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ABSTRACT SNARE proteins are a large family of membrane fusion proteins. As a lot of human diseases
are related to the SNARE proteins, they have attracted people to study them. Traditionally, the SNARE
proteins can be identified through bioinformatics techniques, which are expensive and time-consuming.
Some researchers attempt to identify the SNARE proteins by the machine learning algorithms. A deep
learning model called SNARE-CNN is proposed to predict SNARE proteins. A 2D convolutional neural
network is constructed and the Position-Specific Scoring Matrix (PSSM) profile is used to distinguish the
SNARE proteins from the other kinds of proteins. Although the SNARE-CNN can achieve high accuracy,
the performance of the model still has room to improve. In this paper, a novel hybrid model, that combines
the random forest algorithm with the oversampling filter and 188D feature extraction method, is pro-
posed. By trying different combinations of feature extraction methods, filtering methods and classification
algorithms, the hybrid model, we proposed, can achieve the best performance among all combinations.
Experiments show that the performance of our hybrid model is better than that of the SNARE-CNN model.

INDEX TERMS SNARE protein identification, feature representation, feature filtering.

I. INTRODUCTION
SNARE proteins are a large family of membrane fusion pro-
teins [1]. Although they differ greatly in structure and size,
they all have a sequence of 60 to 70 amino acids, called the
SNARE motif. The integration of cell membranes in eukary-
otes can be catalyzed by SNARE proteins. The SNARE
proteins are critical for various types of cellular activities,
such as synaptic transmission, cytokinesis, and cell growth.
There are mainly two classification methods for SNARE
proteins. The first one is based on the location of SNARE
protein distribution, which divides the SNARE proteins into
vesicle membrane SNARE (v-SNARE, mainly VAMP and
related proteins) and target membrane SNARE (t-SNARE,
mainly including Syntaxin and SNAP-25). The second one
is based on the type of amino acid residues in the SNARE
protein domain, which divides the SNARE proteins into
arginine SNARE protein (R-SNARE) and glutamine SNARE
protein (Q-SNARE).

Nowadays, researchers have identified a variety of SNARE
proteins and some studies show that a lot of diseases
are associated with the loss of function of the SNARE

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

protein, such as neurodegenerative diseases, mental diseases,
cancer, etc. [2]–[5]. Therefore, SNARE proteins are very
important for human health and it is necessary to develop
some techniques to find them. Because SNARE proteins
play a vital role in human diseases, they have attracted
many researchers to study it. The conserved domains in
SNARE proteins were analyzed by using the bioinformat-
ics techniques [6]. Phylogenetic characteristics of SNARE-
dependent membrane transport and sequence motifs were
extracted by [7]. A framework was proposed by [8] to
predict the functions of SNAREs. A database was built
by [9], [10] to save and classify SNAREs. In addition, [11]
found the convergent evolution of Legionella effectors,
by SNAREmimics themembrane fusion. Reference [12] ana-
lyzed the damages botulinum neurotoxin caused on SNARE
proteins and proposed that the truncated SNAP-25 mutant
will destroy SNARE core complex assembly, thereby inhibit-
ing the synaptic membrane fusion.

The identification of SNARE proteins achieved high accu-
racy, but most of the methods are by means of bioinfor-
matics techniques, which are expensive and time-consuming.
While the machine learning techniques are seldom adopted
by researchers to the identification of SNARE proteins,
which has been widely used to identify other types of
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FIGURE 1. Framework of the SNARE proteins identification procedure.

proteins [13]–[32]. Reference [33] proposed a deep learn-
ing model to predict SNARE proteins. They constructed a
2D convolutional neural network (CNN), and the Position-
Specific Scoring Matrix (PSSM) profile was used to extract
features from SNARE proteins to train the CNN model. The
experimental results showed that the SNARE-CNN model
achieved high performance in terms of sensitivity, specificity,
accuracy and MCC, which can be further improved.

In this paper, we develop several machine learning mod-
els to identify the SNARE proteins. Firstly, four types of
features, which are the Grouped Amino Acid Composi-
tion (GAAC) [34], the Composition/Transition/Distribution
(CTDT) [35], [36], the 188D [37] and CKSAAP [38]–[40]
methods, are used to extract features from the SNARE pro-
teins. As the number of positive instances and negative
instances in the feature set is imbalanced, which will affect
the performance of the classifier greatly, we need to process
the extracted feature sets before classification [41]–[66]. Two
types of filtering methods are applied to process the extracted
feature sets, which are subsampling filter and oversampling
filter. After filtering, the number of positive and negative
instances is balanced. Finally, three types of machine learning
algorithms are used to identify the SNARE proteins, which
are the Adaboost, KNN and Random Forest algorithms.
The experimental results show that the performance of the

Random Forest algorithms, based on the 188D feature extrac-
tion method and oversampling filter, is the best among all
combinitions of models. Furthermore, the comparison results
show that the performance of the random forest algorithm
with oversampling filter and 188D feature extraction method
can improve the performance of the SNARE-CNN model.

The contributions of this work include (1) Different com-
binations of feature extraction methods, filtering methods
and classification algorithms are used to identify the SNARE
proteins. (2) Experimental results show that the performance
of the random forest algorithm with oversample filtering
and 188D feature extraction method is the best among all
combinations. (3)Extensive experiments are done to show
that our hybrid model can improve the performance of the
SNARE-CNN model.

The rest of the paper is organized as follows. The data
sets used for the experiments and the methods for identifying
SNARE proteins are introduced in section 2. The experimen-
tal results are given in Section 3. Finally, we conclude our
work in Section 4.

II. METHODS
The framework for the SNARE protein classification is
shown in figure 1. First, four kinds of feature extraction
methods, named GAAC, CTDT, 188D and CKSAAP, are
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used to extract the features from the SNARE and non-SNARE
sequences. As the number of positive and negative instances
in the dataset is imbalanced, we apply two kinds of filtering
algorithms, which are the subsampling filter and oversam-
pling filter to balance the instances in the dataset. Then,
the balanced dataset is used to train the models by three kinds
of classification algorithms, which are the Adaboost, KNN
and Random Forest. Finally, the 10-fold cross-validation is
used to evaluate the performance of the classification results.

Traditionally, the 10 fold cross-validation method divides
the whole data set into 10 folds, every 9 folds of the data
set are used to train the model and the 1 fold left is used to
test the model. 10 classification results can be obtained. The
final evaluation result is calculated from theweighted average
accuracy of the 10 results. It should be noted that in this paper,
if the oversampling or subsampling filters are applied to the
whole data set, the test data will be ‘‘polluted’’, which makes
inaccurate evaluation results. So in our experiments, only the
9 folds of data are oversampled or subsampled to train the
machine learning model. After the model is constructed,
the 1 fold left is used to evaluation the model.

A. DATASET
The SNARE dataset was downloaded from the UniProt
database [67]–[69]. The problem of identification of SNARE
proteins can be seen as a classification problem distinguish-
ing SNARE proteins from general proteins, so we collect
some general proteins as negative instances. To build a pre-
cise model, the negative instances collected need to have a
similar structure and function with the positive instances. The
vesicular transport proteins are chosen, which are counted
as negative instances to perform the classification problem.
Finally, a SNARE dataset with positive and negative instances
is formed and used to construct the hybrid models.

B. FEATURE EXTRACTION METHODS
1) GROUPED AMINO ACID COMPOSITION (GAAC)
In the GAAC encoding, the 20 kinds of AAs are divided
into five classes based on their physicochemical properties,
such as molecular size, hydrophobicity and charge. The five
classes include the aromatic group (g1: FYW), aliphatic
group (g2: GAVLMI), negative charged group (g3: DE),
positive charge group (g4: KRH) and uncharged group
(g5: STCPNQ). GAAC encoding is the frequency of each
amino acid group contained in a protein sequence, which is
defined as:

f (g) =
N (g)
N

, g ∈ {g1, g2, g3, g4, g5}

where N (g) is the number of AA in group g, N is the length
of the protein sequence.

2) COMPOSITION/TRANSITION/DISTRIBUTION (CTDT)
The Composition, Transition and Distribution (CTD) fea-
tures represent the ACC distribution patterns of a specific
physicochemical property or structural in a protein sequence.

The final ’T’ in CTDT represents three transition patterns.
which are transitions from the polar group to the neu-
tral group, transitions between the neutral group and the
hydrophobic group and those between the hydrophobic group
and the polar group. The CTDT encoding is the percentage
frequency with which the three kinds of transitions happen.
The transition descriptor can then be calculated as follows:

T (r, s) =
N (r, s)+ N (s, r)

N − 1
where N (r, s) and N (s, r) are the numbers of transitions from
’r’ to ’s’ or vice versa in the sequence, while N is the length
of the protein.

3) 188D
As the Amino Acids possess a variety of properties, 188 fea-
tures are extracted for the cytokine prediction, which is
denoted as a 188D Feature Vector (FV).

The first 20 features (1–20) are denoted as FV1, . . . ,FV20:

FVi =
ni
L

(i = 1, . . . , 20)

where ni is the number of the 20 AAs appeared in the
sequence and L is the length of the sequence.

Eight kinds of properties are used to extract the 168 fea-
tures left from a sequence, including the polarity, hydropho-
bicity, secondary structure, polarizability, surface tension,
charge, normalized Van der Waals volume and solvent acces-
sibility. 21 features are extracted according to each kind of
physicochemical property, all of which consist of the left
168 features in the 188D.

4) CKSAAP
CKSAAP features are sequence-based features. It computes
a pair of ACCs’ frequency separated by k other ACCs
(k = 0, 1, . . . , 5). For example, let AB (k = 0) represent
the combination of two consecutive AACs, f(AB) denotes the
frequency of the combination of AB. As there are 20 AACs
used to represent the protein, there are 20 = 400 possible
combinations of each two amino acids including the com-
bination of itself. CKSAAP features are encoded by all of
the 400 combination frequencies. Thus, the value on each
dimension of CKSAAP is the occurrence frequency of each
two consecutiveAACs in the protein sequence, which is given
in the following formula.(

NAA
Ntotal

,
NAC
Ntotal

,
NAD
Ntotal

, . . . ,
NYY
Ntotal

)
400

where numerator denotes the combinations of the consecutive
AACs in the protein sequence, N is the length of the protein
sequence.

Suppose k equal to 5, the total number of CKSAAP
features will be 400× 6 = 2400.

C. SUBSAMPLE AND OVERSAMPLE FILTERING METHODS
Subsampling achieves the balance of positive and nega-
tive instances by reducing the number of instances in the
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majority class. It randomly removes some instances from the
majority class to reduce its size. The disadvantage of the
subsampling is some information in the majority class, which
may be important for classification, can be lost. While over-
sampling achieves balance of positive and negative instances
by increasing the number of instances of the class with fewer
instances. Some instances in theminority class will be copied,
which will increase the size of minority class. The disadvan-
tage is that the over-fitting problems can be caused.

D. CLASSIFICATION ALGORITHMS
1) ADABOOST
Adaboost is actually a weak classification algorithm pro-
motion process, which improves the classification accuracy
through a series of training. A stronger final classifier is
composed of many weak classifiers trained by the same
training set.

The adaboost algorithm works as follows: the first weak
classifier is trained by the N instances in the training set.
A new training set is formed by the error-separated instances
of the first weak classifier and other instances left in thewhole
training set. Then the second weak classifier is trained by
the new training set. In the same way, a new training set is
formed and a third weak classifier is trained. Finally, the final
strong classifier is composed of all theweak classifiers, which
means the classification of an instance is determined by the
weight of each weak classifier.

2) KNN
KNN is an instance-based classification algorithm. The train-
ing instances are multi-dimensional feature vectors, where
each one carries a class label. During the training phase,
the KNN algorithm stores the feature vectors and their labels
in an efficient way, which can be easily found. During the
classification phase, a vector without a label will be classified
according to the class labels of its k nearest neighbors in the
multi-dimensional space, where k is a user-defined constant.

3) RANDOM FOREST
The random forest algorithm is an ensemblemachine learning
algorithm, which can be used to solve regression classifica-
tion, and other kinds of problems. During the training phase,
the random forest algorithm constructs m decision trees with
m training sets, which are produced by samplingwith replace-
ment from the same training set. The prediction of the random
forest is the class predicted by a majority of the decision
trees in the forest. Random forest algorithm can overcome the
problem of overfitting to the training set of a single decision
tree.

III. EXPERIMENTS
In this section, five groups of experiments are done to verify
the performance for different combinations of the feature
extraction methods, filtering methods and classification algo-
rithms. Four kinds of feature extraction methods used are

the GAAC, CTDT, 188D and CKSAAP. For each feature
extraction method, three kinds of filtering methods are used,
which are the subsampling filter, oversampling filter and no
filter methods. Three types of machine learning algorithms
are used to classify the filtered data, which are the adaboost,
KNN and random forest algorithms.

Furthermore, four types of metrics, which are Sensitiv-
ity (SN), Specificity (SP), Accuracy (ACC), and Matthew’s
correlation coefficient (MCC), are used to evaluate the per-
formance of different combinations.

The sensitivity (or the true positive rate) is defined by
formula (1), which is used tomeasure the probability of actual
positives correctly classified. The specificity (or the true neg-
ative rate) is defined by formula (2), which is used to measure
the probability of actual negatives correctly classified. The
accuracy (ACC) is defined by formula (3), which is the pro-
portion of correct predictions to the total number of predic-
tions. The Matthews correlation coefficient (MCC) defined
by formula (4) is used to measure the quality of two-class
classifications in machine learning algorithms. MCC is a
correlation coefficient between the observed and predicted
classifications. The range of MCC is between −1 and +1.
When the value of MCC equals to +1, it indicates an exact
match between the observation and prediction. 0 represents
the pridiction is no better than the random prediction. While
the value ofMCC equals to−1, it means a total disagreement.

SN =
TP

TP+ FN
(1)

SP =
TN

TN + FP
(2)

ACC =
TN + TP

TN + FP+ TP+ FN
(3)

MCC =
1− ( FN

TP+FN +
FP

TN+FP )√
(1+ FP−FN

TP+FN )(1+
FN−FP
TN+FP )

(4)

where TP (True Positive) is the number of correctly classified
SNAREs in the positive data set, FP (False Positive) is the
number of instances that are misclassified in the negative data
set; TN (True Negative) is the number of correctly classified
non-SNAREs in the negative data set; and FN (False Nega-
tive) is the number of instances misclassified in the positive
data set. The 10-fold cross-validation is used to evaluate the
performace of the classification results.

Weka is used to do the experiments. Details of the param-
eters used in the experiments are shown in table 1.

A. PERFORMANCE OF THE GAAC
In this section, the GAAC method is used to extract the
features from the SNAREs data set. After extracting the
GAAC features from the positive and negative sequences,
the subsampling and oversampling filters are applied to the
extracted features. Together with the data set with no filter,
we get three feature sets, which are the feature set with
subsampling filter, with oversampling filter and with no filter.
Three classification algorithms are used to classify the three
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FIGURE 2. Performance comparison for GAAC in different cases.

TABLE 1. Parameters set for the experiments.

feature sets, which are the adaboost, KNN and random forest
algorithms. The experimental results are shown in figure 2.

The comparison results of the SN for different combina-
tions of the filtering methods and classification algorithms
based on GAAC are shown in figure 2. It shows that sub-
sampling method achieves the best performance in all the

machine learning algorithm. The oversampling method is
in the second place. The no filter method is the worst.
To evaluate the performance of a particular machine learning
algoirhtm, we calculate the average SN of all three filtering
methods for each machine learning algorithm. The average
SN values calcuated for each machine learning algorithm are
ploted by the line chart in figure 2. The line chart shows that
the KNN algorithm is the best among all three machine learn-
ing algorithms. The Random Forest algorithm is in the second
place.

Figure 2b shows the comparison results of the SP for dif-
ferent filtering methods and classification algorithms based
on GAAC. It shows that the performance of the data set with
no filter is the best among the three filtering methods for all
machine learning algorithms. The oversampling method is in
the second place. The line chart in figure 2b shows the random
forest achieves the best average SP among the three machine
learning algorithms. The KNN algorithm is in the second
place.

Figure 2c shows the comparison results of the ACC for dif-
ferent filtering methods and classification algorithms based
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FIGURE 3. Performance comparison for CTDT in different cases.

on GAAC. It shows that the performance of the data set with
no filter is the best among the three filtering methods for
all machine learning algorithms. The random forest achieves
the best average ACC among the three machine learning
algorithms.

Figure 2d shows the comparison results of theMCC for dif-
ferent filtering methods and classification algorithms based
on GAAC. It shows that the performance of the data set with
no filter is the best among the three filtering methods for
the random forest and KNN algorithms. The random forest
achieves the best average MCC among the three machine
learning algorithms.

From the experimental results above, we can find that the
random forest and no filtering method is the most suitable
model (represented by GAAC-RF-nofilter) for the GAAC to
identify the SNARE proteins.

B. PERFORMANCE OF THE CTDT
In this section, the CTDT method is used to extract the
features from the SNAREs data set. The subsampling, over-
sampling filters and no filter are applied to the extracted

CTDT features. The adaboost, KNN and random forest
classification algorithms are used to classify the filtered
feature sets.

The experimental results are shown in figure 3. The com-
parison results of the SN for different combinations of the fil-
tering methods and classification algorithms based on CTDT
are shown in figure 3a. The line chart shows that the KNN
algorithm can achieve the best SN when the subsampling
filter is applied to the feature set. The performance of sub-
sampling filter is the best among the three filtering methods
for random forest and KNN algorithms.

Figure 3b shows the comparison results of the SP for dif-
ferent filtering methods and classification algorithms based
on CTDT. It shows that the performance of the data set with
no filter is the best among the three filtering methods for
all machine learning algorithms. The line chart in figure 3b
shows the random forest achieves the best average SP among
the three machine learning algorithms.

Figure 3c shows the comparison results of the ACC for dif-
ferent filtering methods and classification algorithms based
on CTDT. The line chart shows that the random forest
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FIGURE 4. Performance comparison for 188D in different cases.

algorithm can achieve the best ACC when the oversampling
filter is applied to the feature set.

Figure 3d shows the comparison results of theMCC for dif-
ferent filtering methods and classification algorithms based
on CTDT. The line chart shows that the random forest algo-
rithm can achieve the best MCCwhen the oversampling filter
is applied to the feature set.

From the experimental results above, we can find that the
random forest and oversampling filter method is the most
suitable model for the CTDT to identify the SNARE proteins,
represented by CTDT-RF-oversample.

C. PERFORMANCE FOR THE 188D
In this section, the 188Dmethod is used to extract the features
from the SNAREs data set. The subsampling, oversampling
filters and no filter are applied to the extracted CTDT fea-
tures. The adaboost, KNN and random forest classification
algorithms are used to classify the filtered feature sets. The
experimental results are shown in figure 4.

The comparison results of the SN for different combina-
tions of the filtering methods and classification algorithms

based on 188D are shown in figure 4a. The line chart shows
that the KNN algorithm is the best among all three machine
learning algorithms. The performance of subsampling filter
is the best among the three filtering methods

Figure 4b shows the comparison results of the SP for dif-
ferent filtering methods and classification algorithms based
on 188D. The line chart shows that the random forest algo-
rithm is the best among all three machine learning algorithms.
The performance of no filter is the best among the three
filtering methods

Figure 4c shows the comparison results of the ACC for dif-
ferent filtering methods and classification algorithms based
on 188D. The line chart shows that the random forest algo-
rithm can achieve the best ACC when the oversampling filter
is applied to the feature set.

Figure 4d shows the comparison results of theMCC for dif-
ferent filtering methods and classification algorithms based
on 188D. The line chart shows that the random forest algo-
rithm can achieve the best MCCwhen the oversampling filter
is applied to the feature set.

From the experimental results above, we can find that the
random forest and oversampling filter method is the most
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FIGURE 5. Performance comparison for CKSAAP in different cases.

suitable model for the 188D to identify the SNARE proteins,
represented by 188D-RF-oversample.

D. PERFORMANCE FOR THE CKSAAP
In this section, the CKSAAPmethod is used to extract the fea-
tures from the SNAREs data set. The subsampling, oversam-
pling filters and no filter are applied to the extracted CTDT
features. The adaboost, KNN and random forest classification
algorithms are used to classify the filtered feature sets.

The experimental results are shown in figure 5. The com-
parison results of the SN for different combinations of the
filtering methods and classification algorithms based on
CKSAAP are shown in figure 5a. The line chart shows
that the KNN algorithm can achieve the best SN when the
subsampling filter is applied to the feature set.

Figure 5b shows the comparison results of the SP for dif-
ferent filtering methods and classification algorithms based
on CKSAAP. The line chart shows that the random forest
algorithm is the best among all three machine learning algo-
rithms. The performance of no filter is the best among the
three filtering methods

Figure 5c shows the comparison results of the ACC for dif-
ferent filtering methods and classification algorithms based
on CKSAAP. The line chart shows that the KNN algorithm
can achieve the best ACC when the no filter is applied to the
feature set.

Figure 5d shows the comparison results of theMCC for dif-
ferent filtering methods and classification algorithms based
on CKSAAP. The line chart shows that the KNN algorithm
can achieve the best MCC when the no filter is applied to the
feature set.

From the experimental results above, we can find that the
KNN and no filter method is the most suitable model for the
CKSAAP to identify the SNARE proteins, represented by
CKSAAP-KNN-nofilter.

E. COMPARISON WITH THE OTHER ALGORITHM
In this section, we compare the performance of the 4 models
found by the above experiments with the deep learning model
SNARE-CNN. The CNN based method is based on the PSSA
feature extraction method. After extracting the PSSA features
from the SNARE sequences, a CNN network is trained based
on the feature set.
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FIGURE 6. Performance comparison among the hybrid model with the SNARE-CNN.

The 10-fold cross validation approach is used to compared
the performance of our hybridmodel with SNARE-CNN. The
comparison reults are shown in figure 6. It shows that, for SN,
only the performance of 188D-RF-oversamplemodel is better
than the CNN model. For SP, ACC and MCC, the perfor-
mance of 188D-RF-oversample and CKSAAP-KNN-nofilter
is better than the CNN model.

From the results we can see that the performance of the
random forest algorithm with oversampling filter based on
188D feature set is better than that of the SNARE-CNN.
Our final hybrid model is the random forest algorithm with
oversampling filter based on 188D.

IV. CONCLUSION
In this paper, we propose a novel hybrid model, which tries
different kinds of combinations of feature extractionmethods,
filter methods and classification algorithms to identify the
SNARE proteins.We find that the performance of the random
forest algorithm with oversampling filter and 188D feature
extraction method is the best among all combinations, whose
performance is better than that of the SNARE-CNN.
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