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ABSTRACT Breathing is a natural and directly controllable human activity. Currently, some works have
considered breath as a direct input controlling mechanism. The equipment relied upon in these works is
generally complicated, expensive, inconvenient to wear, and sometimes insufficiently controllable. The use
of breathing interaction is also limited to a certain scene and is not universal. This paper proposes an adaptive
interaction method, which is a natural and directly controllable interaction based on blowing air that only
uses headset microphones to obtain the sound waveform of the blowing action without requiring expensive
equipment, and that can be used conveniently anytime and anywhere. This blowing interaction uses a Siamese
network to achieve ‘‘self-adaptation’’ - the first step adapts to noise interference, including environmental
noise and the user’s own speaking interference, and the second step adapts to different users and equipment,
that is, the blowing interaction is used by different people or on different equipment, and the interaction mode
can accurately identify the type of blowing. This paper also develops several applications of the blowing
interaction method to test the algorithm. During tests, it’s proved that this interface not only increases the
type of blowing used for interaction but also eliminates interference from speaking in a normal volume
effectively and addresses the problem of individual differences.

INDEX TERMS Blowing interaction, domain adaptation, Siamese network, adaptive.

I. INTRODUCTION
From classic interaction modalities, such as keyboard and
mouse, to natural interactions such as multitouch, voice, ges-
ture and posture, eye tracking and brain-computer interac-
tions, the field of human-computer interaction technology has
made substantial progress. However, these forms of interac-
tions are not necessarily suitable in all scenarios, e.g., when
one’s hands are unavailable for mouse or touch interaction,
in noisy or speechless environments for voice interaction,
or for physically challenged people in the case of speech
or eye tracking interaction. The convenience and control-
lable nature of breathing interactions can sometimes make
up for the disadvantages of more common interactive modes.
Recently, breathing has been considered an alternative control
mechanism to influence the physical world and the virtual
environment [38]. For example, Sra et al. used breathing as a
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direct control interface in two VR games [38]; see Fig. 1(a).
Kuzume presented a hands-free interface based on expiration
signals [22]; see Fig. 1(b). Wang et al. developed the Oca-
rina, making blowing into a microphone as a popular input
method for smartphone games and music applications [43];
see Fig. 1(c). Ban et al. proposed a method to control the
rhythm of breathing for relaxation [3].

FIGURE 1. Some examples that have already adopted breathing as a
control mechanism.

To date, some works have studied breathing or blowing
air as a direct input modality in proper detail. Depending
on whether special detection equipment is needed to obtain
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TABLE 1. Collation and comparison of breathing/blowing related research work.

the breathing signal, the methods for detecting breathing
can be divided into two categories: methods based on spe-
cial detection equipment and methods based on common
microphones [30], [45]. For the first category, one method
based on special detection equipment is to obtain breath
signals by detecting chest or abdominal movements [8], [38],
and the other is to obtain breathing signals by placing spe-
cial devices in the mouth that directly detect the airflow of
breathing [11], [31]. However, the equipment (e.g., breathing
sensors, breathing belts, or other special sensors) used in
these works is generally complicated, expensive, inconve-
nient to wear, and on occasion insufficiently controllable,
while also lacking universal portability in daily life. The sec-
ond category uses common equipment but does not con-
sider noise interference and does not address the difference
problem.

In this paper, the relevant research work on breath-
ing/blowing is summarized and compared, as shown
in Table 1. By collating and comparing the research work
related to breathing/blowing, it can be found that the current
research work on breathing/blowing may depend on special
equipment used in a particular field or may use simple equip-
ment but have some deficiencies in dealing with interference
or individual differences and are not adaptive. In this paper,

we propose an adaptive interaction method based on blowing
air that can provide interaction operations to applications
by transferring blowing into sound using common headset
microphones and then identifying and classifying the sounds
into different blowing types. This blowing interaction uses a
deep learning model, the Siamese network, to achieve ‘‘self-
adaptation’’. To verify the advantages of our method, after
excluding those jobs that use special equipment, we chose to
reproduce the work of Jackson et al. [16] for user comparison
experiments.

In this paper, we assembled a sensor setup lighter than
in previous work with a different sensing algorithm, and we
performed our evaluation while embracing the environmental
noise in different scenarios with different devices; this is the
main difference between our study and previous literature
(see Table 1). The contributions of our paper include the
follwing: a. Our blowing interaction method is simple, con-
venient, and controllable. The interaction is simple (blow-
ing), and the device (common microphone) is simple to use.
b. Our approach is more effective at dealing with the inter-
ference of user speech than existing methods and can better
adapt to environmental noise, different users and equipment,
to improve the accuracy of recognition. c. Our interaction
method can accurately identify the type of blowing, and it
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is suitable not only for ordinary scenes but also for special
environments (e.g., noise, unavailability of hands) or for spe-
cial groups (e.g., deaf mutes). We designed three application
examples (i.e., playing video on a PC, manipulating Amap on
a mobile phone, and playing a VR game) to assess the merits
of our method.

The remainder of this paper is organized as follows: We
begin by introducing related work and then describe in detail
our proposed approach, followed by our experimental results
and conclusion.

II. RELATED WORK
This section summarizes some of the most directly related
work on interactions based on breathing or blowing air.

A. BREATHING OR BLOWING INTERACTION
Breathing is a human instinct. Because breathing can be con-
sciously controlled, some works have studied it as a directly
interactive method. Depending on whether special detection
equipment is needed to obtain the breathing signal, the meth-
ods for detecting breathing can be divided into two categories:
methods based on special detection equipment and methods
based on common microphones.

For the first category, some researchers have used wearable
sensors or custom sensors to obtain physiological signals
(e.g., the amount and speed of the exhaled air, the piezoelec-
tric signal and the temperature) of breathing to achieve direct
mapping operations or interactive control. Some studies [14],
[24], [28], [35], [36], [38] have used wearable breathing
sensors, which are inconvenient and expensive to use and not
common in everyday life. The specially customized devices
in these studies [1], [2], [18], [22], [29], [31], [34], [37], [39]
were also inconvenient and expensive to use and impose con-
siderable limitations in terms of usage scenarios and usage
methods. All of the above works generally relied on custom
devices such as breathing sensors, breathing belts, or other
special sensors, which are intricate, expensive, inconvenient
towear, lack universal portability in daily life, andmay be less
controllable, placing considerable limitations on the usage
modes and scenarios that have not been further explored.

For the second category, there is a low-cost way of inter-
acting with breathing: using a microphone to obtain the
sound of breathing for interactive control. Blowing into the
microphone has been a popular input method for smart-
phone games and music applications since the Ocarina by
Wang [42], [43]. Misra et al. explored the use of micro-
phones as a generic sensor in MobileSTK to drive sound
synthesis algorithms in expressive ways [25]. Igarashi uses
nonverbal features (such as ahhh and tatata) in speech to
directly control interactives [15]. Patel and Abowd presented
a coarse-grained system, called BLUI, that enables blowing
at a laptop or computer screen to directly control interactive
applications [30]. They classified the air pressure signatures
of the signals recorded by a fixed-positioned microphone and
assigned them to 1 of 9 cells on the screen. The disadvantage
of this approach is that it requires a fixed placement of

the microphone and it has considerable limitations in terms
of usage scenarios and usage methods. Zielasko et al. pre-
sented an alternative trigger approach for hands-free interac-
tion scenarios to precisely trigger events by blowing into a
microphone [45]. When the blowing value exceeds a given
threshold, the event is triggered; otherwise, the event is not
triggered. However, to avoid triggers caused by speaking in
a normal volume, they set the threshold above the speaking
value, which largely limits the range of blowing. Filho et al.
proposed a hands-free and silent interaction with a mobile
phone interface by exploring the processing of the audio from
the microphone in mobile phones to trigger and launch soft-
ware events [16]. They started a time counter that would wait
for silence. When the sound level was below the threshold,
the time counter was checked to identify the type of breath-
ing. Because mobile phones only have simpler computing
processes due to their limited processing power, compared to
laptops and desktops, they exhibit difficulty handling com-
plex types of blowing operations such as identifying blowing
sounds and speaking voices.

Our research in this paper instead only needs regularmicro-
phones to obtain data pertaining to the exhaled airflow and
relies on these sound data to identify different interactive
operations, which is effective, controllable, and convenient.
This paper classifies blowing sound into different categories
as directly controlled interactions using a machine learning
method, which not only increases the types of blowing used
for interaction, but also effectively avoids triggers caused by
speaking in a normal volume.

B. RECOGNITION ALGORITHM
In addition to simply detecting sound intensity to correspond
to simple interactions [16], [45], there are other works that
identified different breathing actions through more accurate
and complex recognition algorithms.

Maksym presented an algorithm (multinomial logistic
regression techniques) for the nonobtrusive recognition of
sleep/wake states using signals derived from ECGs, res-
pirations, and body movements captured while lying in a
bed [12]. Xinyue Lu presented a new algorithm to process
tracheal sounds has been developed that combines breath-
ing detection in both temporal and frequency domains [23].
Mera described a new approach using a noncontact capturing
method of breathing activities using aKinect depth sensor [9].
They detected the morphological changes of the participant’s
chest area in real time to obtain depth data, then used FFT to
convert the signal from its original domain into a representa-
tion in the frequency domain, and finally used a SVM to clas-
sify and identify the respiratory activity. Jácome applied deep
learning to create an algorithm (Faster R-CNN) for breath-
ing phase detection in lung sound recordings [17]. Pettas
employed recurrent neural networks with long short term
memory (LSTM) units, to monitor pressurized metered dose
inhaler medication adherence [32]. Hamke detected breath-
ing rates and the depth of breath using LPCs and restricted
Boltzmann machines to classify the respirator sounds [13].
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Emoto proposed a new ANN-based method to effectively
detect low-intensity SBEs (non-SBE and SBE classes) from
sleep sound recordings, which is useful in effectively and
automatically detecting the existence of apnea (silence) seg-
ments in sleep sounds [10]. The above machine learning
algorithms provide good results in recognizing breathing, but
they use a large amount of training data and either target a
specific field or require specific equipment.

For the classifier used in this paper, we focus on the
domain adaptive works that can solve the equipment differ-
ence problem encountered by our blowing interaction. Rita
used a domain adaptive approach for SEMG signal classifi-
cation across multiple subjects [4], [5]. In domain-adaptive
subspace learning algorithms, Siamese networks [7] can per-
form different tasks well [6], [21], [27], [41]. The super-
vised domain adaptation (SDA) requires labeled target data.
Supervised domain adaptation [26], [27] can significantly
improve the accuracy of the classifier in identifying tar-
get domain samples by learning a small number of labeled
samples. In a supervised domain adaptation approach [40],
unlabeled and sparsely labeled target domain data were used
to optimize domain invariance to facilitate domain trans-
fer, while using label distribution to match loss. There are
two network processing streams used for domain adapta-
tion. Koniusz et al. [20] presented an approach to domain
adaptation by partial alignment of the within-class scatters
to discover the commonality, using two CNN streams: the
source and target networks fused at the classifier level.
Rozantsev et al. [33] introduced a two-stream architecture,
where one steam operates in the source domain and the
other steam operates in the target domain. Chopra introduced
a Siamese architecture to minimize the distance between
source and target sample pairs [7]. The CNN parameters
would be shared as in a Siamese architecture [27]. In addition,
the source stream would continue with additional fully con-
nected layers for modeling. In this approach, every class only
requires an extremely low number of labeled target training
samples, and even one per category can be effective.

In this paper, a domain adaptive approach is adopted to
identify the type of air blowing interaction. The specific
implementation uses a Siamese network sharing CNN param-
eters to find a shared subspace for the source and target
data. The Siamese network provides excellent classification
performance for cases where few samples of training are
available in each class. This is in line with the classification
training in this paper.

III. SYSTEM ARCHITECTURE
Fig. 2 provides an overview of the system architecture.
A web server works as a back-end for processing data, train-
ing, and running models. When a person uses the interac-
tion interface, the prediction model running on the server
obtains that person’s breath data to recognize air blowing
actions, and sends them back to the client (e.g., PC, mobile
phone, or HTC VIVE). Once the clients receive the action

FIGURE 2. System architecture.

information, the running application performs the corre-
sponding operations.

To improve the recognition performance, we ordinarily
update the model by collecting new training data in two ways.
We schedule a time slot to invite a group of people to collect
accurate training data, which is called scheduled training
data acquisition. Additionally, every day, whenever people
come in to use our interaction interfaces, such as micro-
phones, they can choose the practice module to calibrate the
system to their particular forms of blowing air. This is not
compulsory, and users can use our interface directly without
first practicing. The experiments rely on a standard headset
microphone, which is common and easy to carry in everyday
life, to transform the blowing actions to sound waveforms.
The typical sound signals for four different types of blowing
are shown in Fig. 3. Subsequently, the interface transmits the
sound data to the server. Once the server has collected enough
new training data, it will train a new model to update the
online model.

FIGURE 3. Sound waveforms obtained by the microphone for four types
of blowing air and an example of a speaking voice.

Air Blowing InteractionDesign Scheme.Referring to the
work of Sra et al. [38], we distinguish five forms of blowing
air with regard to duration, intensity and frequency. Among
them, four are used for possible interactions (see Figs. 3) and
one is used to eliminate interference from a speaking voice
(an example in the Fig. 3(e) shows the category of speaking
voice):

gale : very strong exhaling sustained for 2 seconds
(see Fig. 3(a)).

gust : strong jet but transient for a short duration of less
than 1 second (see Fig. 3(b)).

breeze : slow and gentle but transient for a duration of
approximately 2 seconds (see Fig. 3(c)).
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2gust : strong jet but twice, less than 1 second each
(see Fig. 3(d)).

nosie : speaking voice in a normal volume (see Fig. 3(e)).
The low-cost equipment we need to obtain blowing data is

a common microphone used in our daily life such as headset
microphones. One important consideration is the placement
of the microphone. An effective position is near the mouth
and pointed towards the mouth (see Fig. 4). Fig. 3 shows that
the waveforms of blowing interactions and speaking voices
are very different from each other, so our blowing interaction
will still be effective even if the user speaks. This assumption
is verified in our experiments.

FIGURE 4. The most efficient place to place a microphone on an ordinary
headset.

IV. MODEL DESIGN
The proposed interface acquires the sound signals resulting
from blowing air in real time and then determines the partic-
ular form of blowing air as interactions for different applica-
tions. The signals of the same type of blowing obtained by
different equipment used by different people may not be con-
sistent because of individual differences. For example, when
one person performs the same type of blowing on a PC and a
mobile phone, the blowing data obtained are different, result-
ing in different test accuracies, as shown in Figs. 5(a), 5(b)
and 5(c); when one person uses different mobile phones,
the blowing data will also be different, as shown in Figs. 5(b)
and 5(c). Because of this, when we use the classifier of a
single training dataset to predict new blowing data, the recog-
nition result is insufficient, and the accuracy is not high
because of these individual differences. To overcome these
differences and achieve accurate interaction, this paper uses
the Siamese network of domain adaption concept to deal with
differences between training samples (source data) and new
test samples (target data).

FIGURE 5. The sound waveform representations of a gale obtained by the
three devices.

A. TRAINING DATA ACQUISITION
The training data can be collected in two ways:

1) SCHEDULED DATA TRAINING
In the experiments, we relied on two participants for training
data collection. To collect a sufficiently large-scale dataset
for training onset, we rely on audio recording with a sam-
pling frequency of 8192 Hz. To make the initial training set
more standardized, participants are required to blow air every
3 seconds. Through the test, we found that when the sampling
rate of the sound signal was 2048 Hz, the data redundancy
could be reduced while ensuring the accuracy.

Specifically, we used anAndroid phone (source data acqui-
sition device: Source Device A) to obtain 1043 data samples
(after removing the abnormal samples). The training set con-
sists of data Xs and label Ys. Then a different Android phone
(target data acquisition device: Target Device B) was used
to obtain 10 data samples (data Xt and label Yt ) for model
training. Among them, 1043 samples were used as source
domain data and 10 samples were used as target domain data.
The 10 target domain samples are composed of 2 samples
from each of the four blowing types and 2 samples from the
speaking voice. Target Device B is the device used by a new
user. In addition, 200 target domain data points were collected
for testing and verification.

2) USER PRACTICE
Due to the different intensity levels when blowing air, users
are able to practice before using the interface to obtain better
results. There are two purposes of practice: one is with the
goal of better familiarizing novices with the available inter-
action forms, and the other is to collect different new data of
different devices from different individuals for the training of
the new model.

During practice, every user is instructed to perform the cor-
rect kind of exhalation in accordance with the indicated form
of blowing air. Each category is repeated several times. If the
sound volume is greater than a given threshold, the system
collects the sound data. Every user’s personal data is uploaded
into the server’s training set and is treated as new target data,
which can be used to train the new domain adaptive model.

B. DATA PREPARATION
1) SIGNAL PREPROCESSING
The sound signal is first normalized to a standardized range
of [−1, 1]. Then a sliding window is applied for sampling
discretization. The continuous signal of a speaking voice in
this normalized data is then divided into discrete segments
using a sliding window of 8192 Hz (2048 Hz*4) with 67%
overlap between segments [19].

2) FEATURE EXTRACTION
In this paper, we propose a data processing method that con-
verts the blowing signal into image-like frames [44] through
feature extraction. First, we extracted the relevant features of
the blowing sound signal, and then compressed the multiple
features into the image-like frames. A CNN is good at learn-
ing task-related features and mining the correlation between
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different features from the image frames through designed
convolutional filters. In this way, we can make full use of a
CNN to identify the blow sequence images.

The classifier operates based on the following signals
extracted as features from the discrete sound data.

a: TIME DOMAIN FEATURES
In this paper, five types of blowing are distinguished from the
intensity and duration of blowing according to the character-
istics of the time domain.

a. These features were chosen for their ability to be dis-
criminative in distinguishing the five categories of blowing
air. Among them, the mean value (given by (1)), variance
(given by (2)), and first-order difference (given by (3)) are
all well-known statistical features.

X =

∑n
i=1 Xi
n

(1)

s2 =

∑n
i=1(Xi − X )

2

n− 1
(2)

f ′(Xi) =
|{f ′(Xi+1)− f ′(Xi)}|

Xi+1 − Xi
(3)

where Xi is the i-th element in a discrete sample, and n is the
length of each sample.

b. In reference to a short-time zero crossing rate,
a value-crossing rate means the proportion of the number
of normalized values greater than a particular value a (given
by (4)).

p =
|{Xi > a}|

n
(4)

where Xi is the i-th element in a discrete sample, and n is the
length of each sample, a is a certain threshold. In this paper,
we find the optimal parameter value of a based on a grid
search. According to the results of the grid search (see Fig. 6),
we finally selected 0.1 and 0.2 values as parameters of the
feature ‘‘value-crossing rate’’. The feature p is chosen to
account for both the strength and duration characteristics of
the exhalation.

FIGURE 6. The result of the grid search.

c. To access the degree of fluctuation, the data are specifi-
cally divided into four equal intervals. If the maximum value

of each segment exceeds a certain threshold, it is marked as
true (marked as 1); otherwise, it is marked as false (marked
as 0), and a true and false table is obtained. Then according
to this table, we calculate the sum of the true numbers.
In addition, if the true or false value of the current segment
is different from that of the previous segment, we add 1 to
the previous sum. Finally, the obtained sum is converted into
a proportional value p′ (given by (5)), which is not greater
than 1, to judge the overall fluctuation range.

p′ =

∑4
i=1 |{f (Ci)}| +

∑3
j=1 |{TF(j)}|

5
(5)

where Ci is the data of segment i. f (Ci) and TF(j) are calcu-
lated using (6) and (7):

[f (Ci)] =

{
1, maxCi > θ,

0, otherwise.
(6)

[TF(j)] =

{
1, |{TF(j+ 1)− TF(j)}| > 0,
0, otherwise.

(7)

where θ = 0.6, i is 1,2,3,4, j is 1,2,3, and TF(j + 1) − TF(j)
is the difference between segment j+ 1 and segment j.

b: FREQUENCY DOMAIN FEATURES
To solve the interference problem of the speaking voice to the
blowing interaction, we also identify the speaking voice as a
category, and the classifier will distinguish the user’s speak-
ing voice from the situation of using the blowing interaction.
To better identify the interference of the speaking voice on
the blowing interaction, we carried out frequency domain
analysis on the acquired sound signal.

We start with the spectrum analysis of the data to obtain
the spectral data. Specifically, we conduct FFT on the original
data and intercept the positive frequency interval of the signal,
that is, the frequency corresponding to the first half of the
signal ([0, fs/2]). After obtaining the spectral data, we calcu-
late the features of the spectral data, such as the mean square,
frequency variance and crossing rate, as the composition of
the image-like frames.

In addition, we calculate the peak and extract the char-
acteristics related to the peak. Based on the analyzed spec-
trum waveform, we find that the frequency band of the
sine wave with a larger influence in the speech waveform
is different from several other ways. Xpeak is the peak
value of the signal. We use the peak counting method to
find n peaks {Xp1,Xp2,. . . ,Xpn} (n<N) from the N values of
{X1,X2,. . . ,XN}. The peak index of {X1,X2,. . . ,XN} is: Xpeak
= 1 / n * Xpj. Combining the peak and sliding window
processing methods, we deform the spectrum data. Specifi-
cally, we set the sliding window length to 10 Hz, calculate
the difference between the maximum and minimum values
record the sum of these differences across all windows, and
normalize the result.We call this the peak differenceX ′peak−T .
According to the characteristics of our data, we slightly
deformX ′peak , and obtain the peak differenceX

′
peak−T formula
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using (8):

X ′peak_T =
X ′peak

n ∗ maxX ′peak
(8)

where the calculation of the X ′peak is used by (9):

X ′peak =
n∑

i=1,i=i+m

[max1≤i≤mXi − min1≤i≤mXi] (9)

where n is the number of segments and m is the size
of the sliding window. maxXi is the maximum value
in {Xi,Xi+1,. . . ,Xi+m}, minXi is the minimum value in
{Xi,Xi+1,. . . ,Xi+m}, max X ′peak refers to selecting the maxi-
mum value of X ′peak from the existing test data, and its role is
to perform simple normalization on the data feature X ′peak−T .

C. TRAINING AND PREDICTION
1) CLASSIFIER

FIGURE 7. The basic structure of the Siamese network.

In our system,we rely on the Siamese architecture which
has two streams-one for the source and the other for target
samples-to find a suitable shared feature space for both. The
basic Siamese network consists of two (symmetric) neural
networks, a similarity calculation function and a contrast
loss function (see Fig. 7). Different from the general model
that simply uses two CNNs to train the source and target
samples, the CNN parameters are shared in the Siamese
architecture [15]. In this way, samples with the same label
can be mapped to each other as much as possible, even if
they come from different data domains. The representation
of the source domain and target domain in this article is
shown in Fig. 8. The classifier in this paper minimizes the
distance between samples of the same label (i.e., the mini-
mum distance between samples connected by the blue line
in the same ellipse) and maximizes the separation of samples
of different classes in different domains (i.e., the maximum
distance between samples connected by the green line).

The specific process of domain adaptation based on the
Siamese architecture in this paper is shown in Fig. 8. First,
we use the feature extraction methods mentioned to initially
process the blowing data into ‘‘image-like frames’’. Then,
we provide these ‘‘image pairs’’ formed by the source domain
data and the target domain data to the Siamese architecture.
The Siamese architecture can be divided into a first half and
a second half. The first half is modeled by a CNN (i.e.,
the embedding function g), which is a convolutional neural

FIGURE 8. Relationship diagram of the source domain and target domain.

network for feature extraction. The training model structure
has two processing flows: one for the source domain samples
and another for the target domain samples. We provide the
‘‘image pairs’’ to the CNN feature extraction network and
obtain two feature vectors. Then, we provide these feature
vectors to the second half. The second half constructs a
distance measure of two feature vectors as a similarity cal-
culation function h of the two ‘‘image-like frames’’. The
convolutional network training structure used in this paper
is as follows: input → convolution (ReLU) → convolution
(ReLU) → pooling → flatten → fully connected → fully
connected→ softmax→ output.

FIGURE 9. Domain adaptation based on the Siamese architecture.

We refer to the method presented in articles [20], [27],
which can address supervised domain adaptation by learn-
ing a deep model. Analogously, in training, our classifica-
tion model consists of three loss functions. The semantic
alignment loss minimizes the distance between samples from
different domains but of the same category of labels.The
separation loss maximizes the distance between samples
from different domains and the class labels. The classifica-
tion loss guarantees high classification accuracy. In addition,
the source domain processing stream will continue to model
h using an additional fully connected layer, which is the
modeling of the classification recognition part. The Siamese
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network in this paper can be implemented by (10):

L(h ∗ g)

= E[loss(h ∗ g(X s),Y )]

+

T=5∑
l=1

{
1

N S
l ∗ N

T
l

∑
i,j

dis[g(XSi ), g(X
T
j )]|y

S
i = yTj = l}

+

5,5∑
l,l′|l 6=l′

{
1

N S
l ∗N

T
l′

∑
i,j

sim[g(XSi ), g(X
T
j )]|y

S
i = l 6= l

′
=yTj }

(10)

In the first part, E denotes statistical expectation and loss
is a categorical cross-entropy error function. The function g
and the function h represent two functions for constructing the
depth model of this paper, and h ∗ g represents the combined
form of the two.

In the second part, T is the number of class labels, T=5 in
this paper. l denotes the current label. N S

l represents the num-
ber of samples in the source domain data and NT

l represents
the number of samples in the target domain when label is l.
XSi = X

S | Y = l, XTj = X
T | Y = l refers to random samples

in the specified domain when the label is l. dis refers to a
suitable distance measure of the distribution of XSi and XTj in
the embedded space, expressed as dis = || g(XSi ) - g(X

S
i ) ||2,

and ||·|| represents the Frobenius norm.
In the third part, l denotes the current label in the source

domain, l ′ is the label in the target domain, and l 6= l ′. The
definition of N S

l and NT
l′ is similar to the previous definition.

XSi = X
S | Y = l refers to random samples in source domain

when the label is l.XSi =X
T | Y = l ′ refers to random samples

in the target domain when the label is l ′. sim is a similarity
measure, which refers to a suitable similarity grid distributed
by XSi and XSi in the embedding space, expressed as sim =
max(0, m − ||g(XSi ) − g(XSi )||

2), where m is the margin that
specifies the separability in the embedding space.

2) TRAINING
Given the training data acquired using the two procurement
schemes described above, the classifier is trained following
Algorithm 1 using preprocessed training data as described
above. The trained model is periodically updated as new data
come in.

Algorithm 1 Training Model
Require: training data d with the corresponding actions a;
Ensure: model m.
1: d ′=preprocess(d);
2: m = train(d ′, a);
3: update online model with m;
4: return m

3) PREDICTION
Algorithm 2 provides the details of blowing type recognition.
Similar to the practice step, only data with a sound volume

greater than a threshold θ are collected (cf. Line IV-C3).
Then, the data are prepared (cf. Line IV-C3) as introduced
earlier and sent to the online model for recognition (cf.
Line IV-C3). Finally, the system performs corresponding
operations according to the recognized actions. It can be
applied in a wide range of applications, some of which will
be introduced in the next section.

Algorithm 2 Air Blow Category Recognition
Require: θ is the threshold;

1: while our interface is being used do
2: get real-time volume v of blowing sound;
3: if v > θ then
4: get sound data d ;
5: d ′=prepare(d);
6: a = recognize(d ′);
7: client performs interactive operations

according to a;
8: end if
9: end while

10: return

D. EXPERIMENTS
Because we use a domain-adaptive method based on the
Siamese architecture to process sound signals, there is no
related literature to verify its correctness and recognition
accuracy. To evaluate the accuracy of the data collection
method, feature extraction processing method, and our clas-
sification model independently of its applied use as a direct
input controlling method, we performed three comparative
verifications: a. between different features; b. raw data vs.
feature extraction data; c. SVM vs. Siamese network.

a.Different Features
In feature extraction, this paper mainly carried out time

domain features and frequency domain features. In this part,
without considering the impact of individual differences,
we rely on support vector machines (SVMs) to identify the
category based on the features. Although other learning algo-
rithms are applicable as well, we need many test cycles to
verify the correctness of the feature selection. We chose a
SVM in consideration of the efficiency and availability of
SVMs in processing small samples, nonlinear relationships
and multiple classification problems. The results of the dif-
ferent features are shown in Fig. 10.
feature1-4 represents the (1)-(4) indicating the time

domain features.
feature1-5 represents the (1)-(5) indicating the time

domain features.
feature-all represents all features, including time-domain

features and frequency-domain features.
The horizontal axis represents the proportion of source

domain data used for testing in the 1043 samples. As seen
from the Fig. 10, in different test proportions, the accuracy
of using the feature extraction method proposed in this paper
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FIGURE 10. The results of comparative test 1: different features.

will generally be better than other features. This shows that
the feature method we adopt is desirable.

b.Raw Data vs. Feature Extraction Data
This paper uses the Siamese network to compare and ana-

lyze the accuracy of two types of input data: one is to directly
use the obtained raw data as the input to the model, and the
other is to input the data after feature extraction processing to
the model training. That is, according to the feature extraction
method described above, we first perform preliminary feature
processing on the raw data.

FIGURE 11. The results of comparative test 2: Raw Data vs. Feature
Extraction Data.

As seen in Fig. 11, compared with the raw data as the
model input, the prediction accuracy of the model using the
data after feature extraction is much better. When the raw
data are directly used as the model input, the test accuracy
is 76.92%, and the best accuracy is only 80%. When using
the data processing method proposed in this paper, the aver-
age accuracy is 90.5%, and the optimal accuracy is 93.8%.
Although a CNN can offer good functionality for processing
image features, if we first perform special data processing on
the sound signal before inputting the data into the model, this
will greatly help improve the prediction accuracy.

c.SVM vs. Siamese network
We use the previously used SVM and the Siamese net-

work used in this paper to predict the accuracy of the same

target domain data. Among them, SVM1 has only source
domain data for training, and SVM2 has active domain data
and 10 target domain data for training; the Siamese network
training data are consistent with the SVM2 training data.

FIGURE 12. The results of comparative test 3: SVM vs. Siamese Network.

As shown in Fig. 12, when processing the same target
domain data with a small amount of training data, the optimal
accuracy of the Siamese network is 93.8%, which is more
powerful than the SVM. In a preliminary study using only
the scheduled training data, the different air blowing actions
were easily identified and the average accuracy rate reached a
good result, indicating that the features we extracted and the
depth model we chose were wellselected.

V. USER STUDY
To assess the usability and effectiveness of our interaction
method leveraging exhalation actions, we conducted a user
study. The user study consisted of four parts: an algorithm
performance test, a usability test, a contrast test and a user
experience study.

A. PARTICIPANTS
A total of 16 student volunteers (11 females, 5 males) were
enrolled to participate in the algorithm performance test,
usability test and user experience study. The age of the sam-
ple ranged from 15 to 25 years (M = 17.94 years, SD =
3.83 years).1 The number of volunteers involved in the con-
trast test will be described separately in ‘‘D. CONTRAST
TEST’’. Before this test, all participants did not have any prior
experience of blowing air as an interaction method.

B. ALGORITHM PERFORMANCE TEST
1) DESIGN
We adopted a within-subjects design for the algorithm perfor-
mance test. To test the performance of our Siamese Network
in dealing with device differences, we have developed two
android applications for testing: one using the SVMmodel for
identification and one using our Siamese network. We tested

1M refers to mean age. SD refers to the Standard Deviation, which is a
measure of how spread out the age distribution is.
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these two applications on two mobile phones (Source Device
A and Target Device Bmentioned in 4.1.1) to test the accuracy
of interactions using different algorithms. To avoid the impact
of interactive proficiency on the test results, the experience
order of the devices and the algorithm are counterbalanced,
that is, the test order of Source Device A and Target Device B,
the SVM and Siamese Network are counterbalanced.

2) PROCEDURE
First, we explained to the participants the relevant interaction
tasks relevant to the test. To finish these tasks, the participants
needed to rely on the four different forms of blowing air as
interactions. Then, the participants experienced the applica-
tion in one test condition.We designed a practice module, and
the participant practiced the four types of blowing following a
simple instruction phase before starting the formal test. Then,
the participant used the interaction method to finish some
simple tasks in the designated test application.

The algorithm performance test was divided into four parts
(two devices * two algorithms, named here Source_SVM /
Source_SN / Target_SVM / Target_SN). Each part consisted
of ten rounds and each round included 10 interaction tasks
(two times for each type of the four blowing types and
two times for participant speaking, ‘‘Target’’ and ‘‘Source’’
refer to whether the device is a source domain device or
a target domain device. ‘‘SVM’’ refers to the test program
implemented by SVM, and ‘‘SN’’ refers to the program
implemented by the Siamese network). Among the 10 rounds,
5 rounds simply performed 10 interaction tasks each round
to record the accuracy. The other 5 rounds required the
participants to perform 10 correct interactions each round
and record the time taken. To avoid the participants from
developing a certain regularity, the sequence of six breathing
tests in each group was random.

3) MEASURES AND RESULTS
The interaction accuracy was used to evaluate different algo-
rithms in dealing with the interaction recognition problem
with differences. At the same time, for recording accuracy,
we also recorded the interaction time. From the interaction
response time, we evaluated the feasibility of blowing inter-
action as a multitouch and voice-assisted interaction. The
results of the algorithm test for the ten participants are given
in Fig. 13 and Fig. 14.
From the test results of the algorithm test, we can observe

that the accuracy of the Siamese network algorithm (91.33%
and 94%) is higher than that of the SVM classifier (85.67%
and 53.33%), both in the identification of the source domain
device and the target domain device. By analyzing the vari-
ance in Fig. 14, the Siamese network is more stable than
the SVM in interaction accuracy and response time. There-
fore, it can be concluded that the Siamese network used in
this paper can effectively cope with the problem of device
differences. In terms of the time to complete the specified
interactive instructions, the Siamese network is also faster
and more stable than the SVM. It is important to note that in

FIGURE 13. The average accuracy of participants in the algorithm test.

FIGURE 14. The average time of participants in the algorithm test.

the Target_SVM part, participants cannot complete the inter-
active task within 120 seconds because the SVM algorithm
cannot solve the problem of domain adaptation.

C. USABILITY TEST
1) DESIGN
We adopted a within-subjects design for the usability test.
The SN application and Target Device B introduced earlier in
detail were used for this test. Since the input that we actually
obtain is the sound wave resulting from any blowing of air,
the test results might be affected by environmental noise.
Therefore, to assess the usability of the interaction technology
adequately, we tested the interaction accuracy under two
conditions: a quiet environment and a noisy environment. The
experience order was counterbalanced. The noisy environ-
ment condition is divided into indoor and outdoor to better
simulate the actual use scene. In the noisy environment of
the room, music was played, serving as noise for the test.
The music was set to approximately 65 decibels, and the
music source was less than 0.5 meters away from the par-
ticipants. Additionally, 3 extra people were arranged around
the participant and requested to chat casually, but they were
not allowed to communicate with the main participants. For
outdoor testing, we chose to conduct it next to the road with
more vehicles. In the quiet environment condition, there was
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no artificial noise in the lab, i.e., neither music nor chatting
was allowed.

2) PROCEDURE
The usability test was divided into three parts: a quiet envi-
ronment, an indoor noisy environment and an outdoor noisy
environment. Each part consisted of 10 rounds. The interac-
tion tasks of each round were the same as those in the algo-
rithm test. The participants experienced the SN application
using Target Device B in three predetermined environmental
conditions. The accuracy and time of the actual interaction
were recorded.

3) MEASURES AND RESULTS
Similar to the algorithm test, the interaction accuracy was
used to evaluate the usability of this interaction technology
in different environments. At the same time, for recording
accuracy, we also recorded the interaction time.

FIGURE 15. The average accuracy of participants in the usability test.

From the usability test results(see Fig. 15), we can observe
that the average accuracy (92.67% in quiet environment) in
the usability test is basically consistent with the accuracy
(93.8%) of the training verification in Chapter 4. A recent
study used breathing as a direct control interface in two
VR games [38]. They proposed four intuitive active breathing
control actions corresponding to different special effects in
games, and the average recognition accuracy in that studywas
88.3% with two authors. By comparison, our best accuracy is
93.8% in validation and 91.34% in the usability test, which
is still comparable to previous research that required custom
hardware. It can be seen from Fig. 16 that it takes approxi-
mately 30 seconds for the participants to perform 10 correct
blowing interaction instructions. Moreover, compared with
the quiet environment, the accuracy rate and average time
spent did not decrease considerably in the noisy environment,
showing that our technology can cope well with potential
interference stemming from background noise.

As far as response time is concerned, this blowing
interaction is acceptable as an important auxiliary form

FIGURE 16. The average time of participants in the usability test.

of interaction. The algorithm technology in this paper has
certain universality when dealing with different devices used
by different users. In terms of accuracy, response time and
usage scenarios, the interaction technique proposed in this
study is deemed acceptable.

D. CONTRAST TEST
1) DESIGN
Unlike the other tests in this paper, 8 volunteers (3 females,
5 males, aged between 16 and 49 years old (M =

22.625 years, SD = 10.83 years)) were enrolled to partic-
ipate in this test. We choose to compare our method with
the method in [16] (calling it the time counter method).
The reproduction principle of the time counter method is
as follows: when the volume is higher than the threshold,
the system starts the time counter until the volume is lower
than the threshold, and the time counter will be checked to
determine the type of blowing(single short puff, double short
puff and long puff). These three types correspond to gust, two
gust and gale.

The contrast test mainly tests the blowing interactive accu-
racy, not only to test the impact of device differences, but
also to test the impact of speech interference. To test the
differences, we first implement the time counter method in
Unity3D on the PC (source domain device); the same pro-
gram is packaged in. apk format and ported to the mobile
phone (target domain device) for testing. To test the speech
interference, when testing the time counter method, we will
calculate the accuracy under the two conditions of normal
use and prohibition of speech. In this way, we analyze the
influence of speech interference on the time counter method.
Because our method has already considered speech interfer-
ence, the accuracy of normal use is directly calculated for
comparison.

2) PROCEDURE
The test procedure of our method refers to the previous
methods.
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The test procedure of the time counter method: The partic-
ipants conducted 10 rounds of tests on the PC and mobile
phone respectively to record the accuracy. To test the per-
formance of the time counter method in dealing with speech
interference, each round has 8 interactive tasks (two times for
each type of the three blowing types and two times for partic-
ipant speaking). To avoid the participants from developing a
certain regularity, the sequence of six breathing tests in each
group was random.

3) MEASURES AND RESULTS
As shown in Fig. 17, the accuracy of our method based on
the Siamese network in identifying source devices and target
devices (91.67% and 92.8%) is higher than that of the time
counter method (75% and 60.52%). When used on the target
domain device, the time counter method cannot handle the
problem of device differences, so the accuracy is diminished.
However, our adaptivemethod can better solve the problem of
device differences. The accuracy of the time counter method
to prohibit speech is 80.41%, which is higher than the 75%
accuracy under normal conditions, indicating that the time
counter method cannot deal with speech interference well.
The results also illustrate that our adaptive method has obvi-
ous advantages in dealing with device differences and noise
interference, such as speaking.

FIGURE 17. The average accuracy of participants in the contrast test.

E. USER EXPERIENCE STUDY
1) DESIGN
To avoid participants becoming fatigued during the test,
each participant chooses one of the algorithm performance
tests and usability tests and then experiences the user study.
In this part, we use the three applications introduced in
Section VI - a video player application on a PC, Amap on a
mobile device and the a VR game application - to explore
the participant’s experience of using the interaction method
in three different applications. The participant experienced
the three applications in a certain order. After the partici-
pant experienced the applications, we conducted a follow-up
interview.

2) PROCEDURE
After completion of the previous test, the participants con-
tinued to participate in the application experience test.

Then, the participants experienced the video player applica-
tion on a PC, Amap on a mobile device and a VR game appli-
cation. The participants were able to take breaks during the
test. After experiencing the three applications, we requested
a follow-up interview with the participants.

3) MEASURES AND RESULTS
A structured interview was conducted to understand the par-
ticipants’ experiences and suggestions regarding this kind of
interaction. The interview included four structural elements:
(1) interest; (2) technology acceptance; (3) applicability; and
(4) generalization. Moreover, we added an open topic item
regarding blowing air as a natural and directly controllable
interaction method.

a: INTEREST
Through experience with the web application and VR game
application, the participants felt that this interaction method
was very interesting, and most of them remarked how they
had never tried to control applications by way of blowing air
before, e.g., ‘‘I have interacted with the mouse, touch, and
voice, but not breath, and it was funny’’.

b: TECHNOLOGY ACCEPTANCE
Participants agreed that this was a convenient way to interact,
i.e., that it is usable and easy to use: ‘‘You can release your
hands, and this advantage is important when your hands are
not available’’. ‘‘For example, when you’re learning to cook
by following a video, you may be busy preparing ingredients
with both hands or your both hands are covered with oil.
Here, blowing is a useful way to control the cell phone or
other video-playing devices’’. ‘‘It’s very easy to use, just move
your mouth and blow out’’.

c: APPLICABILITY
According to the interview results, the potential of this inter-
action method is very wide. Although it cannot be used
a mainstream form of interaction, it may solve problems
under certain special circumstances for people with particular
needs. ‘‘In some special dangerous situations or in special
emergencies, such as when a hostage needs to call for help,
he can’t shout, call or send messages. By using this inter-
action, he can send a secret signal for help, which is not
easily detected by criminals’’. ‘‘Deaf-mutes are a potential
user group. They may not be able to speak, but everyone can
blow air and breathe’’.

d: GENERALIZATION
Although it cannot be regarded as a primary means of inter-
action, it can be used as an auxiliary interaction modality.
In some cases, it may replace touching and other interaction
forms. ‘‘In some cases it can replace voice and touch, for
example, when both hands are inconvenient to use, you can
blow to answer the phone’’.

This method of interaction can be generalized to special
groups. ‘‘This technology can be extended to deaf-mutes,
helping them communicate with people by combining the
interaction method with digital dictionary in some way’’.
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e: DISADVANTAGES
The participants also mentioned some shortcomings of this
interaction modality. First, the number of interaction types
that can be achieved is limited. ‘‘One disadvantage is that
this way cannot achieve too much control, otherwise it is
easy to confuse. Unlike touch and voice, which can achieve
many kinds of control’’. Second, it easily leads to fatigue.
‘‘Although it is an interesting interaction method, the user
will be tired after using many times’’.

VI. APPLICATION DESIGN
Our novel blowing-based interface can be applied in a range
of different applications.

A. PLAYING VIDEO ON A PC
The client relies on Unity 3D (version 5.6.0) as the platform
for showing video. It obtains the exhalation sound waves in
real time and monitors which blowing operation the user has
blown in realtime. When monitoring any blowing actions,
it performs operations corresponding to the identification and
classification result: gale controls the play vs. pause state of
the video playing interface, gust is invoked to transition to
playing the next video, while breeze is used to return to the
previous video (cf. Fig. 18).

FIGURE 18. Blowing actions and corresponding effects on a PC.

In Fig. 18(a), the participant pauses while watching the
motion picture Monsters University, via a gale operation,
and the Play button turns into a Pause button. In Fig. 18(b),
the participant moving to the next video, the motion picture
Flipped, using the gust operation, the Next button turning
blue. Fig. 18(c) shows that the participant navigates to the
previous video, the motion picture Paddington 2, using the
breeze action, the previous button turning blue.

B. MANIPULATING AMAP ON A MOBILE PHONE
On the mobile phone, we created a simple prototype of our
blowing interactive interface on Amap, which can be used

in driving situations. Specifically, the action of enlarging the
map, as can be done via ZoomIn, is mapped to the gale
action (see Fig. 19(a)), while shrinking the map, as can be
achieved with ZoomOut, is mapped to the breeze action (see
Fig. 19(b)).
Fig. 19 shows the process of using blowing actions to

manipulate the map. In particular, Fig. 19(b) shows the initial
state, Fig. 19(a) shows the ZoomIn result in the Amap using
gale action, and Fig. 19(c) shows the ZoomOut result in the
Amap using breeze action.

FIGURE 19. Blowing actions and corresponding effects on Amap.

FIGURE 20. Blowing actions and corresponding effects in a VR game.

C. PLAYING A VR GAME
We integrate the blowing actions into a VR game called
Undersea Treasure Hunt. It is developed using Unity 3D
(version 5.6.0) and played using an HTC VIVE headset.
In this game, we define different game effects for every kind
of blowing action. The three game effects are associated with
blowing actions (i.e., gale, gust, breeze) and are also associ-
ated with certain phenomena in the real world. Gale sprays
a water jet (cf. Fig. 20(a)), Gust will open a treasure box

115498 VOLUME 8, 2020



Y. Chen et al.: Adaptive Blowing Interaction Method Based on a Siamese Network

(cf. Fig. 20(b)), and Breeze triggers the bubbling operation of
the crab (cf. Fig. 20(c)). These correspondences can further
impress upon the users the reasonableness of cause and effect
within the VR environment.

VII. CONCLUSION
This paper presented a simple method to implement a nat-
ural and directly controllable interaction based on blowing
out air. We designed and implemented four blowing actions
and three applications based on them. We implemented this
by relying on headset microphones to record the audio sig-
nals and then classify them to distinguish different blowing
categories.

We used a deep learning model, the Siamese network to
address domain adaptations to improve the robustness of this
blowing interaction. The test results show that individual
differences, speaking noise and environmental noise had little
influence on the interaction and that this interaction modality
is a goodway to improve user interest and experience in appli-
cations, specifically inVR applications.Moreover, it is highly
available in a multitude of environments and particularly
usable in special environments (e.g., noise, unavailability of
hands) or for special groups (e.g.,deaf-mutes).
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