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ABSTRACT In cell-free massiveMIMO networks, a large number of distributed access points (APs) provide
service to a much smaller number of mobile stations (MSs) over the same time/frequency resources. The
key idea is to use a central processing unit (CPU) to manage such a densely populated network of APs.
This centralization helps reducing operational costs and eases implementation of joint power control and
coherent signal processing through a proper orchestration of the functional split between the CPU and
the APs. Cell-free massive MIMO networks, however, are often subject to stringent capacity requirements
on the fronthaul links connecting the APs to the CPU and thus, low-resolution ADCs must be used to
quantize the signals shared among CPU and APs. In this paper, analytical closed-form expressions for the
achievable user rates on both the uplink (UL) and downlink (DL) of a fronthaul-capacity constrained cell-free
massive MIMO network using low-resolution ADCs are obtained. These expressions, jointly with the use
of theoretical models characterizing the fronthaul capacity consumption of different CPU-AP functional
splits, allow posing max-min fairness power control optimization problems that can be solved using standard
convex optimization algorithms. Numerical results show that, under fronthaul capacity constraints, CPU-AP
functional splits where the precoding/decoding schemes are implemented at theAPs are clearly outperformed
by those functional splits in which, thanks to sharing CSI among APs and CPU, the precoding/decoding
functions are implemented at the CPU. In contrast, if the limiting factor is the resolution of the ADCs used
to quantize the samples to be transmitted on the fronthaul links, the preferred CPU-AP functional splits are
those in which the baseband processing is performed at the APs. Moreover, they also reveal that in such
functional splits there is always an optimal range of values of the UL fronthaul capacity fraction allocated
to share the CSI.

INDEX TERMS Cell-free massive MIMO, capacity-constrained fronthaul, normalized conjugate beam-
forming, matched filtering, CPU-AP functional split, low-resolution ADCs.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) has recently
emerged as one of the fundamental physical layer pillars of
the so-called 5G and beyond-5G wireless networks [1], [2].
The underlying advantage of massive MIMO, compared to
classical multi-user MIMO, is that it can provide very high
spectral and energy efficiencies by relying on rather sim-
ple signal processing, without the need for any base sta-
tion (BS) cooperation [3]. Although massive MIMO arrays
at the BSs have been traditionally arranged in compact
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collocated setups, they can also be organized in spatially
distributed configurations [1], [2], [4]. Distributed massive
MIMO architectures are reminiscent of concepts such as dis-
tributed antenna system (DAS) [5], network MIMO [6], [7],
coordinated multipoint (CoMP) transmission [8] or cloud
radio access network (C-RAN) [9], but all these arrangements
can be essentially considered as different incarnations of a
cooperative cellular infrastructure. To the best of authors’
knowledge, the first distributed massive MIMO architecture
was proposed in [10] where the uplink segment was investi-
gated when relying on maximum-ratio combining (MRC) in
combination with a BS selection procedure that effectively
limited the number of remote radio heads (RRHs) involved
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in the detection of the signal transmitted by a particular
mobile station (MS). A similar setup was addressed in [11]
but using minimum mean square error (MMSE) detection,
which provides an upper bound on the performance linear
detectors can offer in practical setups (i.e., finite number of
RRHs). Conceptually similar to the C-RAN and distributed
massiveMIMO architectures, but explicitly renouncing to the
cellular network philosophy, an alternative distributed mas-
sive MIMO-based infrastructure has been recently termed
as cell-free massive MIMO [4], [12]. The underlying idea
is that a massive number of access points (APs) distributed
across the coverage area are connected to a central process-
ing unit (CPU) and, as in the cellular collocated massive
MIMO schemes, use very simple signal processing schemes
to exploit the channel hardening and favorable propagation
conditions to coherently serve a large number of MSs on the
same time-frequency resource.

The distribution of antennas over a large area allows
for an efficient exploitation of large-scale diversity while
bringing network infrastructure physically closer to MSs to
offer a much higher coverage probability than collocated
massive MIMO architectures [1], [2], [4], [12], [13]. How-
ever, this comes at the cost of increased fronthaul capacity
requirements. Despite capacity-constrained fronthaul links
may dramatically influence the performance of cell-free
massive MIMO networks, most research papers on this
topic rely on the assumption of infinite-capacity fronthaul
links (see, for instance, [4], [13]–[17]). Limited fronthaul
effects have been previously considered in the context of
CoMP using both, rate-distortion information theoretical
arguments [18]–[20] or simple quantizationmechanisms [21].
Interestingly, fronthaul limitations invariably bring along
a new degree of freedom in the form of the functional
split describing where and in what order are the precoding
and quantizing operations implemented. Authors in [19],
[20], [22] have recently shown that, in the downlink of a
C-RAN network, the fronthaul capacity plays a decisive role
in deciding the best functional split: whereas under mild
fronthaul constraints it is advantageous to precode at the APs,
CPU-based precoding is to be preferred when the fronthaul
is severely constrained. Cell-free massive MIMO networks
using capacity-constrained fronthaul links have only been
recently considered, under very specific scenario-dependent
conditions, in [23]–[27]. In particular, Bashar et al. in [23]
only consider the uplink (UL) and, in addition, they assume
the use of uniform quantizers with a fixed number of
bits/sample. In [24], the authors solely focus on the downlink
(DL) and assume the use of a specific CPU-AP functional
split in which the control layer, in charge of delivering
channel estimates to the CPU, is not subject to any capacity
constraint, whereas the data layer, in charge of delivering
user’s precoded signals to the APs, is subject to capacity
constrained links. Zhang et al. in [25] only evaluate the
UL and, although they assume the use of low-resolution
analog-to-digital converters (ADCs), do not consider the
effects that the use of capacity constrained fronthaul links

may have on the spectral efficiency of the network.
Masoumi et al. in [26], analyze the performance provided
by three different transmission strategies at the APs but,
unfortunately, they do not assume the use of conventional
low-resolution ADCs but the use of sophisticated compres-
sors that, only by assuming the compression of very large
signal sequences, can be modeled based on the rate-distortion
theory. Finally, the cell-free massive MIMO scenario consid-
ered in [27] is specifically designed to exploit the character-
istics of the so-called millimeter wave (mmWave) bands and
massive MIMO architectures based on hybrid analog/digital
zero-forcing (ZF) precoding/decoding schemes. Unfortu-
nately, ZF strategies can only be implemented using specific
CPU-AP functional splits, thus making this specific precoder
unsuitable to analyse the effects that capacity-constrained
fronthaul links may have on the different configurations.
Our main aim in this paper is to fill in the gap left by
previous research work on this topic by presenting a real-
istic general framework allowing a fair comparison between
different CPU-AP functional splits in both the UL and DL
of a fronthaul-constrained cell-free massive MIMO network
using low-resolution ADCs. Specific contributions of this
paper can be summarized as:
• As claimed by Chen and Björnson in [28], the levels
of channel hardening and favourable propagation con-
ditions provided by a cell-free massive MIMO network
using conjugate beamforming (CB) strongly depend on
the propagation environment, pathloss model and users’
distribution. This hardening uncertainty casts doubts on
the accuracy of the achievable rate expressions in such a
cell-free massive MIMO setup as they can significantly
understimate the true spectral efficiency. Fortunately,
authors in [29] proposed a simple modification of the
CB precoder, the normalized conjugate beamforming
(NCB), targetting the DL of cell-free massive MIMO
networks that can be easily shown to largely improve
these hardening metrics. In contrast, for theUL segment,
receiver matched filtering has been shown to outperform
its normalized counterpart. Detailed mathematical anal-
ysis leads to approximate closed form expressions for
the achievable rate, for both a matched filtering (MF)-
based UL and anNCB-based DL, that are able to encom-
pass the effects of the capacity-constrained fronthaul
links. The results are also extended to consider diferent
pilot allocation schemes.

• The quantizer noise model described by Mezghani and
Nossek in [30], which is based on the Bussgang decom-
position [31] and is sometimes referred to as the addi-
tive quantization noise model (AQNM) [32], is used
to characterize the fronthaul bandwidth consumption
of different CPU-AP functional splits, allowing us to
provide a thorough comparison among them and discuss
the impact they may have on the global performance
of the network. Remarkably, as it will be shown over
the next sections, CPU-AP functional splits perform-
ing the baseband signal processing operations at the
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CPU exhibit far greater robustness against fronthaul
bandwidth limitations in comparison to those where the
processing is conducted at the APs.

• Using the mathematical models for both the achiev-
able rates and the fronthaul bandwidth consumption,
max-min per-user rate fairness power allocation and
fronthaul quantization design strategies are devised
that provide globally optimal solutions that can be
solved using standard convex optimization algorithms.
Unlike the seminal works on cell-free massive MIMO
networking, the optimization problems posed and
solved in this paper take into account the unavoidable
fronthaul-capacity constraint. In particular, the resulting
max-min optimization problems involve not only the
power allocation coefficients but also the quantization
impairments that a given capacity-constrained fronthaul
link can support. Interestingly, both sets of optimization
variables are shown to be deeply intertwined.

The remainder of this paper is organized as follows.
In Section II we describe the proposed fronthaul-capacity
constrained cell-free massive MIMO network. Different
subsections are devoted to the description of the chan-
nel model, the quantizer model, the training phases, and
the UL and DL payload transmission phases. Mathematical
closed-form expressions for the achievable UL and DL user
rates are derived in Section III and further developed in
Appendices A and B. Section IV is dedicated to the charac-
terization of the bandwidth consumption of both the UL and
DL fronthaul links under different CPU-AP functional splits.
Power allocation and quantization optimization processes are
posed and solved in Section V. Numerical results and dis-
cussions are provided in Section VI and, finally, concluding
remarks are summarized in Section VII.
Notation: Vectors and matrices are denoted by lower-case

and upper-case boldface symbols. The q-dimensional identity
matrix is represented by Iq. The operators X−1, XT , X∗

and XH denote, respectively, the inverse, transpose, con-
jugate and conjugate transpose (also known as Hermitian)
of matrix X . The expectation operator is denoted by E{·}.
Finally, CN (m,R) denotes a complex Gaussian vector distri-
bution with meanm and covariance R, whose zero-mean part
constructed by subtracting its mean is circularly symmetric,
andN (0, σ 2) denotes a real valued zero-mean Gaussian ran-
dom variable with standard deviation σ .

II. SYSTEM MODEL
Following the original cell-free massive MIMO proposal
in [4], this paper considers a wireless communications system
where M single antenna APs have been deployed on a large
coverage area to simultaneously serve K single antenna MSs
on the same time-frequency resource. It is assumed that both
APs and MSs are uniformly distributed over the coverage
area and that all APs are connected to a CPU via fron-
thaul links with DL and UL capacities denoted by CFd and
CFu, respectively. As it is typically done in massive MIMO,
DL and UL transmissions are organized in a time division

duplex (TDD) operation whereby each coherence interval
is split into three phases, namely, the UL training phase,
the DL payload data transmission phase and the UL payload
data transmission phase. In the UL training phase, all MSs
transmit UL training pilots allowing the estimation of the
propagation channels to every MS in the network.1 Subse-
quently, these channel estimates are used to detect the signals
transmitted from the MSs in the UL payload data transmis-
sion phase and to compute the precoding filters governing the
DL payload data transmission.

Although hybrid CPU-AP functional splits may be
devised, only the two classical approaches will be consid-
ered in this paper, namely, the baseband processing at the
CPU (BCU) and the baseband processing at the AP (BAP).
The signal processing steps performed by these CPU-AP
functional splits are schematically represented in the block
diagrams shown in Fig. 1. In words (the mathematical details
will be developed in the following subsections), these signal
processing operations can be described as:
• BCU-based CPU-AP functional split: In the
BCU-based approach, the received signal samples dur-
ing the UL training phase (see Fig. 1(a)) are quantized
at each AP and sent to the CPU, via the corresponding
UL fronthaul links, where they are used for channel
estimation and precoder/decoder design. During the
UL payload data transmission phase (see Fig. 1(c)),
the received samples at each AP are first quantized and
then sent to the CPU, via the UL fronthaul link, where
they are filtered for combining and detection. During
the DL payload data transmission phase (see Fig. 1(e)),
a precoded data signal is generated at the CPU for
each of the MSs in the network and the K precoded
signals are then combined, quantized and sent to the
APs, via the corresponding DL fronthaul links, where
they are forwarded to the radio frequency (RF) chains for
transmission. Note that in all these transmission phases,
the channel state information (CSI) has been kept at
the CPU.

• BAP-based CPU-AP functional split: In the BAP-
based approach, in contrast, the received signal samples
during the UL training phase (see Fig. 1(b)) are used at
the APs to obtain a channel estimation and to calculate
the baseband precoders and decoders. That is, the CSI is
kept at the APs. During the UL payload data transmis-
sion phase (see Fig. 1(d)), the received samples at each
AP are first filtered (decoded) to obtain K signal sam-
ples corresponding to the K active MSs in the network.
These samples are then quantized, multiplexed and sent
to the CPU, via the UL fronthaul link, where they are
demultiplexed for combining and detection. During the
DL payload data transmission phase (see Fig. 1(f)), the

1Note that channel reciprocity can be exploited in TDD systems and
therefore only UL pilots need to be transmitted. Furthermore, it is assumed
that MSs do not need to estimate the effective channel gain as, due to massive
MIMO channel hardening, this is very close to its expected value, a fairly
easy to estimate deterministic constant.
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FIGURE 1. Schematic block diagram representing the operations performed by the BCU and BAP CPU-AP functional splits during the different TDD
transmission phases.

power-controlled data symbols are quantized and mul-
tiplexed at the CPU and sent to the APs, via the cor-
responding DL fronthaul links. At the APs, they are
precoded, combined and sent to the RF chains for
transmission.

Note that the coefficients $umk and $dmk , for all m ∈
{1, . . . ,M} and k ∈ {1, . . . ,K } are used to denote the
MIMO decoding weights in the UL and MIMO precoding
weights in the DL, respectively. These weighting coefficients
are applied either at the CPU for the BCU-based functional
split or at the APs for the BAP-based functional split. It is
worth pointing out at this point that, in order to allow for a
fair comparison between both functional splits, only rather
simple MIMO signal processing techniques are considered in
this work (see, for instance, [4], [29]). In particular, we focus
on conjugate beamforming-based techniques suitable for dis-
tributed implementation that, under ideal/infinite fronthaul
assumptions would render BCU and BAP equivalent. Note,
however, that a potential advantage of the BCU-based func-
tional split is that it enables the implementation of fully cen-
tralised processing in cell-free massive MIMO, thus opening
the door to the implementation of MMSE data processing
that, as pointed out in [33], may significantly outperform any

form of conjugate beamforming, including the normalised
conjugate beamforming proposed by Interdonato et al.
in [29].

Critically, the combined duration/bandwidth of the train-
ing, and DL and UL payload transmission phases, denoted
as τp, τd and τu, respectively, should not exceed the coher-
ence time/bandwidth of the channel, denoted as τc, that is,
τp+τd+τu ≤ τc, with all these intervals specified in samples
(or channel uses) on a time-frequency grid.

A. CHANNEL MODEL
The propagation channel linking AP m to MS k is denoted
by gmk and modelled as

gmk =
√
βmkhmk , (1)

where βmk represents the large-scale propagation losses
(i.e., path loss and shadowing) and hmk corresponds to
small-scale fading. The large-scale gain is further decom-
posed as βmk = ζmkχmk with ζmk representing the
distance-dependent path loss and χmk corresponding to the
shadowing component. Finally, the small-scale fading terms
hmk consist of independent and identically distributed (i.i.d.)
complex Gaussian random variables distributed as CN (0, 1).
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The channel coefficients gmk are assumed to be static
throughout the coherence interval and then change indepen-
dently (i.e., block fading). As in the seminal papers [4], [12]
introducing the idea of cell-free operation, it is assumed that
the CPU has perfect knowledge of the large-scale fading gains
(i.e., βmk ∀mk).

B. A LINEAR MODEL FOR THE QUANTIZATION PROCESS
One of the major difficulties to be overcome when analyzing
communication systems using low-resolution ADCs is the
nonlinear nature of the scalar quantizers used to compress
the signals to be transferred between APs and CPU during
the different transmission phases. Let us denote by Qθ (y)
the mathematical operations performed by a generic scalar
quantizer θ on a generic signal vector y. One of the classical
approaches to deal with the nonlinear nature of Qθ (y) is the
use of the Bussgang decomposition [31]

ŷ = Qθ (y) = Fθy+ qθ , (2)

where the matrix Fθ can be obtained from the linear MMSE
estimation of ŷ given y, that is,

Fθ = E
{
ŷyH

} (
E
{
yyH

})−1
= RŷyR

−1
yy , (3)

and qθ is a zero-mean additive quantization noise, uncorre-
lated with y, and with correlation matrix

Rqθqθ = E
{(
ŷ− Fθy

) (
ŷ− Fθy

)H}
= Rŷŷ − RŷyR

−1
yy Ryŷ. (4)

The main challenge in using this decomposition consists
of deriving the covariance matrices Rŷŷ and Rŷy assuming
that the input signal y is Gaussian with known covariance
matrix Ryy. For the 1-bit quantizer, these matrices can be
found in a closed form [30, Section V]. For general scalar
quantizers, however, these matrices are usually evaluated by
resorting to approximations. In [30, Section IV], Mezghani
and Nossek describe an approximation that is based on the
use of the distortion factor ρθ = (1 − αθ ) = 1/SQNRθ ,
where SQNRθ denotes the signal-to-quantization noise ratio.
Note that the parameter αθ has only been introduced for
notational convenience. In particular, they use a Gaussian
approximation of qθ and show that (see [30, eqs. (25)
and (28)])

Rŷy = Ryŷ = αθRyy, (5)

and

Rŷŷ ≈ α
2
θRyy + αθ (1− αθ ) diag

(
Ryy

)
, (6)

with diag(X) being a diagonal matrix containing the diag-
onal of the square matrix X in its main diagonal. Hence,
in summary, using (5) and (6) in (2), (3) and (4), the approach
proposed byMezghani and Nossek in [30], which is based on
the Bussgang decomposition, allows us to approximate the
vector of scalar quantized samples as

ŷ = Qθ (y) ≈ αθy+ q̃θ , (7)

where q̃θ ∼ CN
(
0,Rq̃θ q̃θ

)
with

Rq̃θ q̃θ = αθ (1− αθ ) diag
(
Ryy

)
. (8)

The optimal design parameters of uniform as well as
non-uniform quantizers and the resulting distortion factor ρθ
(or, equivalently, αθ ) are tabulated in [34] assuming Gaussian
distributed input signals and different numbers of quantiza-
tion bits per sample bθ . In particular, αθ is an increasing
function of bθ and, for the non-uniform quantizer case, which
will be considered in the next sections, can be approximately
expressed as αθ = 1 − π

√
3

2 2−2 bθ for bθ > 5 [35], and the
corresponding values for bθ = 1, 2, 3, 4 and 5 are summarized
in Table 1 (derived from [34, Table 1]). This linear model
for the quantization process (or its equivalent AQNM) has
been extensively used in the massive MIMO and cell-free
massive MIMO literature (see, among many others, [23],
[25], [36]–[45] and references therein).

TABLE 1. Parameters of the additive quantization noise model (derived
from [34, Table 1]).

C. TRAINING PHASE
Communication in any coherence interval of a TDD-based
massiveMIMO system invariably starts with theMSs sending
the pilot sequences to allow the channel to be estimated either
at the CPU, in the BCU-based case (see Fig. 1(a)), or at
the APs, in the BAP-based approach (see Fig. 1(b)). During
the UL training phase, all K MSs simultaneously transmit
pilot sequences of τp samples to the APs and thus, the τp × 1
received UL signal at the mth AP is given by

ypm =
√
τpPp

K∑
k=1

gmkϕk + npm, (9)

where Pp is the transmit power of each pilot symbol, ϕk , with
‖ϕk‖

2
= 1, denotes the τp × 1 training sequence assigned

to MS k , and npm is a τp × 1 vector of i.i.d. additive noise
samples with each entry distributed as CN (0, σ 2

u ). For later
use, note that the correlation matrix of ypm can be obtained as

Rypmypm = E
{
ypmyp

H
m

}
= τpPp

K∑
k=1

βmkϕkϕ
H
k + σ

2
u Iτp . (10)

Ideally, training sequences should be chosen to be mutually
orthogonal, however, since inmost practical scenarios it holds
that K > τp, a given training sequence is assigned to more
than one MS, thus resulting in the so-called pilot contamina-
tion effect, a widely studied phenomenon in the context of
centralized massive MIMO systems [46].
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In the BCU-based approach, the components of vector
ypm are compressed using a scalar quantizer at the AP and
sent to the CPU, via the UL fronthaul link. Using the linear
quantization noise model introduced in (2), the quantized
signal vector at the CPU during the training phase can be
expressed as

ŷpm = Qpm

(
ypm

)
≈ αpm

(√
τpPp

K∑
k=1

gmkϕk + npm

)
+ q̃pm, (11)

where

Rq̃pmq̃pm = E
{
q̃pmq̃

H
pm

}
= αpm

(
1− αpm

)
diag

(
Rypmypm

)
. (12)

D. CHANNEL ESTIMATION
In order to estimate the channel for MS k , the signal vectors
ŷpm, in the BCU-based approach, or ypm, in the BAP-based
approach, are first projected onto the pilot signal ϕHk to obtain

y̌pmk =

{
ϕHk ŷpm, BCU
ϕHk ypm, BAP.

(13)

Given y̌pmk , the linear MMSE estimate of gmk can then be
calculated as2 [4]

ĝmk =
E
{
y̌∗pmkgmk

}
E
{∣∣y̌pmk ∣∣2} y̌pmk

=


αpm

√
τpPpβmk

αpmξmk
ϕHk ŷpm, BCU√

τpPpβmk
ξmk

ϕHk ypm, BAP,

(14)

where

ξmk = τpPp
K∑

k ′=1

βmk ′
∣∣∣ϕHk ϕk ′ ∣∣∣2 + σ 2

u , (15)

and we have used the fact that

E
{
y̌∗pmkgmk

}
=

E
{(
ϕHk ŷpm

)∗
gmk

}
, BCU

E
{(
ϕHk ypm

)∗
gmk

}
, BAP

=

{
αpm

√
τpPpβmk , BCU√

τpPpβmk , BAP,
(16)

2Note that the signal at the output of a quantizer is not Gaussian and
thus, in the specific case of BCU where the channel estimation process deals
with quantized samples, a linear MMSE is no longer an MMSE estimate.
Following the additive Gaussian quantization noise model proposed by
Mezghani and Nossek in [30], which largely relies on the Gaussian approx-
imation, we adopt a conservative approach and assume that the estimation
and estimate behave as uncorrelated Gaussian, and thus independent, random
vectors. Although this approximation does not completely supersede the
need for an optimal MMSE estimator, results in [23], [30], [47] demonstrate
the effectiveness of this approach.

and

E
{∣∣y̌pmk ∣∣2} =

ϕ
H
k E

{
ŷpmŷ

H
pm

}
ϕk , BCU

ϕHk E
{
ypmyp

H
m

}
ϕk , BAP

=

{
ϕHk

(
αp

2
mRypmypm + Rq̃pmq̃pm

)
ϕk , BCU

ϕHk Rypmypmϕk , BAP

=

{
αpmξmk , BCU
ξmk , BAP,

(17)

Moreover, note that gmk = ĝmk + g̃mk where the channel esti-
mate ĝmk and the channel estimation error g̃mk are mutually
independent.

E. UPLINK PAYLOAD DATA TRANSMISSION
The signal transmitted by the kth MS is zk =

√
νksuk , with

0 ≤ νk ≤ Puk and E
{
|suk |

2}
= 1, where suk is the

transmitted symbol, νk denotes the transmitted power, and
Puk is the maximum average transmitted power available at
the kth MS. Using this notation, the received signal at themth
AP can be expressed as

rum =
K∑

k ′=1

√
νk ′gmk ′suk ′ + num, (18)

where num ∼ CN (0, σ 2
u ) is the additive thermal noise sample

at the receiver output. The received signal at each of the APs
in the network is subject to signal processing operations that
depend on the particular CPU-AP functional split under con-
sideration. The combined signal at the CPU corresponding to
the symbol transmitted by the kth MS can be written as

yuk =
M∑
m=1

xumk , (19)

where (see Figs. 1(c) and 1(d))

xumk =

{
$umkQum (rum), BCU
Qumk ($umkrum), BAP,

≈

{
$umk (αumrum + q̃um), BCU
αumk$umkrum + q̃umk , BAP,

(20)

with $umk denoting the decoding coefficient applied by the
mth AP to the signal from MS k . Note that the Bussgang
decomposition assumes that the input signal to the quantizer
has a Gaussian distribution. Since the input to the quantizer
is equal to the sum of many random variables, the central
limit theorem ensures that it has a near Gaussian distribution
thus justifying the use of this decomposition. The Gaussian
approximation was numerically verified by Bashar et al., for
typical parameter values, as shown in [23, Figs. 2(a)-2(c)].
Now, assuming, as in [4], that the CPU uses only statistical
CSI when detecting the transmitted symbol suk (this is a
well-known strategy in the context of massive MIMO per-
formance analysis that is denoted as the use and then forget
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FIGURE 2. Average max-min rate per-user versus the number of active
MSs under different pilot allocation strategies (BCU, M = 100 APs,
τp = 20 samples, CF u = CF d = 33 Mbps, εCF u

= 9/11).

CSI scheme (see, for instance, [2, Section 3.2.1]), the com-
bined signal can be rewritten as

yuk = DSuksuk + BUuksuk
+

∑
k ′ 6=k

UIukk ′suk ′ + QNuk + wuk , (21)

where, for notational convenience, we define

α̃umk =

{
αum, BCU,
αumk , BAP,

(22)

for all k , allowing us to express the strength of the
desired signal (DS), the beamforming gain uncertainty (BU),
the interference caused by the k ′th user (UI), the quantization
noise (QN) due to the use of capacity-constrained fronthaul
links, and the combined additive white Gaussian noise as

DSuk =
√
νk

M∑
m=1

α̃umkE {$umkgmk}, (23)

BUuk =
√
νk

M∑
m=1

α̃umk ($umkgmk − E {$umkgmk}), (24)

UIukk ′ =
√
νk ′

M∑
m=1

α̃umk$umkgmk ′ , (25)

QNuk =


∑M

m=1
$umk q̃um, BCU∑M

m=1
q̃umk , BAP,

(26)

and

wuk =
M∑
m=1

α̃umk$umknum, (27)

respectively.

F. DOWNLINK PAYLOAD DATA TRANSMISSION
Let us define by sd = [sd 1 . . . sdK ]T the K × 1 vector of
symbols jointly (cooperatively) transmitted from the APs to

theMSs, such thatE
{
sd sHd

}
= IK . The signal processing that

symbol vector sd undergoes before being transmitted depends
on the implemented CPU-AP functional split, as previously
described in the introduction to this section. In particular,
the mathematical operations performed to obtain the signal
to be transmitted from the mth AP, denoted as xdm, can be
summarized as (see Figs. 1(e) and 1(f))

xdm =


Qdm

(∑K

k=1
η
1/2
mk $dmksd k

)
, BCU∑K

k=1
Qdmk

(
η
1/2
mk sd k

)
$dmk , BAP,

≈

αdm
∑K

k=1
η
1/2
mk $dmksd k + q̃dm, BCU∑K

k=1
$dmk

(
αdmkη

1/2
mk sd k + q̃dmk

)
, BAP,

(28)

where$dmk is the beamforming coefficient for MS k applied
to the signal received by the mth AP, and ηmk is the cor-
responding power allocation coefficient, chosen to meet a
prescribed criterion while satisfying the power constraint
E
{
|xdm|

2}
≤ Pdm at the mth AP, with Pdm denoting the

maximum average transmit power available at the mth AP.
Hence, taking into account that

E
{
|q̃dm|

2
}
= αdm (1− αdm)E


∣∣∣∣∣
K∑
k=1

η
1/2
mk $dmksd k

∣∣∣∣∣
2


= αdm (1− αdm)
K∑
k=1

ηmkE
{
|$dmk |

2
}
, (29)

E
{
|q̃dmk |

2
}
= αdmk (1− αdmk)E

{∣∣∣η1/2mk sd k
∣∣∣2}

= αdmk (1− αdmk) ηmk , (30)

we have that

E
{
|xdm|

2
}

=


αd

2
m

K∑
k ′=1

ηmk ′E
{
|$dmk ′ |

2
}
+ E

{
|q̃dm|

2
}
, BCU

K∑
k ′=1

(
αd

2
mk ′ηmk ′ + E

{
|q̃dmk ′ |

2
})

E
{
|$dmk ′ |

2
}
, BAP

=


αdm

K∑
k ′=1

ηmk ′E
{
|$dmk ′ |

2
}
, BCU

K∑
k ′=1

αdmk ′ηmk ′E
{
|$dmk ′ |

2
}
, BAP.

(31)

Hence, using the definition

α̃dmk =

{
αdm, BCU,
αdmk , BAP,

(32)

for all k , theDL power allocation constraints can be expressed
for both BCU- and BAP-based functional splits as

K∑
k=1

α̃dmkηmkE
{
|$dmk |

2
}
≤ Pdm. (33)
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The signal received by MS k can be expressed as

yd k =
M∑
m=1

gmkxdm + nd k , (34)

where nd k ∼ CN (0, σ 2
d ) is the corresponding Gaussian noise

sample. Under the assumption that only statistical CSI is
available at the MSs, the received signal at the kth MS can
be rewritten as [4]

yd k = DSd ksd k + BUd ksd k
+

∑
k ′ 6=k

UId kk ′sd k ′ + QNd k + wd k , (35)

where

DSd k =
M∑
m=1

α̃dmkη
1/2
mk E {gmk$dmk}, (36)

BUd k =

M∑
m=1

α̃dmkη
1/2
mk (gmk$dmk − E {gmk$dmk}), (37)

UId kk ′ =
M∑
m=1

α̃dmk ′η
1/2
mk ′gmk$dmk ′ , (38)

QNd k =


∑M

m=1
gmk q̃dm, BCU∑M

m=1
gmk

∑K

k ′=1
$dmk ′ q̃dmk ′ , BAP,

(39)

and wd k = nd k , represent the strength of the desired signal
(DS), the beamforming gain uncertainty (BU), the interuser
interference (UI) caused by the transmission to the k ′th MS,
the quantization noise (QN) and the thermal noise,
respectively.

G. PRECODING/DECODING SCHEMES
It is well-known that cellular massive MIMO systems
using simple CB precoders in the DL and MF decoders
in the UL are able to provide high spectral efficiency by
relying on channel hardening and favorable propagation
phenomena [2]. Under channel hardening conditions, there
is no need to adapt the radio resource management functions
(i.e., power control and scheduling) to the small-scale fading
variations. Furthermore, favorable propagation conditions
guarantee that propagation channels observed by different
MSs are almost orthogonal and, thus, the presence of little
inter-user interference leakage. In a cell-free massive MIMO
network, however, it has been recently shown in [28] that nei-
ther channel hardening nor favourable propagation conditions
can always be guaranteed using simple CB schemes with
single-antenna APs. Consequently, one should not rely on
these propagation assumptions when obtaining the achievable
rates, as this could lead to a great underestimation of the
achievable performance [28].

In [29], Interdonato et al. proposed a DL precoding
scheme, named NCB, that satisfies short-term average power
constraints at the APs and, most importantly, it largely
improves the channel hardening and favourable propagation

conditions when compared with the classical CB scheme.
In the UL, in contrast, the classical MF solution outper-
forms the normalized counterpart. That is, using the NCB/MF
precoding/decoding setup, defined as

$dmk =
ĝ∗mk∣∣ĝmk ∣∣ , (40a)

$umk = ĝ∗mk , (40b)

respectively, we can safely rely on channel hardening
and favourable propagation conditions when obtaining the
achievable rates without the risk of underestimating the
achievable performance evenwhen using single-antennaAPs.

III. ACHIEVABLE RATES
Analysis techniques similar to those applied, for instance,
in [2], [4], [29], are used in this section to derive UL and DL
achievable rates. In particular, the sum of the second, third,
fourth and fifth terms in (21), for the UL case, or (35), for
the DL case, is treated as effective noise. In fact, as the data
symbols transmitted by different MSs are mutually uncorre-
lated and are also uncorrelated with both the quantization
and thermal noise samples, it can be shown that the addi-
tive terms constituting the effective noise are, in both UL
and DL cases, mutually uncorrelated, and uncorrelated with
the desired signal term3 [4], [23], [47]. Hence, the power
of the effective noise may be treated as the sum of the
powers of these terms. Now, recalling the fact that uncorre-
lated Gaussian noise represents the worst case [4], the UL
and DL achievable rates (measured in bits per second) for
MS k can be obtained as in (41), as shown at the bottom
of the next page, where B is the bandwidth and l is a token
used to represent either the DL (with l = d) or the UL
(with l = u).
Irrespective of whether we are using the UL MF approach

or the DL non-cooperative NCB, the expectations and vari-
ances in (41) can be calculated in closed-form. For notational
convenience, let us define the variable %mk as

%mk , E
{∣∣ĝmk ∣∣2} =


αpmτpPpβ

2
mk

ξmk
, BCU,

τpPpβ2mk
ξmk

, BAP.

(42)

3Note that all the terms in the received signal are zero-mean because,
as already specified in the paper, E{slk } = E{q̃lmk } = E{wlk } = 0,
for all l ∈ {u, d}, m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K }. Furthermore,
using a similar reasoning as that exploited by Ngo et al. in [4], since slk
is independent of DSlk and BUlk , we have that E{DSlk slkBU∗lk s

∗
lk } =

E{DSlkBU∗lk }E{|slk |
2
} = 0. Thus, the first and second terms of the

received signal are uncorrelated. An analogous calculation shows that
E{DSlk slkUI∗lkk ′ s

∗

lk ′ } = E{DSlkUI∗lkk ′ }E{slk s
∗

lk ′ } = 0, for all k 6= k ′,
thus proving that the first and third terms in the received signal are also
uncorrelated. In general, using the fact that E{slk s∗lk ′ } = 0, for all k ′ 6= k ,
E{slk ′ q̃∗lk } = E{slk ′w∗lk } = 0, for all k and k ′, it can easily be shown that all
terms in the received signal are uncorrelated.
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A. CALCULATION OF
∣∣DSl k

∣∣2
As shown in Appendix A, the term |DSl k |

2 in the numerator
of (41) can be calculated in an exact closed-form as

|DSuk |
2
= νk

(
M∑
m=1

α̃umkE {gmk$umk}

)2

= νk

(
M∑
m=1

α̃umk%mk

)2

, (43)

for the UL case, and as

|DSd k |
2
=

(
M∑
m=1

α̃dmkη
1/2
mk E {gmk$dmk}

)2

=
π

4

(
M∑
m=1

α̃dmk
√
ηmk%mk

)2

, (44)

for the DL case.

B. CALCULATION OF E
{∣∣BUl k

∣∣2}
Again, it is shown in Appendix A that the term E

{
|BUl k |

2}
in the denominator of (41) can be calculated in an exact
closed-form as

E
{
|BUuk |

2
}
= νk

M∑
m=1

α̃2umk Var {gmk$umk}

= νk

M∑
m=1

α̃2umk%mkβmk , (45)

for the UL case, and

E
{
|BUd k |

2
}
=

M∑
m=1

α̃2dmkηmk Var {gmk$dmk}

=

M∑
m=1

α̃2dmkηmk

(
βmk −

π

4
%mk

)
, (46)

for the DL case.

C. CALCULATION OF E
{∣∣UIl kk ′

∣∣2}
In Appendix A, it is also shown that the statistical expecta-
tions E

{
|UIl kk ′ |

2} in the denominator of (41) can be calcu-
lated as

E
{
|UIukk ′ |

2
}

= νk ′

M∑
m=1

M∑
n=1

α̃umk α̃unkE
{
gmk ′g

∗

nk ′$umk$u
∗
nk
}

= νk ′

M∑
m=1

α̃2umk%mkβmk ′

+ νk ′

(
M∑
m=1

α̃umk
βmk

βmk ′
%mk ′

)2 ∣∣∣ϕHk ′ϕk ∣∣∣2 , (47)

for the UL case, and

E
{
|UId kk ′ |

2
}

=

M∑
m=1

M∑
n=1

α̃dmk ′ α̃unk ′η
1/2
mk ′η

1/2
nk ′ E

{
gmkg∗nk$dmk ′$d

∗

nk ′
}

=

M∑
m=1

α̃2dmk ′ηmk ′βmk

+
π

4

M∑
m=1

M∑
n=1
n 6=m

α̃dmk ′ α̃dnk ′
√
ηmk ′ηnk ′%mk%nk

∣∣∣ϕHk ′ϕk ∣∣∣2 , (48)

for the DL case. Note that, in contrast to what was done
by Interdonato et al. in [29, eq. (16)], instead of using
approximations based on the first-order Taylor expansion of a
quotient, we provide an exact closed-form expression for the
inter-user interference term.

D. CALCULATION OF E
{∣∣QNl k

∣∣2}
The quantization noise term also depends on the implemented
CPU-AP functional split and, as shown in Appendix B, it can
be approximated in closed form as

E
{∣∣QNuk

∣∣2} ' M∑
m=1

α̃umk (1− α̃umk)

(
K∑

k ′=1

νk ′βmk ′ + σ
2
u

)
,

(49)

for the UL BCU-based case, as

E
{∣∣QNuk

∣∣2}
'

M∑
m=1

α̃umk (1− α̃umk)

(
K∑

k ′=1

νk ′βmk ′%mk

+

K∑
k ′=1

νk ′
β2mk

β2mk ′
%2mk ′

∣∣∣ϕHk ′ϕk ∣∣∣2 + %mkσ 2
u

)
, (50)

for the UL BAP-based case, and as

E
{∣∣QNd k

∣∣2} ' M∑
m=1

βmk

K∑
k ′=1

α̃dmk ′ (1− α̃dmk ′) ηmk ′ , (51)

for the DL case.

Rl k = B
τl

τc
log2

1+
|DSl k |

2

E
{
|BUl k |

2}
+

∑
k ′ 6=k

E
{
|UIl kk ′ |

2
}
+ E

{∣∣QNl k

∣∣2}+ E
{
|wl k |

2}
 (41)
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E. CALCULATION OF E
{∣∣wl k

∣∣2}
In the UL scenario we have that

E
{
|wuk |

2
}
=

M∑
m=1

α̃2umk%mkσ
2
u . (52)

In the DL case, in contrast, E
{
|wd k |

2}
= σ 2

d .

IV. FRONTHAUL BANDWIDTH CONSUMPTION
Using the additive quantization noise model described in
Subsect. II-B, let us denote by bθ = b(αθ ) the number of
bits used by a generic scalar quantizer Qθ to represent each
of the input samples. Using this notation, we explicitly relate
the number of quantization bits per sample with the parameter
αθ characterizing the accuracy of the ADC.

A. BCU-BASED CPU-AP FUNCTIONAL SPLIT
In the UL of a BCU-based CPU-AP functional split there
are two sets of compressed data that must be conveyed from
the APs to the CPU through the UL fronthaul link, namely,
the received signal samples during the UL payload data trans-
mission phase and the received signal vector during the train-
ing phase. During the UL payload data transmission phase,
the compressed/decompressed signal sample per channel use
on the mth UL fronthaul link is given by x̂um = Qum (rum),
and the required average rate (in bit/s) to transfer these com-
pressed signals on the mth UL fronthaul link can then be
obtained as

ĈPayload
um = B

τu

τc
b (αum) = B

τu

τc
b (α̃umk), (53)

where the term τu/τc accounts for the fact that only τu out
of τc channel uses are employed for UL transmission. The
unquantized signal vector at the CPU corresponding to the
signal received by the mth AP during the training phase is
given by (11). As this vector contains τp samples, the required
average rate (in bit/s) to transfer the quantized vector ŷpm =
Qpm

(
ypm

)
on the mth UL fronthaul link is given by

ĈTraining
um = B

τp

τc
b
(
αpm

)
. (54)

The only quantized signal per channel use to be
transferred on the mth DL fronthaul link is x̂dm =

Qdm

(∑K
k=1 η

1/2
mk $dmksd k

)
. Hence, the required average rate

(in bit/s) to transfer the τd quantized signals on the mth DL
fronthaul link is

Ĉdm = B
τd

τc
b (αdm) = B

τd

τc
b (α̃dmk). (55)

B. BAP-BASED CPU-AP FUNCTIONAL SPLIT
In the UL of the BAP-based CPU-AP functional split,
the quantized signal corresponding to the kth active MS can
be expressed as x̂umk = Qumk ($umkrum) = Qumk

(
ĝ∗mkrum

)
.

The required average rate (measured in bit/s) to transfer each
of these quantized signals on the mth UL fronthaul link is

Ĉumk = B
τu

τc
b (αumk) = B

τu

τc
b (α̃umk), (56)

for all k . In the DL of a BAP-based approach, the quan-
tized signal corresponding to the kth active MS is x̂dmk =
Qdmk

(
η
1/2
mk sd k

)
. The required average rate (in bit/s) to trans-

fer each of these compressed signals on themth DL fronthaul
link is

Ĉdmk = B
τd

τc
b (αdmk) = B

τd

τc
b (α̃dmk). (57)

V. MAX-MIN POWER ALLOCATION AND OPTIMAL
QUANTIZATION
A. UPLINK POWER CONTROL AND QUANTIZATION
Max-min UL power allocation and quantization problems
aim at finding the vector of power control coefficients
ν = [ν1 . . . νK ]T , the vector of payload quantization accu-
racy parameters α̃u = [α̃u1 . . . α̃uM ]T and, for the BCU
case, the vector of channel estimation quantization accuracy
parameters αp = [αp1 . . . αpM ]T , that jointly maximize
the minimum of the achievable UL rates of all MSs while
satisfying the transmit power constraints at each MS and the
UL fronthaul bandwidth constraints at eachAP [4], [12], [14],
[23], [27].

1) BAP-BASED CASE
Maximizing the minimum achievable rate per-user is equiv-
alent to maximizing the minimum achievable signal-to-
interference-plus-noise ratio (SINR) per-user. Consequently,
the UL power control and quantization optimization problem
can be formulated, for the BAP-based case, as

max
(ν, α̃u)

min
k

SINR(ν, α̃u),

subject to 0 ≤ νk ≤ Puk ∀ k,

B
τu

τc
b (αum) ≤

CFu
K

∀m, (58)

where

SINR(ν, α̃u)

=
νkAmk (α̃u)

K∑
k ′=1

νk ′Bkk ′ (α̃u)+
∑
k ′ 6=k

νk ′Ckk ′ (α̃u)+ Dk (α̃u)

(59)

with

Amk (α̃u) =

(
M∑
m=1

α̃umk%mk

)2

, (60)

Bkk ′ (α̃u) =
M∑
m=1

α̃umkβmk ′%mk

+

M∑
m=1

α̃umk (1− α̃umk )
β2mk

β2mk ′
%2mk ′

∣∣∣ϕHk ′ϕk ∣∣∣2 , (61)

Ckk ′ (α̃u) =

(
M∑
m=1

α̃umk
βmk

βmk ′
%mk ′

)2 ∣∣∣ϕHk ′ϕk ∣∣∣2 , (62)
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and

Dk (α̃u) =
M∑
m=1

α̃umk%mkσ
2
u . (63)

The objective function is the achievable SINR of MS k as
calculated in Section III (see, (43), (45), (47), (50), and (52)).
The first constraint indicates that the power allocated to MS
k must be less than or equal to the available transmit power.
The second constraint implies that the average rate used to
transfer the quantized signal of user k on the mth fronthaul
link, as calculated in (56), must not be higher than CFu/K .
That is, it is assumed that the signals from different MSs are
quantized with the same amount of bit/sample (i.e., the avail-
able UL fronthaul capacity CFu is equally split among the
K active MSs at all APs). Although there are other strategies
that could be implemented in practice, the problem of devis-
ing an optimal fronthaul capacity allocation approach is left
for further research.

As the achievable rates monotonically increase with
increasing quantizer quality, under optimal conditions the
number of quantization bits b (αum) will be as large as possi-
ble given the fronthaul link capacity constraint, that is,

b
(
α
opt
um

)
=

⌊
CFuτc
Kτu

⌋
(64)

or, equivalently,

α̃
opt
umk = α

opt
um = b−1

(⌊
CFuτc
Kτu

⌋)
. (65)

where b·c is used to denote the floor function. Using this
result, problem (58) can be rewritten as

max
ν

min
k

SINR(ν, α̃optu ),

subject to 0 ≤ νk ≤ Puk ∀ k (66)

or, in an equivalent form, as

max
ν, x

x

subject to x ≤ SINR(ν, α̃optu ),

0 ≤ νk ≤ Puk ∀ k, (67)

which can be efficiently solved using a bisection search,
where a convex feasibility problem is solved at each step [4].

2) BCU-BASED CASE
Similar to the BAP-based case, the optimization problem for
the BCU-based case can be formulated as

max
(ν, α̃u, α̃p)

min
k

SINR(ν, α̃),

subject to 0 ≤ νk ≤ Puk ∀ k,

B
τu

τc
b (αum) ≤ εCF uCFu ∀m,

B
τp

τc
b
(
αpm

)
≤ (1− εCF u )CFu ∀m, (68)

where note that %mk is a function of αpm and, thus, α̃ =
[α̃Tu α̃

T
p ]
T . The objective function is the achievable SINR of

MS k as calculated in Section III, where Amk (α̃), Ckk ′ (α̃), and
Dk (α̃) can be obtained using (60), (62) and (63), respectively,
and

Bkk ′ (α̃) =
M∑
m=1

α̃umkβmk ′%mk . (69)

The first constraint limits the power that can be allocated
to MS k . The limited-capacity fronthaul in the UL intro-
duces two constraints specifying that, out of the available UL
fronthaul capacity CFu, only a part proportional to εCF u can
be devoted to transmit the UL payload data (see (53)) and,
correspondingly, only a part proportional to (1 − εCF u ) can
be allocated to the transmission of UL training-related infor-
mation (see (54)). As the functions b(αum) and b(αpm) are
not continuous and can only take non negative integer values,
the parameter εCF u can only be optimized by analyzing all the
possible combinations of b(αum) and b(αpm).
Again, the achievable rates monotonically increase with

the quality of the quantizers used in both the UL training and
payload transmission phases. Consequently, under optimal
conditions, the number of bits used to quantize the corre-
sponding samples should be selected as large as possible
while fulfilling the fronthaul capacity constraints, that is,

b
(
α
opt
um

)
=

⌊
εCF uCFuτc

τu

⌋
,

b
(
α
opt
pm

)
=

⌊
(1− εCF u )CFuτc

τp

⌋
(70)

or, equivalently,

α̃
opt
umk = α

opt
um = b−1

(⌊
εCF uCFuτc

τu

⌋)
,

α
opt
pm = b−1

(⌊
(1− εCF u )CFuτc

τp

⌋)
. (71)

These optimal parameters can be used to rewrite optimization
problem (68) as in both (66) and (67) by only substituting
α̃optu with α̃opt. Hence, this optimization problem can also be
solved by using a bisection search algorithm [4].

B. DOWNLINK POWER CONTROL AND QUANTIZATION
Similar to the UL case, max-min DL power allocation and
quantization problems aim at finding the vectors of power
control coefficients η and payload quantization accuracy
parameters α̃d that jointly maximize the minimum of the
achievable DL rates (or, equivalently, the minimum of the
achievable DL SINRs) of allMSswhile satisfying the average
transmit power and DL fronthaul capacity constraints at each
AP [4], [12], [14], [23], [27].

1) BAP-BASED CASE
For the BAP-basedAP-CPU functional split, the optimization
problem can be mathematically formulated as in (72), as
shown at the bottom of the next page, where the objective
function is the achievable SINR of MS k as calculated in
Section III (see, (44), (46), (48), and (51)), and the first
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constraint indicates that the power consumption at the mth
AP, as calculated in (33), must be less than or equal to the
available transmit power Pdm. The second constraint implies
that the average rate used to transfer the payload data signal
on the mth fronthaul link, as calculated in (57), must not be
higher than the corresponding allocated fronthaul bandwidth.
Note that in posing this problem we have assumed, as in
the BAP-based UL scenario, that the available DL fronthaul
capacity CFd is equally split among the K active MSs.

As in the UL case, the DL achievable user rates mono-
tonically increase with the quality of the quantization pro-
cess during the payload transmission phase. Hence, under
optimal conditions, the number of bits used to quantize the
corresponding samples should be selected as large as possible
while fulfilling the fronthaul capacity constraints, that is,

b
(
α
opt
dmk

)
=

⌊
CFdτc
Kτd

⌋
, (73)

or, equivalently,

α
opt
dmk = α

opt
dm = b−1

(⌊
CFdτc
Kτd

⌋)
. (74)

Using these parameters, optimization problem (72) can be
reformulated as

max
{ς ,λ}

min
k

(
M∑
m=1

α
opt
dmςmk%

1/2
mk

)2

M∑
m=1

K∑
k ′=1

ς2mk ′κmkk ′ +

K∑
k ′=1
k ′ 6=k

λ2kk ′ + σ
2
d

,

subject to

√
π

4

M∑
m=1

α
opt
dmςmk ′%

1/2
mk

∣∣∣ϕHk ′ϕk ∣∣∣≤λkk ′ ∀k ′ 6= k,

K∑
k ′=1

ς2mk ′ ≤ Pdm/α
opt
dm ∀m,

ςmk ≥ 0 ∀mk, (75)

where we have introduced the slack variables λkk ′ and have
used the definitions ςmk = η

1/2
mk and

κmkk ′ = α
opt
dm

(
βmk −

π

4
α
opt
dm%mk

∣∣∣ϕHk ′ϕk ∣∣∣2).
Problem (75) is a quasi-concave optimization program that
can be expressed in an equivalent form as

max
{ς ,λ,x}

x

s. t.
√
x
∥∥[µ1k . . .µMk λk σd

]∥∥ ≤ M∑
m=1

ςmkα
opt
dm%

1/2
mk ∀ k,

√
π

4

M∑
m=1

ςmk ′α
opt
dm%

1/2
mk

∣∣∣ϕHk ′ϕk ∣∣∣ ≤ λkk ′ ∀k ′ 6= k

∥∥ςm∥∥ ≤ √Pdm/αoptdm ∀m,

ςmk ≥ 0 ∀m, k, (76)

with ςm = [ςm1 . . . ςmK ], µmk =
[
ςm1κ

1/2
mk1 . . . ςmKκ

1/2
mkK

]
and λk =

[
λk1 . . . λk(k−1)λk(k+1) . . . λkK

]
. Problem (76) is

a second order cone (SOC) program that can be efficiently
solved by using a conventional iterative bisection search
algorithm. Specific details on the optimality, complexity and
feasibility of these algorithms were fully commented by
Ngo et al. in the seminal paper [4].

2) BCU-BASED CASE
Analogously to the BAP-based case, the optimization prob-
lem for the BCU-based AP-CPU functional split can be
expressed as in (77), as shown at the bottom of the next
page. Moreover, once again, as the DL achievable user rates
monotonically increase with the quality of the quantization
process, the number of bits used to quantize the correspond-
ing samples, under optimal conditions, must be as large as
possible while fulfilling the fronthaul capacity constraints
and, consequently,

b
(
α
opt
dm

)
=

⌊
CFdτc
τd

⌋
, (78)

max
(η, αd )

min
k
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4
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M∑
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)2

K∑
k ′=1

M∑
m=1

αdmk ′ηmk ′
(
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π
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4
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)2 ∣∣ϕHk ′ϕk ∣∣2 + σ 2
d

,

subject to
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k=1

αdmkηmk ≤ Pdm ∀m,

B
τd

τc
b (αdmk) ≤

CFd
K

∀mk,

ηmk ≥ 0 ∀mk (72)
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or, equivalently,

α
opt
dm = b−1

(⌊
CFdτc
τd

⌋)
. (79)

Using these optimal quantization quality indicators, opti-
mization problem (77) can be straightforwardly rewritten as
in both (75) and (76), allowing it to be solved by means of a
bisection search algorithm.

VI. NUMERICAL RESULTS AND DISCUSSIONS
In this section, numerical results are provided to quantita-
tively assess the performance of fronthaul-constrained cell-
free massive MIMO in terms of the max-min per-user achiev-
able rate. A special emphasis is put on the performance
comparison between the proposed CPU-AP functional splits
at the physical layer (i.e., BAP and BCU strategies) under dif-
ferent fronthaul operational conditions. The cell-free scenario
under evaluation replicates the one typically used in the most
relevant literature on this topic (see, for instance, [4], [12],
[14], [23], [27], [28]). In particular, the M APs and K MSs
are uniformly distributed at random within a square coverage
area with a side equal to D. Boundary effects are avoided by
wrapping around this square area at the edges. Nevertheless,
as suggested by Björnson and Sanguinetti in [33], use is made
of the large-scale propagation loss model

ζmk [dB] = −30.5− 36.7 log10 dmk , (80)

where dmk is the distance between the mth AP and MS k
(measured in meters and computed by taking into account
the wrap-around implementation and the heights of both the
AP and MS). The shadowing component χmk is modelled
as a correlated log-normal random variable with variance σ 2

χ

whose spatial correlation model is described in [4, (54)-(55)],
with the decorrelation distance set to ddecorr = 9 m and the
parameter δ set to 0.5. The default parameters used to set-up
the simulation scenarios under evaluation in the following
subsections will be those summarized in Table 2.

A. IMPACT OF THE PILOT ALLOCATION PROCESS
Our aim in this subsection is to benchmark the performance of
different pilot allocation strategies against an ideal scheme.

TABLE 2. Summary of default simulation parameters.

The ideal pilot allocation strategy assumes that, irrespective
of the number of active MSs in the network, it is always
possible to allocate an orthogonal pilot to each of them.
In other words, we are basically disregarding the pilot con-
tamination effects and hence obtaining an upper bound on the
potential performance any pilot allocation policy can offer.
The practical allocation schemes that we benchmark against
the ideal one are4:
• Random pilot allocation (RPA): In this case, irrespective
of the number of active MSs in the network, each MS is
allocated a pilot sequence randomly selected from the
set of τp orthogonal pilot sequences.

• Naive: This strategy is based on a slight modification of
the pure RPA scheme. For those cases in which K ≤ τp,
each MS is allocated an orthogonal pilot sequence. For
those cases in which K > τp, instead, there are τp MSs
that are allocated the τp orthogonal pilot sequences, and
each of the remaining K − τp MSs is allocated a pilot
sequence randomly selected from the pool of available
orthogonal ones.

4Note that implementing an optimal pilot allocation strategy is an NP-hard
problem. Even the conceptually simple greedy algorithm proposed by Ngo
et al. in [4], which can only be implemented by giving priority to the
performance of either the UL or the DL, has a very high implementation
complexity that makes it difficult to be implemented in practice when the
number of active MSs in the network is relatively large.

max
(η, αd )

min
k
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1/2
mk %
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K∑
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subject to αdm
K∑
k=1

ηmk ≤ Pdm ∀m,

B
τd
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b (αdm) ≤ CFd ∀m,

ηmk ≥ 0 ∀mk (77)
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• Balanced random pilot allocation (BRPA): In order
to avoid unnecessary overuse of any of the available
orthogonal pilot sequences, in this scheme each MS
is allocated a pilot sequence that is sequentially and
cyclically selected from the ordered set of τp orthogonal
pilots.

• Dissimilarity cluster-based pilot assignment (DCPA):
Given any active MS k , the CPU has a perfect knowl-
edge of vector βk = [β1k . . . βMk ]T containing the
large-scale propagation gains of the channels linking this
MS to theM APs. Vector βk can be regarded as an effec-
tive fingerprint characterizing the location of MS k . The
DCPA strategy, first proposed in [27], uses the so-called
cosine similarity measure to ensure that pilot sequences
are only reused, in a balanced manner, by MSs showing
the most dissimilar large-scale propagation patterns to
the APs.

The average max-min rate per-user versus the number of
active MSs is presented in Fig. 2 for each of these pilot
allocation strategies and for both the DL and the UL.
All results have been obtained assuming the use of the
BCU-based CPU-AP functional split, the default system
parameters described in Table 2, a DL fronthaul link with a
capacity of CFd = 33 Mbps, and an UL fronthaul link with
CFu = 33 Mbps and εCF u = 9/11. Using (70) and (78) it can
be easily shown that these parameters correspond to a case
in which all the quantizers implemented during the training
and payload transmission phases use exactly 3 bit/sample.
A first result that is worth emphasizing is that, although the
achievable max-min user rates in the DL are much higher
than those achievable in the UL,5 the behavioral patterns of
this metric are virtually identical in both links. As expected,
the average max-min user rates obtained assuming the use of
an ideal pilot allocation scheme constitute an upper bound
on the performance provided by any other pilot allocation
schemes. The pure RPA scheme is clearly outperformed by
the naive, the BRPA and the DCPA strategies irrespective
of the number of active MSs in the network. In fact, even
for those cases in which K ≤ τp (in this setup τp = 20
samples), the RPA scheme cannot guarantee the absence of
pilot reuse. Furthermore, for those cases in which K > τp,
this pilot allocation strategy does not prevent situations in
which a given pilot is allocated to a large number of MSs
and/or to MSs exhibiting very similar large-scale propaga-
tion patterns to the APs. Thus, irrespective of the number
of active MSs in the network, RPA schemes present a high
probability of having one or more users suffering from high
levels of pilot contamination, with the consequent reduction
of the achievable max-min user rate. All the other strategies
completely eliminate this effect for those cases in which

5Note that DL optimization involves the setting of MK power allocation
coefficients whereas the UL counterpart only requires the optimization of
K parameters. The larger number of degrees-of-freedom in the DL is the
main cause of its superior performance. Although more sophisticated pre-
coding/decoding techniques could be applied in the UL, they would certainly
not alter the general conclusions drawn from results presented in this paper.

K ≤ τp thanks to the use of orthogonal pilot allocation. For
those cases in which K > τp, however, pilot contamination
effects are unavoidable and the naive, BRPA and DCPA
schemes rely on different procedures to diminish its effects.
In particular, under the naive scheme there are K − τp MSs
that are allocated a pilot sequence randomly selected from
the pool of available orthogonal ones and, hence, although
it shows a better performance than the pure RPA scheme,
as the value of K increases both strategies tend to exhibit the
same limitations in terms of pilot contamination avoidance.
Turning our attention to the BRPA andDCPA strategies, it can
be observed that, on the one hand, the BRPA scheme clearly
outperforms the naive one by only precluding the unbalanced
reuse of pilots. On the other hand, at the cost of a negligible
increase in complexity, the DCPA strategy not only provides a
balanced pilot reuse, but it also guarantees that MSs sharing
a given pilot exhibit very dissimilar large-scale propagation
patterns, thus providing a slight, yet perceptible, performance
advantage over the BRPA scheme. Results presented from
this point onwards will be obtained assuming the use of the
DCPA strategy.

B. COMPARING CPU-AP FUNCTIONAL SPLITS UNDER THE
EFFECTS OF FRONTHAUL CAPACITY CONSTRAINTS
Given the capacity constraints of the fronthaul links, it makes
one wonder whether it is most convenient to implement
precoding processes at the APs or at the CPU. Looking at
the description of BCU- and BAP-based functional splits
in Fig. 1, and as the CSI varies at the pace of τp and data
varies at a much higher pace, our intuition says that the fron-
thaul capacity constraints should be more detrimental for the
BAP-based CPU-AP functional split than for the BCU-based
one. The average max-min rate per-user results presented
in Figs. 3 and 4 clearly confirm our intuition in scenarios
with different number of active MSs and different fronthaul
capacity constraints. In particular, it can be observed compar-
ing these figures that both CPU-AP functional splits provide

FIGURE 3. Average max-min rate per-user versus the number of active
MSs, assuming the use of the BCU-based CPU-AP functional split and
different fronthaul capacity constraints (DCPA, BCU, M = 100 APs, τp = 20
samples, εCF u

= 9/11).
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FIGURE 4. Average max-min rate per-user and optimal number of bits per
sample versus the number of active MSs, assuming the use of the
BAP-based CPU-AP functional split and different fronthaul capacity
constraints (DCPA, BAP, M = 100 APs, τp = 20 samples).

exactly the same performance under unconstrained capacity
fronthaul links, which acts as an upper-bound on the per-
formance that can be obtained in any capacity-constrained
fronthaul scenario. As the fronthaul capacity decreases, how-
ever, the max-min per-user rate experienced under BCU- and
BAP-based strategies suffer from very dissimilar quantization
distortion-based effects.

The fronthaul capacity consumption of a BCU-based sys-
tem does not depend on the number of active MSs in the
system (see (70) and (78)) and, consequently, as it can
be observed in Fig. 3, the performance provided by this
CPU-AP functional split scales adequately with K . For
instance, even though constraining the fronthaul capacity to
CFu = CFd = CF = 33, 22 or 11 Mbps, with τc = 200
samples, τp = 20 samples, and εCF u = 9/11, requires
the use of b = 3, 2, or 1 bit/sample low-resolution ADCs,
respectively, the cell-free massive MIMO network can still
provide a fairly good service to a very large number of
active MSs. Obviously, the price to pay is a non-negligible
decrease in the max-min per-user rate. Interestingly, using a
fronthaul capacity CFu = CFd = CF ≥ 44 Mbps allows
for the use of ADCs with b ≥ 4 bits/sample that provide a

virtually negligible performance degradation with respect to
the infinite fronthaul capacity scenario.

The fronthaul capacity consumption of the BAP-based
CPU-AP functional split, on the contrary, has a proportional
dependency on the number of active MSs in the system (see
(64) and (73)) and, inevitably, as it can be observed in Fig. 4a,
the performance provided by this CPU-AP functional split
suffers dramatic consequences as the number of active MSs
increases. As shown in Fig. 4b, constraining the fronthaul
capacity to CFu = CFd = CF = 33, 22 or 11 Mbps, with
τc = 200 samples and τp = 20 samples, allows providing
service up to only K = 3, 2 or 1 MSs, respectively, assuming
the use of a 1-bit ADC. Even when considering a ten-fold
increase in fronthaul capacity, that is, constraining the fron-
thaul capacity toCFu = CFd = CF = 330, 220 or 110Mbps,
the BAP-based scheme is nowhere near the performance
achieved by the BCU-based CPU-AP functional split. In fact,
under this high-bandwidth scenario, the BCU-based strategy
could easily rely on the use of high-resolution ADCs pro-
viding a negligible performance degradation with respect to
the infinite-capacity fronthaul links. The BAP-based scheme,
however, would require the use of variable-resolution ADCs,
as shown in Fig. 4b, with the consequent performance loss
when using low-resolution quantization processes and with-
out guarantying the possibility to provide service to all MSs
in highly populated scenarios.

Comparing the performance results presented in Fig. 3 and
those presented in Fig. 5a is just another way of looking at the
same problem. Results presented in these figures correspond
to scenarios in which the low-resolutionADCs are considered
using b = 3, 2 or 1 bits per sample. Remarkably, as the BAP-
based CPU-AP functional split does not need to compress the
CSI, the performance provided by this strategy, assuming the
use of the same quantization resolution, is better than that
provided by the CPU-based scheme thanks to the availability
of undistorted MMSE channel estimates. The key point to
realize, however, is that the BCU-based strategy is able to
obtain the max-min per-user rates shown in Fig. 3 by con-
suming very low fronthaul capacities that, furthermore, do not
depend on the number of active MSs in the network. The
BAP-based scheme, in contrast, consumes a large amount of
fronthaul capacity that, as shown in Fig. 5b, increases linearly
with the number of MSs served by the cell-free massive
MIMO network.

C. OPTIMIZING THE PARAMETER εCF u
Results presented in this subsection will be obtained assum-
ing the use of the BCU-based CPU-AP functional split. Under
this functional split, a fraction of the UL fronthaul capac-
ity CFu, proportional to εCF u , is allocated to the UL pay-
load data transmission phase, and a fraction proportional to
(1 − εCF u ) is allocated to the UL training phase. Results
presented in Fig. 6, which have been obtained usingM = 100
APs, τp = 20 samples and CFu = CFd = 33 Mbps, serve
to understand the impact produced by modifying the param-
eter εCF u on the UL and DL achievable max-min per-user

VOLUME 8, 2020 116209



G. Femenias, F. Riera-Palou: Fronthaul-Constrained Cell-Free Massive MIMO With Low Resolution ADCs

FIGURE 5. Average max-min rate per-user and required fronthaul
capacity versus the number of active MSs, assuming the use of the
BAP-based CPU-AP functional split and different ADC resolutions (DCPA,
BAP, M = 100 APs, τp = 20 samples).

rates in cell-free massive MIMO networks serving different
amounts of MSs. Note that in order to better understand the
behavior of the average max-min per-user rate as a function
of εCF u , presented in Fig. 6a, the number of bits per sample
used in the quantization processes implemented during the
different transmission phases (UL training phase, UL payload
phase and DL payload phase) are also plotted in Fig. 6b.
On the one hand, for very high values of the parameter εCF u ,
the amount of UL fronthaul capacity allocated to convey the
CSI generated during the UL training phase is very small and,
hence, the optimal number of quantization bits per sample
must also necessarily be small, with the consequent increase
in quantization noise power resulting in a clear decrease of
the achievable max-min user rates in both UL/DL payload
transmission phases. In fact, with τc = 200 samples and
τp = 20 samples, the ADC used during the UL training
phase cannot support values of εCF u ≥ 0.94, and can only
provide one bit per sample for 0.879 ≤ εCF u < 0.94.
On the other hand, for very low values of the parameter εCF u ,
the APs are allocated a large amount of fronthaul capacity
during the UL training phase allowing to convey a virtually
quantization noise-free CSI to the CPU. The price to pay

FIGURE 6. Average max-min rate per-user and number of bits per sample
versus εCF u

assuming the use of the BCU functional split and with the
number of active MSs as parameter (DCPA, M = 100 APs, τp = 20
samples, CF u = CF d = 33 Mbps).

for this ideal quantization noise-free CSI is a decrease in
the amount of UL fronthaul capacity allocated to the UL
payload data transmission phase that, for obvious reasons,
results in a decrease in the optimal achievable max-min rates
per-user. In fact, with the system parameters assumed in this
scenario, the ADC used during the UL payload transmission
phase cannot support values of εCF u ≤ 0.272, and can only
provide one bit per sample for 0.273 ≤ εCF u < 0.546. As a
consequence of this fairly predictable behavior, there is a
particular range of values of the parameter εCF u for which
the UL achievable max-min per-user rate is optimal that, for
this particular scenario is 0.546 ≤ εCF u < 0.576 (note that
in this range the optimal number of bits per sample used
during the UL training and payload transmission phases is
equal to 6 and 2, respectively). It is worth stressing that this
optimal range of values has been obtained by only observing
the behavior of the UL performance results. This is because
the number of fronthaul samples (channel uses) allocated to
the DL payload transmission phase is independent of εCF u
and so it is the optimal number of bits per sample used
by the corresponding low-resolution ADC (3 bits/sample for
the scenario under evaluation). Hence, the variations of the
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FIGURE 7. Average max-min rate per-user and number of bits per sample versus εCF u
assuming the use of the BCU functional split and with

the UL training phase duration τp as parameter (DCPA, M = 100 APs, K = 16 MSs, CF u = CF d = 33 Mbps).

DL average max-min per-user rate as a function of εCF u
only depend on the quality of the quantized CSI provided
during the UL training phase. Thus, notwithstanding that
even though the DL achievable max-min per-user rates are
virtually constant for any εCF u ≤ 0.697 (using an ADC with
more than 4 bit/sample is practically equivalent to the use of
an ideal ADC), they decrease in a staggeredway as the quality
of the UL training phase quantizer decreases with the increase
of εCF u .
In order to gain a rather complete picture of the impact the

modification of εCF u may have on the system performance,
Fig. 7 shows the average max-min rate per-user and number
of bits per sample versus εCF u assuming a cell-free massive
MIMO network serving K = 16 MSs and using different
values of the UL training phase duration τp. As in Fig. 6,
we can observe that for the UL case there is always a range
of values of the parameter εCF u for which the achievable
max-min per-user rate is optimal. Remarkably, the specific
optimal range of εCF u depends on the particular value of τp.
This is basically due to the dependence of the optimal number
of quantization bits per sample on τp and εCF u . In particular,
the higher the value of τp, the larger the amount of CSI to

be conveyed from the APs to the CPU and thus, the lower
the optimal range of values of εCF u . Specifically, as it can
be observed in Fig. 7a, the optimal values for the parameter
εCF u are 0.887 ≤ εCF u < 0.893 (where the UL training
phase quantizer is using 6 bits/sample and the UL payload
transmission phase quantizer is using 3 bits/sample), for
τp = 5 samples, and 0.485 ≤ εCF u < 0.515 (where the UL
training phase quantizer is using 4 bits/sample and the UL
payload transmission phase quantizer is using 2 bits/sample),
for τp = 40 samples. Again, as shown in Fig. 7b, the DL
achievable max-min per-user rates are virtually constant for
low values of εCF u (i.e, in the range where the UL train-
ing phase ADC can use more than 4 bit/sample), but they
decrease in a staggered way as the quality of the quantized
CSI decreases due to the increase of εCF u .

VII. CONCLUSION
The max-min per-user rate performance provided by
fronthaul-constrained cell-free massive MIMO networks
using low-resolution ADCs has been analyzed under dif-
ferent CPU-AP functional splits. The proposed analytical
framework considers the use of matched filtering in the
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UL and normalized conjugate beamforming in the DL.
The impact of using low-resolution ADCs to transmit over
capacity-constrained fronthaul links has been addressed
by resorting to the use of a linear additive quantization
noise model that is based on the Bussgang decomposition
and is sometimes referred to as the AQNM. The deriva-
tion of mathematically tractable closed-form expressions
for both the per-user achievable rates and the fronthaul
bandwidth consumption has allowed posing max-min power
allocation and fronthaul quantization optimization problems
that have been solved using standard convex optimization
tools. Results have shown that, under capacity-constrained
fronthaul links, the classical cell-free massive MIMO
networks with single-antenna APs and using BAP-based
CPU-AP functional splits are clearly outperformed, in terms
of max-min user rate performance, by the BCU-based CPU-
AP functional splits. In contrast, if the limiting factor is the
resolution of the ADCs used to quantize the samples to be
transmitted on the fronthaul links, the preferred CPU-AP
functional splits are those in which the baseband processing
is performed at the APs. It has also been shown that the
UL fronthaul capacity fraction allocated to share the CSI
among APs and CPU should be adapted as a function of
the UL training phase length. Furthermore, numerical results
indicate that the suboptimal DCPA pilot allocation scheme,
which is based on the idea of clustering by dissimilarity,
outperforms the pure random, naive and balanced random
algorithms and approaches the performance provided by an
ideal strategy at a fraction of the complexity burden asso-
ciated with the NP-hard optimal schemes. Future work on
this topic should be devoted to analyze the impact the fron-
thaul capacity constraints may have on the energy efficiency
of cell-free massive MIMO networks using low-resolution
ADCs by taking into account the power consumption of all
the signal processing units in the system, and the possible
use of multiple-antenna APs. It would also be interesting to
explore the design of optimal resource allocation strategies
between UL and DL, and the effects the use of adaptive
training phases and a non-uniform distribution of MSs and/or
APs might have on the performance of these networks. The
impact fronthaul constraints may have in the context of
cell-free massive MIMO architectures relying on centralized
precoding strategies (i.e., ZF, MMSE) constitutes one more
interesting research thread. Finally, further work should be
devoted to analyze the impact the use of more accurate quan-
tization noise models may have on the performance of cell
free massive MIMO netwoks using low resolution ADCs.

APPENDIX A
CALCULATION OF THE STATISTICAL TERMS IN THE
ACHIEVABLE RATES
A. COMPUTATION OF E

{
gmk$l mk

}
The propagation channel between AP m and MS k can be
expressed as gmk = ĝmk + g̃mk , where ĝmk is the channel
estimation and g̃mk is the estimation error. Owing to the

properties ofMMSE estimation, ĝmk and g̃mk are independent
and thus, using either the MF detector in the UL or the NCB
precoder in the DL, the expectation E {gmk$lmk} for these
particular cases can be written as

E {gmk$umk} = E
{(
ĝmk + g̃mk

)
ĝ∗mk

}
= E

{∣∣ĝmk ∣∣2} = %mk . (81)

or

E {gmk$dmk} = E

{(
ĝmk + g̃mk

) ĝ∗mk∣∣ĝmk ∣∣
}

= E
{∣∣ĝmk ∣∣} = √π2 √%mk . (82)

respectively, where it has been taken into account that
ĝmk ∼ CN (0, %mk).

B. COMPUTATION OF Var
{
gmk$l mk

}
Assuming the use of a MF detector the variance of gmk$umk
can be obtained as

Var {gmk$umk} =Var
{
gmk ĝ∗mk

}
= E

{∣∣ĝmk ∣∣4}
+E

{∣∣ĝmk ∣∣2}E {|g̃mk |2}−(E {∣∣ĝmk ∣∣2})2
= 2%2mk+%mk (βmk−%mk )− %

2
mk = %mkβmk .

(83)

Under the NCB precoding rule, the variance of gmk$dmk
can be straightforwardly obtained as

Var {gmk$dmk} =Var

{
gmk

ĝ∗mk∣∣ĝmk ∣∣
}

=E
{
|gmk |2

}
−
(
E
{∣∣ĝmk ∣∣})2=βmk−π4 %mk .

(84)

C. COMPUTATION OF E
{∣∣UIukk ′

∣∣2}
When calculating the terms E

{
gmk ′g∗nk ′$umk$u

∗
nk

}
and

E
{
gmkg∗nk$dmk ′$d

∗

nk ′
}
, we have to distinguish between two

particular cases. First, the case in which m = n, correspond-
ing to an inter-user interference term received at the same AP
as the useful term in the UL or to an inter-user interference
term originating from the same AP as the useful term in the
DL. Second, the case in which m 6= n, corresponding to an
inter-user interference term received at a different AP than
the useful term in the UL or to an inter-user interference term
originating from a different AP than the useful term in the
DL. Furthermore, two different situations must be examined
in each of these cases. First, the situation in which both the
tagged MS k and the interfering MS k ′ do not use the same
pilot code (i.e., ϕk 6= ϕk ′ ) and, consequently, gmk and ĝmk ′
are uncorrelated. Second, the case in which both the tagged
MS k and the interfering MS k ′ have been allocated the same
pilot code (i.e., ϕk = ϕk ′ ) and, hence, ξmk ′ = ξmk and
ĝmk ′ = (βmk ′/βmk )ĝmk (i.e., except for a real multiplicate
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constant, the corresponding channel estimations at the mth
AP are exactly the same).
Case m = n: The inter-user interference expectation for

m = n can be obtained as

E
{
gmk ′g

∗

nk ′$umk$u
∗
nk
}

= E
{∣∣gmk ′ ĝ∗mk ∣∣2}

=


(
β2mk/β

2
mk ′

)
E
{∣∣gmk ′ ĝ∗mk ′ ∣∣2}, ϕk = ϕk ′

E
{
|gmk ′ |

2
}
E
{∣∣ĝmk ∣∣2}, ϕk 6= ϕk ′

=

{(
β2mk/β

2
mk ′

)
%mk ′ (%mk ′ + βmk ′), ϕk = ϕk ′

%mkβmk ′ , ϕk 6= ϕk ′

= %mkβmk ′ +
β2mk

β2mk ′
%2mk ′

∣∣∣ϕHk ′ϕk ∣∣∣2 , (m 6= n) (85)

for the UL, and simplifies to

E
{
gmkg∗nk$dmk ′$d

∗

nk ′
}
= E

{∣∣∣∣gmk ĝ∗mk ′|ĝmk ′ |

∣∣∣∣2
}

= E
{
|gmk |2

}
= βmk , (m = n),

(86)

for the DL, irrespective of the pilot codes used by both the
tagged and interfering MSs.
Case m 6= n: The inter-user interference expectation for

m 6= n can be expressed as

E
{
gmk ′g

∗

nk ′$umk$u
∗
nk
}

= E
{
gmk ′ ĝ

∗
mk
}
E
{
g∗nk ′ ĝnk

}
=


βmkβnk

βmk ′βnk ′
E
{
gmk ′ ĝ

∗

mk ′
}
E
{
g∗nk ′ ĝnk ′

}
, ϕk = ϕk ′

E {gmk ′}E
{
ĝ∗mk

}
E
{
g∗nk ′

}
E
{
ĝnk
}
, ϕk 6= ϕk ′

=


βmkβnk

βmk ′βnk ′
%mk ′%nk ′ , ϕk = ϕk ′

0, ϕk 6= ϕk ′

=
βmkβnk

βmk ′βnk ′
%mk ′%nk ′

∣∣∣ϕHk ′ϕk ∣∣∣2 , (m 6= n) (87)

for the UL, and

E
{
gmkg∗nk$dmk ′$d

∗

nk ′
}

= E

{
gmk

ĝ∗mk ′∣∣ĝmk ′ ∣∣
}
E

{
g∗nk

ĝnk ′∣∣ĝnk ′ ∣∣
}

=


E

{
gmk

ĝ∗mk∣∣ĝmk ∣∣
}
E

{
g∗nk

ĝnk∣∣ĝnk ∣∣
}
, ϕk = ϕk ′

E {gmk}E

{
ĝ∗mk ′∣∣ĝmk ′ ∣∣

}
E
{
g∗nk
}
E

{
ĝnk ′∣∣ĝnk ′ ∣∣

}
, ϕk 6= ϕk ′

=

{π
4
√
%mk%nk , ϕk = ϕk ′

0, ϕk 6= ϕk ′

=
π

4
√
%mk%nk

∣∣∣ϕHk ′ϕk ∣∣∣2 , (m 6= n), (88)

for the DL.

APPENDIX B
CALCULATION OF QUANTIZATION NOISE DISTORTION

A. UL CASE
The quantization noise sample in the UL segment is given
by (26) and, hence,

E
{∣∣QNuk

∣∣2}

=



M∑
m=1

M∑
n=1

E
{
$umk$u

∗
nk
}
E
{
q̃umq̃∗un

}
, BCU

M∑
m=1

M∑
n=1

E
{
q̃umk q̃∗unk

}
, BAP.

(89)

The inputs of the quantizers at different APs are correlated,
since they arise from quantization of the same data signals.
However, using the linear quantization model described in
subsection II-B (see also [30]), the covariance matrix of
the quantization distortion can be approximated as a diag-
onal matrix (see (8) in subsection II-B). This implies that
the quantization distortion across APs can be reasonably
approximated as uncorrelated [23, Appendix A]. Using this
approximation in (89) then

E
{∣∣QNuk

∣∣2}

≈



M∑
m=1

E
{∣∣ĝmk ∣∣2}E {|q̃um|2}, BCU

M∑
m=1

E
{
|q̃umk |

2
}
, BAP,

=



M∑
m=1

%mkαum (1− αum)E
{
|rum|

2
}
, BCU

M∑
m=1

αumk (1− αumk)E
{∣∣ĝ∗mkrum∣∣2}, BAP,

(90)

with

E
{
|rum|

2
}
=

K∑
k ′=1

νk ′βmk ′ + σ
2
u , (91)

and

E
{∣∣ĝ∗mkrum∣∣2} = K∑

k ′=1

νk ′βmk ′%mk

+

K∑
k ′=1

νk ′
β2mk

β2mk ′
%2mk ′

∣∣∣ϕHk ′ϕk ∣∣∣2 + %mkσ 2
u . (92)

B. DL CASE
In the DL segment, the quantization noise sample at the
kth MS is specified by (39) and, consequently, using again
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the additive quantization noise model, its variance can be
approximated as

E
{∣∣QNdk

∣∣2}

≈



M∑
m=1

βmkE
{
|q̃dm|

2
}
, BCU

M∑
m=1

βmk

K∑
k ′=1

E
{
|q̃dmk ′ |

2
}
, BAP

=

M∑
m=1

βmk

K∑
k ′=1

α̃dmk ′ (1− α̃dmk ′) ηmk ′ . (93)
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