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ABSTRACT Fault-tolerant state estimation is necessary for analytical redundancy in aviation safety, but
complicated fault conditions pose a major challenge to reliable estimations. In this paper, we propose a
new state-estimation method based on an intermittent-measurement Kalman filter, a maximum-likelihood
estimation rule, and the Gaussian mixture reduction. This method is robust to time-varying and featureless
faults, and requires no past history of innovation errors to perform fault detection and isolation, leading to
the easy implementation and improved accuracy under severe sensor-failure conditions. With an example
application of monitoring the rotation speeds of a two-spool jet engine in simulations, the effectiveness of
the proposed method is verified.
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NOMENCLATURE
Bold, upper
case symbols: Matrices
Bold, lower
case symbols: Vectors
Symbols
with hat: Estimated variables
Symbols
with tilde: Variables perturbed by noises and faults
Right
superscript (j): Variables under fault condition j
Right
subscript k|j: Variables inferred at moment k , using

the information from moment j
Ad State matrix of the discrete linear system

in (1)
Bd Input matrix of the discrete linear system

in (1)
cTi The ith row of Cd
Cd Output matrix of the discrete linear

system in (1)
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Gj The selection matrix excluding the all-zero
rows of diag(γγγ (j))

K (j)
k The Kalman gain at moment k and under fault

condition γγγ (j)

P(j)
k|k The corrected covariance matrix of estima-

tion error at moment k and under fault con-
dition γγγ (j)

Pk|k−1 Predicted covariance matrix of estimation
error for moment k , using information from
moment k − 1

Pk|k Corrected covariance matrix of estimation
error at moment k

Q Covariance matrix of process noise
R Covariance matrix of measurement noise

S(j)k Covariance matrix of the innovation error in
(10)

T1,T2 Intermediate-variable matrices given in (18)
uk Input vector at moment k
vk Measurement noise at moment k
wk Process noise at moment k
xk System state vector at moment k
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yk Measurement vector at moment k
N (a,B) Gaussian probability density function with

mean a and covariance B
P(γγγ (j)) Probability of the fault condition γγγ (j) in (13)
x̂(j)k|k Corrected estimation at moment k and under

fault condition γγγ (j)

x̂k|k−1 Predicted estimation for moment k , using infor-
mation from moment k − 1

x̂k|k Corrected estimation at moment k

C̃
(j)
k Modified output matrix at moment k and under

fault condition γγγ (j), in (7)

M̃
(j)
k Covariance correction term at moment k and

under fault condition γγγ (j), in (7)

R̃
†
k The left pseudoinverse of matrix R̃k

R̃
(j)
k Modified covariance matrix of measurement

noises, at moment k and under fault condition
γγγ (j), in (7)

ỹk Real measurement vector under noises and sen-
sor faults at moment k

a95% Area of the 95%-confidence ellipse for an error
distribution

m Dimension of the measurement vector y
n Dimension of the system state vector x
ri The ith-row, ith-column entry of matrix R
zstop The iteration stop condition in Algorithm 1

εεε
(j)
k Innovation error under fault condition γγγ (j) in (9)
000 Matrix containing the set of all possible fault

conditions in (5)
γγγ k Fault-condition vector at moment k in (2)
γγγ (j) The m-dimensional binary representation of

integer j in (6)
λλλ Vector of fault-free probabilities in (3)
δexp The expected standard deviation percentage in

(20)
γk,i The ith component of γγγ k
ξ (j) The conditional probability of γγγ (j) in (14)
1̄ The state-variation threshold in Algorithm 1

I. INTRODUCTION
Reliable sensor feedbacks are essential to aviation safety.
To protect aircrafts from sensor failures, hardware redun-
dancy, which uses duplicated and independent sensor path-
ways, has been widely implemented, e.g., in flight control
systems [1]. However, due to cost and weight restrictions, it is
impractical to apply hardware redundancy to all subsystems
of aircrafts, and many ‘‘non-critical’’ sensor pathways have
no redundancy. One example is the spool-speed feedback
path, from the jet engine controller to the human–machine
interface (EWD), via the engine interface unit (EIU) [2]
(illustrated as the arrow-connected blocks in the bottom of
Fig. 1)—Though a failure in the path does not affect the self-
contained engine control system [3], incorrect engine-speed

readings in the EWD mislead pilots and may result in severe
safety problems.

To increase system robustness without relying on hard-
ware redundancies, Patton proposed the use of analytical
redundancy, i.e., combining the model knowledge and dis-
similar sensors’ measurements, for increasing the robustness
of sensor systems [4], [5]. For the exemplified application
shown in Fig. 1, the analytical redundancy can be formed
by combining the jet engine’s nominal model with various
sensors’ measurements, such as the LPC/HPC (low/high-
pressure compressor) speeds, generator input-shaft speed,
bleed pressure/flow rate, and total air pressure/temperature
data. Due to measurements noises and unknown faults in
the sensor pathways, many investigations have been con-
ducted on two necessary components of analytical redun-
dancy, namely the fault detection and isolation (FDI), and the
state estimation methods.

On FDI, a key indicator of sensor fault is the innovation
error, which is defined as the difference between the expected
and real sensor measurements. For example, the sum of
squared innovation errors for multiple fault assumptions are
compared to find the true fault condition [6]–[10]. Normality
tests are performed on past innovation errors within a moving
window to detect a fault [11], [12]. Threshold tests on the
innovation errors have also been implemented [5], [13].

On state estimation, the classic Kalman filter (KF) and its
nonlinear extensions, particularly the unscentedKalman filter
(UKF) [14], have been widely implemented and tailored for
estimating system state under fault conditions. For example,
the multiple model adaptive estimation (MMAE) methods
use multiple parallel classic KFs [6]–[10]. The adaptive-
KF methods, such as the innovation/residual-based adaptive
estimation (IAE/RAE) [15]–[18] and the robust adaptive KF
(RAKF) [11], [12], improve classic KF by introducing adap-
tive covariance matrices of process and measurement noises.
This adaption technique has also been extended to UKFs [13].

The above methods have been successfully implemented
in applications demanding fault-tolerant state estimations.
But we still have the following problems if the measurement
situations are severe, for example:
• Hardware failures may either be permanent or tempo-
rary, depending on the diversified fault types from hard-
ware destructions to poor electrical contacts, hence the
fault conditions can be time-varying;

• Faults may occur at different locations in the sensor
pathways, from the variable-resistance sensors to the
power supply chips, etc. Accordingly, the outputs of
faulty paths may not have specific features in either time
or frequency domains.

Due to the above situations, the following difficulties may be
encountered:
• For FDI, the assumption on constant fault condition,
which is the basis for comparing multiple series of
recorded innovations errors, does not hold. Moreover,
normality tests on the innovation errors are sensitive to
the successful removal of faulty measurements inside
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FIGURE 1. Overview of the system for monitoring the LPC and HPC speeds. Dashed arrows indicate the
non-redundant sensor pathways subject to potential failures.

a time window, which is a challenging job under the
time-varying faults and featureless outputs. Besides,
the threshold-based FDI methods demand much tuning
work to fit specific applications.

• The adaptive KF/UKF is dependent on the past inno-
vation errors, the introduced lag results in performance
sacrifice. Furthermore, the convergence of the adaptive
KF is based on the linear time-invariant (LTI) stability
condition [15], which may not hold under rapidly time-
varying faults.

In this paper, based on an intermittent-measurement KF
(IMKF) [19], [20], a maximum-likelihood estimation rule,
and the Gaussian mixture reduction, we propose a new state-
estimation method that has the following improvements over
the classic methods:
• Time-varying intermittent faults can be handled properly
without relying on the LTI assumption (the basis of
adaptive-type methods) [15], leading to expanded appli-
cation scenarios;

• Unlike the IMKF discussed in [19], [20] for inter-
mittent communications, where data-missing faults are
explicit, the proposed method allows the introduction of
unknown faults, and made no assumption on the faulty
signals’ patterns. This corresponds to a more realistic
situation in practice;

• The FDI is independent of the past history of innovation
errors, avoiding the possible lags that may sacrifice
performance. Besides, the FDI needs no user-specified
parameters. This reduces the risks in tuning/testing, and
allows the easy-implementation of the proposedmethod.

The rest of this paper is organized as follows: The state-
estimation problem under sensor faults is introduced in
Section II. The general idea and the details of the proposed
method are presented in Section III. As a case study, the pro-
posed method is applied to the spool-speed monitor appli-
cation (Fig. 1), and its performance is compared with those
of the other classic methods in Section IV. Conclusions are
given in Section V.

II. PROBLEM FORMULATION
For the system to be monitored, we assume that its dynamics
can be described by a linear discrete model.1 Let xk ∈ Rn be
the system state at moment k , uk ∈ Rr be the input vector,
and yk ∈ Rm be the sensors’ outputs under the fault-free
condition, the system dynamics is given by:

xk+1 = Adxk + Bduk + wk ,

yk = Cdxk + vk , (1)

where Ad , Bd , and Cd are matrices describing the linear
system, wk ∈ Rn is the process noises, and vk ∈ Rm denotes
the sensors’ noises.wk and vk are assumed to be independent,
zero-mean, and Gaussian, with diagonal covariance matrices
given by Q and R, respectively.

To describe the fault condition at moment k , a binary vector
is introduced as

γγγ k = [γk,1, γk,2, . . . , γk,m]T , (2)

where γk,i = 1 indicates that the ith component of yk is fault-
free, and γk,i = 0 means that the component is malfunc-
tioned.

Besides, a vector of fault-free probabilities is given by

λλλ = [λ1, λ2, . . . , λm]T , (3)

where λi is the expected fault-free probabilities of the ith
sensor path, i.e, λi = E(γk,i). To characterize the fault
behaviors, the following assumptions are made:

1) Faults can either be intermittent or permanent, cor-
responding to occasions like bad electrical contacts,
poorly shielded data buses, and hardware damages,
etc.;

2) The fault-condition vectorγγγ k at moment k is unknown,
and the fault-free probability vector λλλ is only roughly
known, which is a common situation in practice;

1Although jet engines’ dynamics are intrinsically nonlinear, the linearized
models have been successfully and widely used in engine controls [21].
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FIGURE 2. Illustration of the estimation process.

3) When a sensor path is malfunctioned, its output is
featureless and could have any value.

Let ỹ1, ỹ2, . . . , ỹk be the measurements subject to sensor
faults satisfying the above assumptions, our goal is to estimate
the system state and covariance at moment k with the pro-
posed method, which is discussed in the subsequent section.

III. PROPOSED METHOD
The general idea of the proposed method is illustrated in
Fig. 2, showing how the kth estimation is obtained from the
(k − 1)th result. As shown in Fig. 2, the estimation process
includes the following three stages:

1) Prediction: Predicting the state and covariance for
moment k using the model knowledge and previous
estimation results;

2) Conditional correction: For each possible fault condi-
tion, correcting the prediction using the measurements
at moment k;

3) Merging: By merging the multiple results of condi-
tional corrections, arriving at the estimation results at
moment k .

The above stages are detailed blow:

A. PREDICTION
Let the x̂k−1|k−1 and Pk−1|k−1 be the state estimation and
covariance at moment k − 1, respectively. The prediction at
moment k is obtained using the the model knowledge:

x̂k|k−1 = Ad x̂k−1|k−1 + Bduk−1,

Pk|k−1 = AdPk−1|k−1AdT + Q, (4)

where x̂k|k−1 and Pk|k−1 are the predicted state and covari-
ance, respectively.

B. CONDITIONAL CORRECTION
In this stage, x̂k|k−1 and Pk|k−1 are to be corrected using the
faulty measurements ỹk . Unlike the classic KF, this correction
stage is dependent on the sensors’ fault conditions. Let 000 be

the set of all possible fault conditions:

000 =
{
γγγ (1),γγγ (2), . . . ,γγγ (2m−1)

}
, (5)

where γγγ (j) denotes the m-dimensional binary representation
of j, i.e.,

γγγ (1)
= [0, 0, . . . , 0, 0, 1]T ,

γγγ (2)
= [0, 0, . . . , 0, 1, 0]T ,
...

γγγ (2m−1)
= [1, 1, . . . , 1, 1, 1]T . (6)

For the jth fault condition γγγ (j), three matrices for the con-
ditional correction are defined in the IMKF [20] as

C̃
(j)
k = diag(γγγ (j))Cd ,

R̃
(j)
k = diag(γγγ (j))R, (7)

M̃
(j)
k =

m∑
i=1

γk,i

ri
cicTi ,

where ri is the ith-row, ith-column entry of R (covariance of
measurement noise), and cTi is the ith row of Cd in (1). Then
the conditional correction under fault condition γγγ (j) is given
by [20]:

P(j)
k|k =

(
P−1k|k−1 + M̃k

)−1
,

K (j)
k = P(j)

k|k C̃
T
k R̃

†
k ,

x̂(j)k|k = x̂k|k−1 + K
(j)
k

(
ỹk − C̃

(j)
k x̂k|k−1

)
, (8)

where K (j)
k is the Kalman gain, and (·)† denotes the left

pseudoinverse of a matrix.

C. MERGING
To compute innovation errors, the faulty sensors’ channels
must be removed. To do that, we introduce a ‘‘selection
matrix’’ Gj, which excludes the all-zero rows of diag(γγγ (j)).
Thus the innovation error under fault condition γγγ (j) is given
by

εεε
(j)
k = Gjỹk − GjCd x̂k|k−1. (9)

The covariance of the innovation error under γγγ (j) is

S(j)k = GjCdPk|k−1CdTGTj + GjR̃
(j)
k G

T
j . (10)

Then the probability density function of εεε(j)k under fault con-
dition γγγ (j) is:

p(εεε(j)k |γγγ
(j)) = p

(
εεε
(j)
k |N (0,S(j)k )

)
, (11)

where N (0,S(j)k ) denotes the Gaussian probability density
function with mean 0 and covariance S(j)k .

Let li be the probability of the ith sensor’s current fault
condition, i.e.,

li =

{
λi, γ

(j)
i = 1,

1− λi, γ
(j)
i = 0,

(12)
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where γ (j)
i is the ith element of γγγ (j). Then the probability of

the fault condition γγγ (j), denoted by P(γγγ (j)), is given by

P(γγγ (j)) =
m∏
i=1

li. (13)

With the above formulations, we can now compute the
merging weights ξ (j), which is the conditional probability
of γγγ (j) under the observed innovation error εεε(j)k . This con-
dition probability can be obtained by the continuous Bayes
equation:

ξ (j) , P(γγγ (j)
|εεε

(j)
k )

=
p(εεε(j)k |γγγ

(j))P(γγγ (j))∑2m−1
i=1

(
p(εεε(i)k |γγγ

(i))P(γγγ (i))
) , (14)

where p(εεε(j)k |γγγ
(j)) has been given in (11), andP(γγγ (j)) is in (13).

By performing Gaussian mixture reduction [22], the condi-
tional corrections under all fault conditions are merged with
weights ξ (1), ξ (2), . . . , ξ (2

m
−1):

x̂k|k =
2m−1∑
j=1

(
ξ (j)x̂(j)k|k

)
, (15)

Pk|k = T1 + T2, (16)

where

T1 =

2m−1∑
j=1

(
ξ (j)P(j)

k|k

)
, (17)

T2 =

2m−1∑
j=1

(
ξ (j)

(
x̂(j)k|k − x̂k|k

) (
x̂(j)k|k − x̂k|k

)T)
. (18)

Furthermore, the following steps are also needed for a
complete estimation method:

1) Determining the initial estimation x̂0|0 and covariance
P0|0;

2) Specifying a stop condition for entering and exiting the
iterative estimation process;

3) Thresholding x̂k|k − x̂k−1|k−1 with a maximum
variation-rate limit to avoid rare cases where all sensors
fail simultaneously;

4) Determining the process-noise-covariance Q and mea-
surement noise covariance R from pilot experiment
data and least-squares fitting [23].

Finally, the proposed method is summarized in Algorithm 1.
While Kalman-type filters has polynomial complexity with
respect to (w.r.t.) the system’s state dimension n, the number
of conditional corrections (i.e., line 6–19 in Algorithm 1)
grows exponentially w.r.t the output dimension m. Though
expensive, this exponential complexity are alleviated by the
following two facts:
• In aircrafts, due toweight and reliability constraints, sen-
sors related with a specific subsystem is usually limited
in number; this avoids the situation of large m;

• For different fault conditions, the conditional correc-
tions are independent with each other, as they share
no common variables/resources. Therefore, for those
applications with large m, the conditional correc-
tion stage can be fully parallelized to speedup the
computations.

Algorithm 1 The Proposed State-Estimation Method
Input: System model Ad , Bd , Cd , process noise

covariance Q, sensor output noise covariance R,
fault-condition set 000, fault-free probabilities λλλ,
inputs u1, u2, u3, . . . , etc., measurements ỹ1, ỹ2,
ỹ3, . . . , etc., state-variation threshold 1̄, and
iteration stop condition zstop.

Output: State estimations x̂1|1, x̂2|2, x̂3|3, . . . , etc., and
estimation covariances P1|1, P2|2, P3|3, . . . , etc.

1 Initialization: k ← 0, set the initial state estimation x̂0|0
and covariance P0|0;

2 while zstop 6= true do
3 k ← k + 1;
4 Predict x̂k|k−1 and Pk|k−1 using (4);
5 den← 0;
6 for j = 1 to 2m − 1 do
7 Obtain the conditional correction x̂(j)k|k and P

(j)
k|k

with (7) and (8);
8 Compute the innovation error εεε(j)k and its

covariance S(j)k with (9) and (10);
9 Compute the conditional probability density

p(εεε(j)k |γγγ
(j)) using (11);

10 Compute the fault-condition probability P(γγγ (j))
with (13);

11 den← den+ p(εεε(j)k |γγγ
(j))P(γγγ (j));

12 end
13 x̂k|k ← 0;
14 T1,T2← 0;
15 for j = 1 to 2m − 1 do
16 Compute the merging weight:

ξ (j)← p(εεε(j)k |γγγ
(j))P(γγγ (j))/den;

17 x̂k|k ← x̂k|k + ξ (j)x̂
(j)
k|k ;

18 T1← T1 + ξ
(j)P(j)

k|k ;
19 end
20 if ‖x̂k|k − x̂k−1|k−1‖2 > 1̄ then
21 x̂k|k ← x̂k|k−1;
22 Pk|k ← Pk|k−1;
23 Continue;
24 end
25 for j = 1 to 2m − 1 do

26 T2← T2 + ξ
(j)
(
x̂(j)k|k − x̂k|k

) (
x̂(j)k|k − x̂k|k

)T
;

27 end
28 Pk|k ← T1 + T2;
29 end
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TABLE 1. Noises levels used in the simulation.

IV. SIMULATION
A. SIMULATION SETTINGS
To test the proposed method in estimating the spool rotation
speeds of jet engines, we adopt a two-spool engine’s (Tuman-
skyR11-F300) linearizedmodel given in [24]. The state of the
system include the LPC and HPC speeds. The inputs are the
fuel flow rate and exhaust nozzle area. The outputs include
the directly measured LPC/HPC speeds, and the HPC speed
inferred by the generator and bleed data.

The states, inputs and outputs are all dimensionless: Each
variable is defined as the ratio of a physical value to its
designed upper limit: E.g., the dimensionless HPC speed is
represented as the ratio of the current HPC speed to the
maximum HPC speed of the engine.

The sampling period of the simulation is 10 ms. Without
loss of generality, we assume that the HPC speed inference
algorithm has been given by other external modules. The
dimensionless model parameters are then given by:

Ad =
[
0.9683 0.0094
0.0124 0.9781

]
,

Bd =
[
0.0112 0.0188
0.0091 0.0001

]
,

Cd =


1 0
0 1
0 1
0 1

 , (19)

where the first two rows of Cd correspond to the directly
measured LPC and HPC speeds via the EIU, and the last
two rows correspond to the generator and bleed-inferred HPC
speeds shown in Fig. 1. Note that with the parameters in (19),
it can be evaluated that the system is observable, as long as
any one of the four output channels is working normally.
This redundancy in measurements enables the use of state
estimators, even if a subset of sensors are permanently mal-
functioned (which will be demonstrated later).

Both the process and output noises are assumed to be zero-
mean Gaussian noises. Stand deviations of the process and
outputs noises are listed in Table 1. Note that the noise level
of the bleed-inferred HPC speed is significantly larger than
others, corresponding to a very inaccurate bleed-inference
model. The covariances for the process noise (Q) and output’s
noise R are assigned accordingly.
To emulate the smooth changes in the inputs (fuel flow rate

and nozzle area), they were randomly generated using sums
of sinusoidal signals with different frequencies, amplitudes,
and phases. The simulation time is 10 s. The generated inputs
for simulation are shown in Fig. 3.

FIGURE 3. Inputs of the two-spool jet engine in simulation.

TABLE 2. Fault conditions of the outputs in the simulation.

The fault-condition parameters are given in Table 2. To
make the simulations realistic, the following settings on sen-
sor faults are made:
• Sensor faults randomly occur, following the fault-free
probabilities given in Table 2 (real λλλ). The faults exhib-
ited intermittent behaviors, represented by the ‘‘spikes’’
in Fig. 4;

• Each faulty sensor’s output at moment k is a random
number, uniformly distributed between 0 and 1;

• After 5 s, the first and second outputs are permanently
malfunctioned, emulating a broken connection between
the EIU and the EWD (Fig. 1). The resultant outputs are
shown in Fig. 4;

• Despite the permanent faults and the real λλλ in Table 2,
the expected λλλ implemented in (13) is a rough guess
(third column of Table 2), which is a common situation
in real practice.

The initial engine state is assumed to be x0 =

[0.30, 0.30]T , emulating the spools’ idling speeds. The initial
estimation is assumed to be x̂0|0 = [0.28, 0.28]T , and P0|0 =

Q. The variation threshold 1̄ (line 20 of Algorithm 1) is
set to 0.05, meaning that a spool’s speed cannot vary over
500% within 1 s, which is a very relaxed variation-rate limit.
To quantify the estimation covariance Pk|k with a scalar,
we define the expected standard deviation percentage as

δexp =
√
trace(Pk|k )/2× 100. (20)

B. SIMULATION RESULTS
Simulation results under the above settings are shown in
Fig. 5, where the real system states, estimations, and the
expected standard deviation percentage δexp are illustrated.
According to Fig. 5, we can see that both the LPC and HPC
speeds have been estimated successfully, despite the poor
qualities of the sensors’ feedbacks. Besides, the estimation
covariance, quantified by the expected standard deviation
percentage δexp, has a significant increase after 5 s. This

118130 VOLUME 8, 2020



H. Wang et al.: Robust State Estimation Method for Unknown, Time-Varying and Featureless Aircraft Sensor Failures

FIGURE 4. Sensor outputs under noises and temporary/permanent faults.
The vertical dashed lines indicate the moment from which the first two
sensors become permanently malfunctioned. The ‘‘spikes’’ in the outputs
correspond to the intermittent sensor faults.

FIGURE 5. State estimation results using the proposed method. In the
first and second rows, the black and red curves indicate the real and
estimated spool speeds, respectively. The third row shows the expected
standard deviation percentage given in (20). The vertical dashed lines
indicate the moment from which LPC and HPC sensors become
permanently malfunctioned.

increase in uncertainty is caused by the permanent faults in
the first and second output channels.

FIGURE 6. Histogram of the estimation errors. The green and orange
ovals correspond to the 68% and 95% confidence ellipses.

On computational costs, a benchmark shows that the pro-
posed method takes 578 floating point operations (FLOP) per
iteration, and occupies 164 kB memory, which are compact
enough for most embedded platforms. Besides, the compu-
tation time of the proposed algorithm in each iteration is
approximately 0.5 ms, which is much smaller than the 10 ms
sampling period, and is suitable for real-time applications.

To visualize the estimation errors defined as x̂k|k − xk ,
a density plot is given in Fig. 6, showing the histogram
and confidence ellipses of the estimation errors. According
to the result, for the LPC speed estimation, we have 68%
and 95% probabilities to achieve errors less than 6% and
11%, respectively. For the HPC speed estimation, we have
68% and 95% probabilities to achieve errors less than 0.6%
and 1%, respectively. The relatively larger error in the LPC
speed estimation is due to the fact that the LPC has only
one direct measurement path, which is also more problematic
than the HPC’s measurement paths. Despite the difference
between the LPC’s and HPC’s estimation errors, the demon-
strated accuracies are still satisfactory for applications in
human–machine interface.

C. COMPARISON WITH OTHER METHODS
As some classic methods discussed in Section I are inappli-
cable to time-varying and intermittent faults, we have devel-
oped their modified versions for comparisons. The methods
include:
1) Conditional correction using the classic KF (hereafter

referred to as the classic KF correction): This cor-
responds to replacing the corrections in (7) and (8)
(line 7 in Algorithm 1) using the classic KF, with the
malfunctioned output paths removed for each fault con-
dition. This method can be considered as an extended
MMAE for time-varying fault conditions;

2) Fault detection using the χ2 test on the innovation
errors within a time window (hereafter referred to as
the χ2-based fault detection): This method keeps a
record of the fault-free sensors’ innovation errors, and
performs χ2 test to check whether the current measure-
ment data violates the Gaussian-distribution assump-
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FIGURE 7. Scatter plot of the estimation errors. The blue, red, yellow, and
black dots are the estimation errors corresponding to the classic-KF,
χ2-based, RAKF, and the proposed methods, respectively. The dashed
ellipses show the errors’ distribution regions of the four methods with
95% confidence.

TABLE 3. Comparing the estimation errors of four estimation methods.

tion. In the simulation, the length of the time window
is set to 100, and the α value of the χ2 test is set to 0.05.
This method can be considered as an extended IAE for
intermittent measurements;

3) Robust adaptive KF (RAKF): An instantaneous χ2-
threshold-based method is used to detect faults in real
time. The estimation process is based on classic KF,
whereas an adaption rule on the covariance matrix R is
invoked when a fault is detected. The adaption needs
a record of innovation errors within a time window.
In the simulation, the window length is 200, and the
α value for χ2 test is set to 0.01—Both the window
length and the α value are tuned by a trial-and-error
process.

With the above methods, simulations are performed with
the same inputs, fault conditions, and sensor outputs. The
resultant estimation errors are compared with those of the
proposed method in Fig. 7. Comparing the sizes of the error
distribution regions and the confidence ellipses, we can see
that the proposed method leads to the significantly reduced
estimation errors.

Another set of results are given in Table 3, where the
areas of the 95%-confidence ellipses, denoted by a95%, are
adopted for comparing different methods. According to the
comparisons in Fig. 7 and Table 3, we can see that
• RAKF does not perform well in the simulation. Though
being the state-of-the-art method [12], it is not designed

TABLE 4. Effects of noise types on estimation errors.

to address intermittent faults, as adaption is not suffi-
ciently fast to catch up with the instantaneously-varying
fault conditions;

• For the classic KF correction, though the malfunctioned
sensor paths are removed, the estimation accuracy is
still not as good as the IMKF, which is optimized for
intermittent faults;

• The χ2-based fault detection relies on the normality test
of the innovation errors in the time window; a temporary
error is not significant enough to trigger a non-Gaussian
(i.e., fault) judgement. This result emphasizes the impor-
tance of the conditional correction and merging steps in
Section III.

Comparing with the RAKF, classic-KF-based and χ2-
basedmethods, the proposedmethod results in approximately
24%, 55%, and 24% reductions in the mean errors, and 96%,
92%, and 85% reductions in the distribution areas, which
support the effectiveness of the proposed method.

D. EFFECTS OF NON-GAUSSIAN MEASUREMENT NOISES
Inmany cases, themeasurement noises are non-Gaussian, and
the optimality of KF is not preserved. For state-estimations
under non-Gaussian and heavy-tailed noises, researchers
have proposed many ad-hoc filters (e.g., [25]–[28]) and
addressed their optimality issues (which are beyond our
scope). In practice, however, the KF-based approaches are
still widely adopted for simplicity. Therefore, in the simu-
lation, we tested the performances of the proposed method
under the following non-Gaussian noises:

• Zero-mean Laplace noises with standard deviations of
7.50 × 10−4 (for the first three output channels) and
3.75× 10−2 (for the last output channel);

• Zero-mean Cauchy noises with one degree of freedom,
and scale parameters as 2.38 × 10−4 (for the first three
output channels) and 1.19 × 10−2 (for the last output
channel).

The above parameters are chosen to keep the 95% measure-
ment errors within the±0.003 (for the first three output chan-
nels) and ±0.15 (for the last output channel) limits, whereas
for the same limits, the Gaussian noises in Table 1 have
99.7% confidence. With the above noise types, simulations
are performed with the proposed method. The effects of non-
Gaussian noises on the estimation errors are shown in Fig. 8,
and the error comparison under different noises is listed in
Table 4.

According to the results in Fig. 8 and Table 4, the intro-
duction of Laplace noises leads to slight accuracy decrease,
whereas the Cauchy noises correspond to significantly larger
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FIGURE 8. Scatter plot of the estimation errors under different types of
measurement noises. The blue, red, and black dots are the estimation
errors corresponding to the Cauchy, Laplace, and Gaussian noises,
respectively. The dashed ellipses show the error-distribution regions with
95% confidence.

FIGURE 9. Comparison of the fourth channel’s outputs under different
types of noises.

estimation errors. This is because the Cauchy noises include
much more extremal measurement errors — this can be seen
in Fig. 9, whose bottom row (i.e., the fourth output channel
under the Cauchy noise) have significantly more ‘‘spikes’’
than the first two rows. On the other hand, these largely-
deviated errors are equivalent to intermittent sensor faults,
hence can be automatically handled by the proposed method.
As a result, the estimation performance under the Cauchy
noises is still comparable to that of the χ2-based method
under the Gaussian noises.

V. CONCLUSION
Achieving analytical redundancy without additional hard-
ware is an attractive way of enhancing aviation safety,
whereas state estimation under diversified sensor faults is
non-trivial. In this paper, to realize robust state estimation
under unknown, time-varying and featureless sensor faults,
we propose a new state estimation method based on the
intermittent-measurement Kalman filter and the Bayesian-
probability-weighted Gaussian mixture reduction. The for-
mulated method is implemented in an application of moni-
toring a jet engine’s spool speeds. Simulation results show
that the proposed method leads to the significantly enhanced
robustness and accuracy in state estimations.

To improve the present work, the proposed method is to
be extended to a nonlinear version by combining it with
the extended or unscented Kalman filters. Besides, special
versions of the filters should be considered to deal with
various types of non-Gaussian noises. Finally, compared
with the quadratic objective function in the Kalman filter,
the weighted absolute value [29] and maximum exponential
absolute value [30] provides intrinsic robustness to bad mea-
surements and may lead to improved FDI/estimation perfor-
mance. These issues are to be explored in the future work.
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