely connected layers to model the long-rang
relationships between points.

The formula can be expressed as follows:

x̃Fi = Conv1×1
(
xFi
)

(4)

The feature maps are then delivered to the next part which
has a series of densely connected layers to learn point corre-
lations, as shown in Fig. 2. Let al refers to the output of layer
l, where 1 ≤ l ≤ L and L is the total number of layers. al is
given by:

al =

{
σ
(
WH
l x̃

F
i

)
l = 1

σ
(
WH
l al−1

)
1 < l ≤ L

(5)

where σ denotes the activation function, WH
l ∈ R

Nl×Nl−1 is
the parameters in layer l andNl is the number of nodes in layer
l. In order to reduce the parameters of the model, we reduce
the number of nodes of themiddle layer with a constant k . The
number of nodes in layer l is N/(2l−1k). However, we use N
nodes in the last layer to keep the dimension of the output the
same as the input. Thus, the last layer output aL ∈ RN×1, here
N is the number of input points.
Finally, we increase the channel of aL toM and add a resid-

ual connection to the input xFi . Therefore, we can generate
high dimensional feature maps and learn long range context
through SRC path. The overall result of f F is:

f F (xFi ) = Conv1×1 (aL)+ xFi (6)

The structure is designed to make us learn long range con-
text, while drastically reducing the model parameters. It takes
an input feature map xF ∈ RN×M and produces an output
feature map xout ∈ RN×M . For a standard fully connected
layer for each channel, it requires N×N × M parameters.
These parameters are dependent on the number of points N
and the dimension of the input point features M. To reduce
model parameters, we use two strategies. First, we use bottle-
neck design in this branch to reduce the network parameters.

Second, we decrease the number of nodes for middle layers.
For the structure in the red box in Fig.2 (L= 3 and k= 4),
there are 13

32N
2
+ 2M paremeters, which is less than one

hundredth of the standard layer parameters (N= 1024 and
M = 64). We will analyze the different choices of L and k in
Section IV.

Now, for point i in �, the overall output of the spatial
correlations path is calculated as:

Fi = MLP(xPi ,W
P)⊗(Conv1×1 (aL)+ xFi ) (7)

SRC path models point correlations in the feature space,
as well as applies spatial aware weights on the correlations
to compensate for the point spatial distribution. Thus, it can
better describe fine-detail features for the point set. One of
the advantages of our method is that we are able to produce
high dimensional features. Compared with the hierarchical
based approaches, our model is able to maintain the same
number of points throughout the network, while still having
the ability to model neighborhood information. This high-
resolution information is essential for extracting fine detail
features.

B. FUSION
Our network is built on SRC path and the overall framework
is illustrated in Fig. 1. We first learn point-wise features from
normalized point coordinates throughMLP layers. These fea-
tures are then given to SRC path and max pooling layers for
extracting point correlations and global information. We inte-
grate global, local and point-wise features for the final output.
Previous approaches usually concatenated local features and
global features to get the finally output, which considered
each feature equally. However, the interaction between differ-
ent scale features may differ across the channels. For exam-
ple, flat regions may prefer larger scale receptive fields, while
corner or edge regions may prefer more detailed features.
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FIGURE 3. The illustration of the proposed FA block.

Motivated by this, we propose a fusion adjustment block (FA
block) to combine different scale features, as shown in Fig. 3.

In FA block, we adjust the channel weights of the combined
features. The filter parameters can be seen as the weight
vector that identifies the importance of each channel. For each
filter, the weight vector is learned by MLP from point coordi-
nates. In this way, the fusion way for different scale features
is learnable. We first apply MLP on the point coordinates to
get the fusion weights. Let define α̂i as the fusion weight for
point i and it is calculated as:

α̂i = MLP(xPi ) (8)

The weight matrix is denoted as α̂ = [α̂1, . . . αN ]
T . We use

α̂ to adjust the channel weights of the combined features,
as shown in Fig. 3. Let FG, FP and FSRC denote the point-
wise features, global features and correlation features, respec-
tively. For the segmentation path, the output of FA block is
given by:

F = α̂ ⊗ [FP,FSRC ,FG] (9)

where [] denotes the concatenation operation and ⊗ rep-
resents element-wise product. Therefore, we can make the
network adaptively merge the different path features.

IV. EXPERIMENTS
To evaluate the performance of the proposedmethod, we have
conducted experiments on both classification and segmenta-
tion tasks of point clouds.

A. IMPLEMENTATION DETAILS
During the training process, we used stochastic gradient
descent (SGD) with a mini-batch size of 1. Base learning rate
and weight decay were set to 0.001 and 10−4 for optimiza-
tion. Momentum was set to 0.9. The proposed network was
implemented with Tensorflow 1.13.1 and Python 3.5.

B. EVALUATION METRIC
To evaluate the performance of our method, we employed
overall accuracy, average class accuracy, mean class IoU
(Intersection over Union) and mean part IoU as metrics. Here
the accuracy and IoU are calculated as:

accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

TABLE 1. Comparison results on ModelNet40 dataset, ‘‘M’’ denotes to
million.

Iou =
TP

TP+ FP+ FN
(11)

where the variables TP,FP,TN , FN refer to the number
of True Positive, False Positive, True Negative and False
Negative respectively.

C. COMPARISON RESULTS
1) CLASSIFICATION
We chose ModelNet40 and ModelNet10 [15] for the
point cloud classification task. ModelNet40 consists
of 12,311 CAD models from 40 categories and is divided
into two parts: 9,843 models for training and 2,468 models
for testing. ModelNet10 dataset contains 4,899 CAD models
from 10 categories, of which 3991 models are used for
training and 908 models are used for testing. Following [2],
we uniformly sampled 1,024 points from each model in
ModelNet40 and ModelNet10. During the training phase,
we randomly shuffled each model and rotated the input points
to augment the dataset.

The classification results of different methods on Mod-
elNet40 are summarized in Table 1. Avg. class accuracy
denotes the mean accuracy across the object classes. It can
be observed that our model obtains the highest score of
accuracy compared with other approaches. It is 0.002 higher
than LSANet [9], which is the second highest score. In term
of per-class accuracy, we also achieve the best score. It is
0.018 higher than the second-best method. The reason for
better performance is mainly because we have built long-
distance connections to model point relationships, which
can associate more points, thus providing us with more
detailed information. Furthermore, the proposed method only
uses point coordinates as input, while SpiderCNN [21]
and PointWeb [17] utilize both point coordinates and
normal.

We show the quantitative comparison results of Model-
Net10 dataset in Table 2. Our method achieves 0.969 for over-
all accuracy, which is the highest score of all the compared
methods. In terms of average class accuracy, SONet [22] gets
the highest score and it is 0.002 higher than us. However,
the overall accuracy of our method is better and it is 0.012
higher than SONet. It shows an effective way to directly
process the point cloud and improve the capability of its
feature representation.
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FIGURE 4. Segmentation examples on ShapeNet dataset.

TABLE 2. Comparison results on ModelNet10 dataset.

TABLE 3. Quantitative comparison on ShapeNet dataset.

2) SEGMENTATION
In order to further verify the effectiveness of our model,
we also evaluated our model in the part segmentation task.
We used ShapeNet [27] dataset in our experiment, which
is a highly competitive dataset in this field. It consists
of 16,881 shapes from 16 categories.Most objects are marked
as two to five parts, for a total of 50 parts. We followed [2] to
split the training and testing datasets and randomly sampled
2048 points as input.

Table 3 demonstrates the comparison of the proposed
model with other state-of-the-art methods. In Table 3, mean
cIoU denotes the mean IoU across all classes and mean pIoU
denotes the mean IoU across all parts. It can be obviously

observed that our model achieves top performance. Dense-
Point [24] gets the second highest score of mean cIoU and
it is quite close to us. However, the part average IoU of our
method is better. Note that we only took point clouds as input
while [7] and [21] also takes normal as input. Some examples
are visualized in Fig. 4. We have noticed that our model can
accurately segment part boundaries and details.

D. ABLATION STUDIES
To verify the effectiveness of the proposed SRC path and
adaptive fusion block, we have conducted ablation experi-
ments in this section. We established a simple structure as
our baseline. It employed only point-wise features and global
features to make final prediction. We first investigated the
effectiveness of SRC path. Large receptive field and long-
distance context have important effects on segmentation per-
formance. Therefore, we propose spatial aware dense con-
nections in SRC path to preserve long-distance contextual
information. Table 4 lists the segmentation results with and
without SRC path. By integrating point correlations in the
network, we obtain 0.935 for accuracy, with an increment
of 3.7% from the baseline. Meanwhile, mean class IoU is
improved from 0.798 to 0.832, with an increase of 4.3%. This
indicates that our method benefits from the SRC path. This is
because SRC path effectively employ dense connections to
build long-distance point correlations. With this design, our
model is able to integrate local detailed features and capture
discriminative information. The visualization of the results is
presented in Fig. 5(a) and (b). SRC path enables our model
to integrate point correlation and fine-detail information,
thereby obtaining part boundaries and details more accurately
than the basic network.

Further, we analyzed the proposed FAblock in the network,
which is designed to effectively fuse different scale features.
It approximates a weight function to adjust the fusion way
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FIGURE 5. Visualization results of using different variants on ShapeNet dataset: (a) Baseline, (b) Baseline + SRC, (c) Baseline +

SRC + FA, and (d) ground truth.

TABLE 4. Experimental results on ShapeNet dataset with different
network variants. ‘‘C’’ refers to simply concatenation and ‘‘F’’ refers to FA
block.

and learns its parameters from the point coordinates through
MLP layers. Thus, the pixel-wise features, global features and
SRC features can be fused in a learnable way. The merged
features are then transferred to the segmentation path for
final prediction, as shown in Fig. 1. In order to study the
effectiveness of FA blocks, we also established a simple way
to directly connect the features of different scales. It considers
each feature equally. The comparison results are illustrated
in the second and third rows of Table 4. With FA block,
the accuracy is increased from 0.901 to 0.947 and exceeds
the baseline by 5.1%. In addition, it improves the accuracy
by 0.012 compared with the simply concatenation. In terms
of IoU, FA block achieves an increment of 5.6% and 4.4%
for mean class IoU and mean part IoU from the baseline,
respectively. The results show that FA block has proved to
be effective for the feature fusion. It enhances the feature
interaction ability. Fig. 5 shows some visualization examples
for qualitative comparison. It can be clearly noticed that the
model gives better performance by employing SRC path and
FA block, as shown in Fig. 5 (b) and (c).

E. MODEL ANALYSIS
There are two hyper parameters in SRC path: the number of
layers L and the number k , as shown in the red box of Fig. 2.
We conducted experiments on ModelNet40 to choose appro-
priate values for L and k . Table 5 summarizes the comparison
results of different values. As can be noticed from Table 5,

TABLE 5. The comparisons of different L and k on ModelNet40 dataset.

increasing the number of paths from 2 to 4 can reduce the
model parameters. With three layers, our model achieves the
best result. Note that k = 4 does not bringmuch improvement
compared with k = 8, as shown in Table 5. With k = 8,
our model has less parameters due to the narrow design of
each layer. Thus, we choose L = 3 and k = 8 as our
default structure in this work to balance the complexity and
performance. It achieves 0.943 for accuracy with only 2.42M
parameters.

F. ROBUSTNESS TO SAMPLING DENSITY
In order to verify the robustness of our model in sam-
pling density, we have conducted experiments on Model-
Net40 dataset. Each model in the dataset was randomly
dropped some points to generate point clouds with different
densities. Therefore, for each model, we used 1024, 512, 256,
and 128 points, respectively. Fig.6 shows a comparison of the
robustness of our model and other methods. We found that
when the density decreases, our model and PointNet++ [7]
perform better, the accuracy of SONet [22] takes a sharp
decline. We found that when the density decreases, the per-
formance of our model and PointNet ++ are better, and
the accuracy of SONet drops sharply. When the points are
reduced from 1024 to 512 and 256, the accuracy of our model
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FIGURE 6. Robustness to sampling sparser points.

TABLE 6. Model complexity comparisons of different models on
ModelNet40 dataset.

drops by no more than 3% and 6%, respectively. The good
robustness of our method to different point densities is due
to two factors. First, the dense relations in SRC path has
strong feature representation ability, even with spares points.
Second, our fusion way can be learned from point coordinates
by FA block. The weights of features can be adjusted in
different regions.

G. COMPLEXITY ANALYSIS
We also performed experiments for complexity analysis.
The experiments were conducted on NVIDIA GeForce GTX
1080Ti GPU. Table 6 displays the model complexity and
accuracy for different methods. Following [2], we employed
floating point operations/ sample (FLOPs/sample) tomeasure
the computational cost. From Table 6, it is observed that our
method can handle point clouds more efficiently. Since we
do not need to explicitly select the centroid and its neighbors,
our model is more efficient than other hierarchical models.
We explored two strategies to reduce network complexity.
First, we used bottleneck design in SRC path to reduce the
parameters. Second, we approximate high dimensional point
correlations with a series of densely connected layers and
reduce the number of nodes in the middle layers. Thus, our
FLOPs/sample are much less than those of the state-of-the-art
methods. Besides that, it requires only 2.42M parameters and
still get great performance. The lightweight model implies
that the proposed method has low spatial and computational
complexity.

V. CONCLUSION
In this work, we have presented a novel method based on
dense spatial awareness point correlations for point cloud pro-
cessing. This allows us generating high dimensional feature
maps without losing information, thus enabling our model to
learnmore representative and detailed features of point cloud.
We also proposed an adaptive way to combine the different
scale features. Then we demonstrated the great performance
of our network on both segmentation task and classification
task. The proposed network is simple but effective and can be
used as a basic feature extraction module for other applica-
tions. In future work, we would like to extract more different
scale features to better describe point clouds.
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