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ABSTRACT This paper investigates the motion planning problem of planar m-link (m ≥ 4) closed chains
among point obstacles with extension to arbitrary convex 2-D obstacles. The configuration space (C-space)
of closed chains is embedded into two copies of m-3 dimensional tori. Two structural sets, the C-boundaries
and the C-obstacles, are analyzed based upon the C-spaces of recursively constructed lower-dimensional
closed chains. They contain essential structural information about the connectivity of the collision-free
portion (C-free) of the C-space. By approximating each workspace obstacle by a set of points on the
boundary after dilation, its corresponding C-obstacle is guaranteed to be covered by the C-obstacle of the
convex hull of the point set. This permits a resolution-complete roadmap algorithm that puts specific bias
for sampling the structural sets. Several benchmark examples are presented that compare the performance
between our algorithm and the traditional algorithms. Animation videos and source codes are also provided
which demonstrate the effectiveness of our method for closed chains of up to 20 links.

INDEX TERMS Path planning, closed chains, boundary variety, bifurcation, narrow passages, sampling
algorithm.

I. INTRODUCTION
Closed-chain manipulators and mechanisms have recently
received lots of interests because of their potential advantages
over their serial counterparts. They have appeared in many
application domains, including parallel machining tools,
multipod robots, spatial robotic arms, and humanoids. How-
ever, their closed-loop structure gives rise to joint variable
dependencies, which manifest in a topologically complex
configuration space. An important consequence of this is that,
in general, the C-space cannot be globally (and smoothly)
parameterized by a single set of d variables (for example a
subset of the joint displacements), where d is the degrees
of freedom (DoFs) of the manipulator. In other words, any
d-dimensional atlas of the C-space will contain multiple
charts. This fact generally makes motion planning more
challenging for closed-chain manipulators than it is for serial
manipulators.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

A. PREVIOUS WORK
It is well known that general exact motion planning
algorithms for serial manipulators are highly complex
[1]–[4], [10]. In fact, the most efficient exact planning algo-
rithm is Canny’s, whose worst-case time complexity is expo-
nential in the dimension of C-space [2]. In principle, exact
algorithms can be applied to systemswith holonomic equality
constraints such as those imposed by the kinematic loops
in closed-chain manipulators ‘‘by defining convenient charts
and managing them’’ (see [3], page 411). However, the dif-
ficulty of implementing exact algorithms for general sys-
tems fueled a paradigm shift to sampling-based algorithms,
in which the probabilistic roadmap (PRM) algorithm and the
rapidly-exploring random tree (RRT) algorithm are the two
most widely adopted methods [5]–[7].

Sampling-based algorithms build a graph that approxi-
mates the global structure of C-free. The graph has nodes
that correspond to selected points of C-free and arcs between
nodes that indicate path connectedness between the cor-
responding points. The graph can be thought of a net-
work of highways, or a roadmap, of C-free. The roadmap
becomes suitable formotion planningwhen the following two
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attributes are attained: (1) there is a one-to-one correspon-
dence between components of the graph and those of C-free,
and (2) given an arbitrary point in C-free, it is easy to find a
path connecting it to the graph. At this point, motion planning
is essentially reduced to graph searching.

Sampling-based algorithms have been quite successful for
systems whose C-space can be parameterized by a single
chart with number of coordinates equal to the DoFs of the
system, but less successful otherwise [8], [11], [23]. Even
though one can always generate an ambient space parametriz-
able by a single chart by choosing more parameters than the
dimension of C-space, the number of sample points needed
to construct a good roadmap for C-space submanifolds grows
significantly (if not exponentially) with the dimension of the
ambient space

To overcome this difficulty, one needs an efficient algo-
rithm that generates well distributed samples on the C-space
submanifold, and a fast local planner for joining pairs of
samples for constructing the roadmap. Two different strate-
gies have been proposed to solve the challenge. The first
one [11] breaks a closed chain into several open chains,
and then randomly generates the configurations for one of
the chains (called master chain), and those of the remain-
ing chains (called slave chain) by inverse kinematics (IK).
This method guarantees that the generated samples precisely
stay on the submanifold, but is subject to the draw back of
significant failure rate in IK because a large portion of the
workspace of the master chain might not be reachable by the
slave chains. The second route samples the ambient space
first and then projects them onto the submanifold through
iterations. Yakey et al. [8] proposed a randomized gradient
decent algorithm (RGD) for closing the loop gap. However,
this algorithm relies on parameter tuning and might take long
time to converge for some samples in the ambient space.
In [21] it has been argued that the RGD algorithm is not
as efficient as Jacobian pseudo-inverse method, which is
widely used for manipulation planning on constraint mani-
folds [23], [24] and protein loop-closure problem [26]. In [15]
Kim et al. observed that projections of points in a neighbor-
hood of the ambient space do not always create new samples
on the submanifold due to the curved structure of C-space.
They devised a different algorithm that samples the tangent
bundle of the C-space submanifold and uses the heuristics
of C-space curvature for determining the sampling radius on
each tangent space. As the result the number of projections
is highly reduced. However, as the computation of tangent
spaces and local curvature relies on the local parametriza-
tion, the difficulties of managing different charts remain.
Moreover projections are still required to find a sequence of
intermediate tangent spaces between start and goal configu-
rations, and to transform the collection of milestones on these
tangent spaces into the final path on the C-space submanifold.
Similar ideas have been adopted by Porta and Jaillet [30]
and Jaillet and Porta [31] who proposed an atlas-based RRT
algorithmwhich approximates the manifold using a sequence
of coordinate charts, and generates samples directly from the

charts for expanding a random tree. This method does not
build a complete atlas, but only a subset guided by the RRT
itself. However, this algorithmmight requiremany coordinate
charts to achieve smooth covering of the manifold, and extra
computation time spending on high-dimensional continua-
tion between neighbor charts and projections between the
charts and the C-space submanifold.

When a C-space manifold has to be covered by multiple
coordinate charts, there exists singular loci for every sin-
gle coordinate chart [17]–[19] which are crucial for estab-
lishing the adjacency between different charts. Traditional
sampling-based approach will often predict wrong results if
they are not properly handled. Although the random loop
generator (RLG) method [9] improves the successful rate of
the IK based sampling algorithms by estimating the range
of each joint in the linkage that obeys the loop closure
constraint, the algorithm might fail to sample some critical
regions in C-space, e.g., the singular loci. The atlas-based
RRT [30] applies a parametrization continuation method
which essentially computes the overlapping area between
neighboring charts, and then creates a linear boundary that
bridges the two charts based upon artificially designed con-
straints. However, this continuation method only applies to
single-query problems and can be time consuming if a chart
is adjacent to many others.

When robot workspace containsmultiple obstacles, narrow
passages might develop around C-obstacles. Geometrically
these are local subsets of C-free whose thickness along a
codimension-1 hyper-surface is less than a small positive
number ε > 0. Narrow passages pose great challenges
to most of the traditional algorithms. The most successful
methods to handling narrow passages are the obstacle-based
PRM algorithm developed by Amato et al. [22], and the
penetration-after-dilation method of Hsu et al. [25]. The
former method applies the heuristics that narrow passages
only exist when the distance between a pair of C-obstacles is
sufficiently small and so samples in narrow passages must be
close to at least one C-obstacle, while the latter method dilates
C-free by shrinking workspace obstacles or robot links, and
then identifies the possible penetrations between original
links and workspace obstacles. In general the former method
generates more samples around C-obstacles and is suited for
multi-query problems, while the latter one is only applicable
to single-query problems and might fail to give a solution
if penetrations can not be eliminated by local resampling.
Methods for handling both narrow passages and closed-loop
constraints have not been seen in any literature.

The difficulties associated with applying sampling-based
motion planning methods to closed-chain manipulators and
the availability of new results in topology led to renewed
interest in exact planning algorithms for closed kinematic
chains (see Fig. 1) [12]–[14]. Trinkle and Milgram derived
some global topological properties of the C-space (the num-
ber of components and the structures of the components) of
single-loop closed chains with spherical joints in a workspace
without obstacles [12]. They show that the C-space is the
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FIGURE 1. A closed 6-chain among point obstacles (shown as small
discs).

union of manifolds that are products of spheres and intervals.
An efficient path planning algorithm can be carried out by
iteratively moving those joints corresponding to the spheres
to their goals, while the remaining links follow accordingly
so that the loop can be closed.

B. CONTRIBUTION
In this paper, we employ the two structural sets, the
C-boundaries and C-obstacles, for solving the challenges
from both C-space bifurcations and narrow passages. Our
innovations are summarized as the following.

1) Minimal parametrization of C-space with only two
coordinate charts, each embedded in an
(m-3)-dimensional tori;

2) Characterize C-space bifurcations in terms of boundary
varieties;

3) Cover each workspace obstacle by the convex hull of
a set of point obstacles; Identify and sample narrow
passages through computing configurations for which
the closed chain intersects a point obstacle in the set
obtained above;

4) Sample both coordinate charts, the boundary varieties,
and the narrow passages through an algorithm that pre-
cisely computes the feasible range of each individual
joint angle;

5) Strong experimental evidences that demonstrate the
importance of the structural sets in solving challenging
motion planning problems;

II. BASIC NOTATION AND TERMINOLOGY
Imagine a planar serial chain of m − 1 links connected by
revolute joints, with one end free, and the other connected to
the ground. The ground is regarded as linkm and is referred to
as the base of the chain. Relative to the base, the open chain
has m − 1 degrees of freedom and its C-space is simply a
product ofm−1 circles, (i.e., (S1)m−1). A closedm-chain can
be constructed by attaching the distal end of the open chain to
the base as shown in Fig. 1. Mathematically, this attachment
imposes two algebraic equality constraints, which cause the
C-space C of the closed chain to become a compact, closed,
real, variety of dimension m − 3. This variety is a manifold
as long as the distance between the two anchors is not equal
to one of the 2m−2 critical lengths [12].

III. C-SPACE OF PLANAR CLOSED CHAINS
Here we summarize two results from topological approaches
to motion planning that are crucial to the work presented here.

FIGURE 2. Construction of C-space of closed chains via singular circles of
an open chain.

The first result is about the connectivity of C of a planar closed
chain. We need a concept called long links [12] which is
defined as a subset L of the links such that the sum of the
lengths of every pair of distinct links in L is strictly greater
than half of the sum of the lengths of all m links. Note that L
may not be unique. Let L? be a set with maximal cardinality.
Then the number of long links of a closed chain is defined as
|L?|. Due to the strict inequality in the definition, the number
of long links |L?| must be 0, 2, or 3. If |L?| is equal to 3, C
has two components; otherwise, it has one.

The second result gives the topology of C. It says that for
given link lengths {l1, . . . , lm−1} and base length lm that is
generic with respect to thosem−1 lengths, C is the boundary
of a manifold with boundary, which is given as the union
of submanifolds of the form (S1)k × Im−2−k [12], where Id

denotes the interval of dimension d .
To clarify the above conclusion, consider Fig. 2, which

shows a horizontal base link and three moveable links
anchored at the center of four concentric circles. These circles
are the singular circles (not drawn to scale) of the open
3-chain. If the end point of the 3-chain is anchored at any
point it can reach, its C-space C is that of a closed 4-chain.
If the anchor point is on one of the singular circles, the three
links in the chain can be arranged to be colinear and C is either
a single point or a figure eight, while if the anchor point is
interior to one of the three reachable annuli, then C is one
circle or two disjoint circles (as indicated by the small circles
at the 12 o’clock position of the concentric circles). Assume
that the end point of the open 3-chain is constrained to a
one-dimensional curve γ . This effectively converts the open
chain into a closed chain whose C-space can be constructed
by ‘‘gluing’’ together all the C-spaces at each point as we
move along γ . For example, begin at the left end of curve
γ1 and traverse it to its other end. Initially, the C-space over
each point of γ1 is empty, since the open 3-chain cannot reach
those points. At the intersection with the outer-most circle, C
of the closed chain is a point, but theworkspace segment lying
inside the outer-most annular region generates a tube. At the
point where γ1 intersects the next singular circle, C of the
closed 4-chain is a figure eight. This signifies a bifurcation
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of the tube into two tubes. The two tubes coalesce into a
single tube at the next crossing of the same singular circle.
Finally, at the end of the curve, C is a circle. Thus C of the
mechanism with the end of the open 3-chain constrained to
lie on γ1 is a tube pinched closed at one end, open at the
other, and with a hole through the tube somewhere between
the two ends. Applying the same logic to the closed 5-chain
that would result from connecting the end of the open 3-chain
to points on γ2, one finds that C of the closed 5-chain is a
sphere. This result shows that C of anm-link closed chain can
be obtained by gluing the C-spaces of (m − 1)-link closed
chains in a recursive manner.

IV. PARAMETRIZATION OF C-SPACE, BOUNDARY AND
COLLISION VARIETIES
In this section we propose a minimal parametrization of C
which employs only two coordinate charts. Since C of a
generic closed m-chain is an (m-3)-dimensional manifold,
it can be locally parameterized by a set of m− 3 joint angles.
However, fixing the orientations ofm−3 links (including the
fixed base angle) does not fix the configuration of the closed
chain. Returning to Fig. 1, fixing φ3, φ4 and φ5 still allows
elbow-up and elbow-down postures of links 1 and 2.

This last result suggests partitioning C into an elbow-up
piece and an elbow-down piece as follows. Break the closed
chain at the third joint, thus creating an open 2-chain CH1
with link lengths {l1, l2} and an open (m-3)-chain CH2 with
link lengths {l3, . . . , lm−1} based at the point (lm, 0). The
C-space of CH2 is the (m-3)-dimensional torus. For an arbi-
trary point in this space, the chain can be closed in 0, 1,
or 2 configurations of CH1. When there are two configura-
tions, they are labeled elbow-up and elbow-down. Since there
are never more than two configurations that close the loop,
two copies of the torus suffice to represent C of the closed
chain. When there is only one configuration, the elbow-up
and elbow-down configurations have converged, so at these
points, the tori are connected. These configurations form a
variety referred to as the boundary variety, which plays a key
role in stitching together the C-space patches in both tori.
Example 1 (Minimal Coordinate Charts of a Closed

5-Chain in Three Different Cases) Consider a closed 5-chain,
with link lengths, [1, 1.3, 4, 4, 5]T . There are two point
obstacles in the workspace p1 = (5.5, 1) and p2 = (2, 2).
The C-space of this chain has two components, since it has
three long links. Obviously, we could choose any two joint
angles among (φ1, . . . , φ4) as parameters and then embed
the C-space into the elbow-up and elbow-down 2-D tori.
However, depending on the chosen joint angle parameters,
the portion of the C-space on each tori may or may not con-
tain boundary varieties. When the C-space is parametrized
by (φ3, φ4), it does not cover the entire elbow-up and
elbow-down tori, but two separate irregular annuli each
enclosed by two boundary curves as shown in Fig. 3-(b).
The place and size of the C-space regions inside both torus
are exactly same so only one torus is drawn here. The cor-
responding pair of annuli in the elbow-up and elbow-down

FIGURE 3. (a): Two configurations of a 5-link closed chain, 2 point
obstacles, and 8 dilated point obstacles; (b): C-space regions embedded
in both elbow-up and elbow-down (φ3, φ4) tori are exactly same, and
composed of two disconnected irregular annuli (in blue) which are
bounded by two curves (in red).

tori are glued together along their boundaries to form a 2-D
torus. In this case, the C-space is two disjoint tori, a con-
clusion which can also be deduced using the argument in
Section III. When the C-space is parameterized by (φ1, φ2),
we recall a result from [12] that when a closed chain has three
long links, its C-space is the products of circles correspond-
ing to the short links.1 Therefore, the C-space covers the
entire two disconnected tori without boundaries, as shown in
Fig. 4-(a) and 4-(b).

When a closed chain has only 0 or 2 long links, its C-space
has only one component. Then there is a patch in both
tori. The two patches pinch together along the boundary
varieties. Consider another closed chain with link lengths
[2, 2.3, 2.35, 3.15, 5]T . It has 2 long links. Fig. 5-(a) and
Fig. 5-(b) show the C-space patch in each torus. Fig. 6-(a)
and Fig. 6-(b) show the C-space patch (in each torus) of a
close chain with 0 long links, whose vector of link lengths is
[2, 2.3, 2.6, 2.9, 3]T .

A. BOUNDARY VARIETY
Boundary varietyB arises from covering C withmultiple local
coordinate charts of exactly same dimension as C, in our case
which are simply two copies of m − 3 dimensional tori. Its
size and shape depend on the chosen local parameters, as

1For planar closed chains with 3 long links, the parametrization using the
joint angles of short links are referred to as canonical parametrization.
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FIGURE 4. (a): C-space covers two entire (φ1, φ2) tori without
boundaries; (b): The elbow-up (φ1, φ2) torus contains no collision
varieties because the obstacles can only be reached by l3 and l4 in
elbow-down configuration.

shown in Example 1. In the simplest case that the closed
chain has three long links, the boundary variety becomes
empty when canonical parametrization is adopted. In this
subsection, we show that B is the union of C-spaces of two
lower-dimensional closed chains.

Refer to Fig. 1, let us break the closedm-chain into an open
2-chain CH1, and an open (m-3)-chain CH2. The boundary
variety B is the set of configurations for which the endpoints
of CH1 and CH2 can be connected when the links of CH1
are collinear. With the constraint of collinearity, the possible
end point locations 6 of CH1 in the workspace is a pair of
concentric circles of radii l1 + l2 and |l1 − l2| centered at the
origin. The boundary variety can now be defined by

B = f −12 (6). (1)

Note that B is the union of the C-space of the two closed (m-
1)-chains M1 and M2 with link lengths {l1 + l2, l3, . . . , lm}
and {|l1 − l2|, l3, . . . , lm}, respectively. If B is empty, as is
the case when ‖L?‖ = 3, C is not connected.

Topologically, the unreachable portion of both tori are
clipped out by B, and the remaining reachable patches, when
glued together along B, forms C.
Example 2 (Boundary Varieties for a 5-bar Closed

Chain): As shown in Fig. 3-(b), B for the closed chain
with link lengths [1, 1.3, 4, 4, 5]T are two pairs of circles
(in red) on both elbow-up and elbow-down tori. Gluing the
corresponding pairs of circles from both tori together yields
two disconnected torus, which is the topology of the C-space

FIGURE 5. A closed chain with 2 long links: (a): C-space region in
elbow-up torus; (b): C-space region in elbow-down torus.

of the closed chain. B for the closed chain in Fig. 5 and 6 are 4
circles on both elbow-up and elbow-down tori. Among the 4
circles, two (denoted C1,C2) lie in the interior, and the other
two (C3,C4) are formed by identifying the top and bottom
ends (recall they are 2π apart) of the two curve segments that
enclose the blue interior. Without considering the two interior
holes, the C-space patch in each torus is simply a cylinder by
identifying the middle-top and middle-bottom line segments
(both in blue, and are 2π apart). The two circles C3,C4 on
both ends of the cylinder in the elbow-up torus are pinched
together with those in the elbow-down torus, respectively.
This yields a 2-D torus. The pairs of interior circles C1,C2 in
the elbow-up torus, when gluing with their counterparts in the
elbow-down torus, create another two holes on the previous
2-D torus. We conclude that C of the 5-bar closed chain is a
genus-3 surface.

B. COLLISION VARIETIES
Consider first the case when the workspace has a set of
point obstacles O = {pi ∈ R2

| i = 1, . . . , n}. Let V j
pi ,

j = 1, . . . ,m − 1, denote the (m-4)-dimensional variety cor-
responding to pi lying on link j. The union of these varieties
over all links gives the contribution of pi to the obstacles Cobst
in C-space (or simply called C-obstacles):

Vpi =
m−1⋃
j=1

V j
pi .
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FIGURE 6. A closed chain with 0 long links: (a): C-space region in
elbow-up torus; (b): C-space region in elbow-down torus.

As shown in Fig. 7-(a), V j
pi is a fiber bundle, whose base man-

ifold and fiber are the C-space of the two closed chain CHb,
CH f respectively. Notice that CHb contains one prismatic
joint. The following lemma eliminates the annoying prismatic
joint inCHb through the C-space of a j+2 fully revolute-joint
closed chain, which is useful for sampling Cfree with a unified
random loop generator in Section VI.
Lemma 1: The C-space of CHb in the calculation of

V j
pi is equivalent to that of a (j + 2)-link closed chain

with only revolute joints, whose link length vector is
(l1, . . . , lj−1, 1/2lj, 1/2lj, lb), where lb is the length of the
new base link connecting the origin to pj.

Proof: See Appendix A.
Example 3 (Cobst of Point Obstacles): We introduce two

point obstacles, p1 = (5.5, 1) and p2 = (2, 2) to the example
in Fig. 3. Note that it is impossible for link 1 or 2 to touch
either point, so the corresponding varieties are empty. Con-
sequently, only the contact varieties of links 3, and 4 appear
in green and yellow respectively in 3-(b).2 If we adopt the
canonical parametrization (φ1, φ2) then the contact varieties
only appear in the elbow-down torus because the two points
can only be reached by link 3 and 4 in elbow-down config-
uration (elbow-up configuration cannot be closed by link 1
and 2). Same point obstacles are introduced in the example in

2We use ‘‘type 1 C-obst’’ for Cobst by fixed-base links, and ‘‘type 2
C-obst’’ by free-floating links.

FIGURE 7. (a): V j
pi
,1 < j < m− 1 is a fibration of the C-spaces of two

closed chains. CHb with one prismatic joint generates the base manifold
and CH f generates the fiber space for each configuration of CHb;
(b): V j

pi
, j = 1,m− 1, is the C-space of an m− 1 link closed chain.

Fig. 5. While in the example in Fig. 6, the point obstacles are
p1 = (5.5, 1) and p2 = (1, 1).

V. RESOLUTION-COMPLETE ROADMAP ALGORITHM
Our analysis in the previous sections leads to the structure
setsB and {V j

pi}which permits an exact motion planning algo-
rithm either through cell decomposition or roadmapmethods.
However, it is well known that these algorithms have high
complexity which makes their implementation formidable.
Moreover, the exact roadmap computed for the motion plan-
ning problems with point obstacles will inevitably contain
segments on the boundary of C-obstacles, and is therefore
not acceptable in practice. To solve this problem, we might
compute a resolution complete roadmap algorithm by dilating
each point obstacle in robot workspace by a factor ε > 0 (i.e.
replacing each point obstacle by a small disk of radius ε),
and approximating each disk by a convex polygon of a set
of points on the boundary circle. Here ε could be chosen as
a positive number less than a quarter of the minimal distance
among all point obstacles. The following fact is quite obvious.
Proposition 1: If a given point obstacle pi is approximated

by a set of point obstacles Qεi = {q
i
k | q

i
k ∈ R2

} lying on
the boundary after dilation by a factor ε such that pi lies in
the strict interior of the convex hull CONV (Qεi ) of Q

ε
i , then

V j
pi ⊂ V j

CONV (Qεi )
, the corresponding C-obstacle for which

link j intersects CONV (Qεi ).
As a result, a resolution-complete complete roadmap is read-
ily computed.
Proposition 2: A resolution-complete roadmap for an m-

link closed chain moving among O = {pi} can be
obtained from that of the same chain moving among Oε ,
∪iCONV (Qεi ), by applying the collision checking between
the closed chain and the strict interior of the convex hulls
CONV (Qεi ).
It is obvious that as ε → 0,Oε

→ O = {pi}, and the roadmap
based upon Oε converges to that base upon O. Proposition 1
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can be extended to the cases with arbitrary convex obstacles
in the workspace.
Proposition 3: If a convex obstacle Oi ⊂ R2 dilates by

a factor ε > 0, and let Qεi = {q
i
k | q

i
k ∈ R2

} be a set of
points on the boundary after dilation such thatOi lies strictly
in the interior of the convex hull CONV (Qεi ) of Q

ε
i , then the

collision variety V j
Oi
⊂ V j

CONV (Qεi )
.

The point set Qε , ∪Qεi is very useful for generating
milestones in Cfree which are near Cobst . For any configuration
of a link that touches a convex hull CONV (Qεi ), there is
a corresponding configuration with same orientation angle
such that the link intersects a point inQεi . Moreover, these two
configurations only differ from each other by a translation
smaller than the length of an edge in CONV (Qεi ). Therefore,
one can always achieve good coverage of the region near Cobst
by increasing the number of points in Qεi .

VI. SAMPLING-BASED ALGORITHM BASED ON
STRUCTURAL INFORMATION
The results about the structure sets B and Cobst are useful
for generating sampling points which not only stays in the
C-space submanifold, but also are collectively representing
the connectivity of Cfree faithfully.
With our parametrization, Cfree can simply be sampled by

taking points in the two copies of (S1)m−3, while throw-
ing away those unreachable by CH1 and those colliding
with obstacles. However, there are still two obstructions to
overcome when constructing graphical representation of Cfree
based upon the generated milestones. One is the bifurcation
of C itself along B. It implies that any motion joining a
pair of milestones from the two different tori must cross
B at least once. Instant jumping between the two tori is
unavoidable if no points on B get sampled and the motion of
CH1 is calculated using IK. This jumping is already known
to be dangerous and unacceptable by researchers in robot
kinematics [27]–[29].

The other difficulty is the existence of possible narrow
passages around Cobst , which has significantly smaller thick-
ness at least locally along a codimension-1 hyper-surface
compared with the overall thickness of C. The difficulty for
sampling this region could be comparable to that on B (which
is exactly codimension-1). Our overall sampling-based algo-
rithm in pseudo code is given in Algorithm 1.

Algorithm 1 can be divided into three key components,
a random loop generator, a sampler of regions near Cobst ,
and a local planner with collision checking. They are in turn
presented in the following subsections.

A. RANDOM LOOP GENERATOR THAT RESOLVES C-SPACE
BIFURCATIONS
In this subsection we present an algorithm (Algorithm 2) that
efficiently generates samples on the interior of the reachable
portion of both (m − 3)-dimensional tori as well as their
boundary variety B. The major advantages of this algorithm
include (1) it never samples invalid region on the tori for

Algorithm 1 A PRM Algorithm for m-Link Closed Chains
Require: A vector of link lengths (l1, . . . , lm), and a set of
convex obstacles O (including point obstacles as special
case), and the start and goal configurations φinit and φgoal

Ensure: Plan a collision-free path φ(t), t ∈ [0, 1] such that
φ(0) = φinit , and φ(1) = φgoal or report failure otherwise
Step 1: Dilate each obstacleOi ∈ O and sample its bound-
ary to obtain a set of points Qεi such thatOi ⊂ CONV (Qεi )

Step 2: Randomly sample the reachable portion of both
elbow-up and elbow-down (m− 3)-dimensional tori
Step 3: Randomly sample the boundary variety B
Step 4: Randomly sample regions which are close to Cobst
Step 5: Check collision of obtained samples and retain
collision-free ones
Step 6: Repeat Steps 2-5 until the desired number of sam-
ples are obtained
Step 7: Build a roadmap (a graph) by using a local planner
to join pairs of samples which are only apart up to a given
distance limit
Step 8: Connect φinit and φgoal to vertices on the roadmap
by the same local planner and distance limit
Step 9: Search the graph for a sequence of milestones
between φinit and φgoal or report failure
Step 10: Turn the sequence to a path φ(t) by applying the
local planner again

which the loop can not be closed; (2) the generated sam-
ples are well distributed. Algorithm 2 employs a special
probability measure function g(φ3, . . . , φm−1) for sampling
the C-space submanifold. From the way we pick φi given a
fixed vector (φi+1, . . . , φm−1), the probability measure g(φi |
φi+1, . . . , φm−1) in sampling φi is a uniform distribution on
a collection of intervals (also called a fiber) whose lengths
depend on (φi+1, . . . , φm−1). So g(φ3, . . . , φm−1) can be cal-
culated recursively which goes all way back to g(φm−1).
Although g(φm−1) is a constant whose value solely depends
on the vector of link lengths, g(φi, . . . φm−1) is a complex
function of (φi+1, . . . , φm−1). Furthermore, not only every
sample from Algorithm 2 is valid, but also at each step in
recursion a fiber of φi over a given set of (φi+1, . . . , φm−1)
will generate the number of samples probabilistically pro-
portional to the overall length of the collection of intervals
contained in the fiber.

B. SAMPLING REGIONS NEAR Cobst
Narrow passages might form when there are obstacles in
robot workspace. These are regions of Cfree for which its
thickness locally along a codimension-1 hyper-surface is very
small compared with other regions. It is unlikely for a random
sampling algorithm to quickly find samples in the narrow
passages. If none of them gets sampled the resulting roadmap
is incomplete and will often lead to wrong predictions for
many queries.
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Algorithm 2ARandom Loop Generator That Samples B and
the Interior of C
Require: A vector of link lengths (l1, . . . , lm), the left and
right anchor points, Pl = [0, 0]T and Pr = [lm, 0]T , and a
positive integer n > 0

Ensure: Generate n well distributed samples over the inte-
rior of both tori which satisfy the loop-closure constraint

Ensure: Generate nwell distributed samples over the bound-
ary variety B
Step 1: Initialize i = m− 2
Step 2: Compute the radii of the minimal and maximal
critical circles of the open chain (l1, . . . , li) based at Pl
Step 3: Calculate the intersections between the above two
critical circles and the circle based at Pr of radius l(i+1)
Step 4: Identify the interval on the latter circle contained in
the workspace of the open chain based at Pl using circle-
circle intersection
Step 5: Uniformly sample φ(i+1) from these intervals and
fixing it, update the coordinates of right anchor
Step 6: Set i = i− 1 and repeat Step 1 to 5 until i = 3
Step 7: Apply the IK of the (l1+ l2, l3) chain for (φ1, φ2 =
φ1, φ3), or the IK of the (|11 − l2|, l3) chain for (φ1, φ2 =
φ1 + π, φ3); these are points on B
Step 8 Repeat Step 2 to 5 for i = 2
Step 9: Apply the IK of the (l1, l2) chain for (φ1, φ2); these
are points on the interior of both tori
Step 10: Repeat Step 1 to 9 until n samples on both the
interior and boundary are generated

It has been observed by Rodriguez et al. [20] and
Amato et al. [22] that samples near Cobst are very helpful for
improving the visibility of robots if narrow passages develop
around Cobst . Because of the small thickness of the narrow
passages, every sample in them is close to at least one of the
C-obstacles. Such closeness manifests in a small gap between
a workspace obstacle and at least one link of the closed chain.
Recall that Qεi comes from the boundary of a slightly-dilated
Oi, and more over we know that Cobst ⊂ ∪i,jV j

CONV (Qεi )
from Proposition 1, 2, and 3. Therefore configurations in Cfree
for which one of the links intersects a point obstacle in Qε

must be near Cobst . The sampling algorithm is provided in
Algorithm 3.

C. COLLISION CHECKING AND LOCAL PLANNER
Both Algorithm 2 and 3 rely on collision checking to elim-
inate invalid configurations. By triangulating CONV (Qεi )
and all robot links, collision checking can be performed by
triangle-triangle intersection checking.

The next step after filtering out invalid samples is to
construct a roadmap based upon the set of generated
collision-free samples. This requires an efficient local plan-
ner to connect nearby samples. Although C might not be
convex, our parametrization of C as a pair of elbow-up
and elbow-down (m − 3)-D tori allows us to construct
an efficient local planner based upon a minimal-distance

Algorithm 3 Sampling Regions Near Cobst
Require: A vector of link lengths (l1, . . . , lm), the left and

right anchor points, Pl = [0, 0]T and Pr = [lm, 0]T , a
set of n1 point obstacles in the dilated point obstacle set
Qε = {pi}, and a positive integer n2 > 0

Ensure: Generate n2 samples on each collision variety V j
pi if

it is not empty
for i = 1 to n1 do
for j = 1 to m− 1 do
Break the closed chain into a left open chain
(l1, . . . , lj) based at Pl and a right open chain
(l(j+1), . . . , l(m−1)) based at Pr
if pi can be reached by the left open chain then
Left open chain forms a closed chain CHb when
link j insects pi
while number of generated samples < n2 do
Use Algorithm 2 (and also the result in
Lemma 1) to sample CHb, and for each such
sample, the right open chain forms a closed chain
CH f (refer to Fig. 7)
Use Algorithm 2 to sample CH f
Discard the sample if it is in collision; and keep
valid one

end while
end if

end for
end for

joint-interpolation motion of CH2 based at Pr = [lm, 0]T ,
and an accordion motion of CH1 based at Pl = [0, 0]T .
Given a pair of configurations φ1 = (φ11 , φ

1
2 , ψ

1) and
φ2 = (φ21 , φ

2
2 , ψ

2) of the original closed chain where ψ i
=

(φi3, . . . , φ
i
m−1), i = 1, 2, are the corresponding pair of

configurations for CH2. If φ12 −φ
1
1 has same sign as φ22 −φ

2
1

(i.e., they belong to the same torus), a local planner for CH2
is constructed as

ψ(t) = ψ1
+ δψ ∗ t, t ∈ [0, 1] , (2)

where δψ is the vector ψ2
− ψ1 projected (through mod-

ular operation) to the interval [−π, π]m−3. Under ψ(t)
the end-effector of CH2 follows a smooth curve γ (t) =
f2(ψ(t)) ∈ R2 between γ (0) = f2(ψ1) ∈ R2 and γ (1) =
f2(ψ2) ∈ R2 (Recall that f2 is the forward kinematic map
of CH2). If every point in γ (t) can be closed by CH1, then
we might apply the IK map f −11 of CH1 to compute an
interpolation which is ‘‘compliant’’ with γ (t). f −11 (γ (t)) is
referred to as an accordion move if the same sign as (φ11 , φ

1
2 )

(also (φ21 , φ
2
2 )) is adopted in the calculation of the IK for every

point in γ (t).
Theorem 1: Let rmin = ‖l1 − l2‖, and rmax = l1 + l2.

Suppose the start and end points of γ (t) lies in the strict
interior of the workspace of CH1, i.e., there exists 0 < δr <
1
2 (rmax−rmin) such that rmin+δr < ‖γ (0)−Pl‖ < rmax−δr
and rmin+δr < ‖γ (1)−Pl‖ < rmax−δr . Then there exists an
ε > 0 such that as long as ‖δψ‖ < ε, rmin < ‖γ (t)− Pl‖ <
rmax for all t ∈ [0, 1]. If only one end of γ (t) lies in the strict
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FIGURE 8. (a): Start and goal configurations at two different tori;
(b): Boundary and collision varieties, roadmap and path segment on the
elbow-up torus; (c): Boundary and collision varieties, roadmap and path
segment on the elbow-down torus.

FIGURE 9. Start (in green) and goal (in red) configurations of a 6-bar
closed chain, original point obstacle set (blue star) and the dilated point
obstacle set (blue dot).

interior while the other end lies on a critical circle, then the
same inequality holds for all t ∈ (0, 1).

Proof: See Appendix B. �
Theorem 1 shows that as long as φ1 and φ2 have same sign

(i.e. belong to the same torus), andψ1 andψ2 are sufficiently

FIGURE 10. (a): First segment of robot path; (b): Second segment of robot
path.

FIGURE 11. (a): Third segment of robot path; (b): Fourth segment of robot
path.

close, then there is always an accordion move for CH1 that
closes the loop at every t ∈ [0, 1]. Conversely if φ1 and
φ2 have different sign, then the above local planner will fail.
Fortunately, the milestones generated from Algorithm 2 con-
tain samples exactly on the boundary variety B, which can be
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FIGURE 12. (a): Fifth segment of robot path; (b): Last segment of robot
path.

TABLE 1. Performance comparison between algorithms with and without
boundary sampling.

used for bridging pairs of configurations in different tori. For
example φ1 and φ2 in different tori (but their components ψ1

and ψ2 are sufficient close) can be joined by two accordion
moves, from φ1 to a point φ3 ∈ B, and then from φ3 to φ2.

VII. EXPERIMENTAL RESULTS
Our method was implemented in Matlab and tested for
many planning problems (with number of links from
6 to 19). All Matlab programs were run under Win-
dows 10 and Intel Core i7. Our software can be down-
loaded from https://ai.stanford.edu/~liugf/
closedchain.html, in which animation videos can be
found for all the examples discussed below.

A. PATH PLANNING BETWEEN TWO CONFIGURATIONS IN
DIFFERENT TORI
Our first set of experiments is centered around the chal-
lenges of C-space bifurcation caused by local coordinate
charts. First we apply Algorithm 1 (denoted as Alg-1) and
the traditional PRM algorithm without boundary samples

FIGURE 13. (a): Start and goal configurations confined by two close point
obstacles; (b): Roadmap on the elbow-up torus (using non-canonical
parametrization); (c): Roadmap and path on the elbow-down torus (using
non-canonical parametrization).

TABLE 2. Performance comparison between algorithms for a 5-bar closed
chain moving through narrow passages.

(denoted as Alg-2) to the problem of a 5-bar closed chain
in Fig. 8-(a), in which the start and goal configurations lie
in the two different tori. This chain has same link length
vector as the example in Section IV and Fig. 3, but with
different set of point obstacles, (1, 1) and (1, 1.5). Both
tori are parametrized by (φ3, φ4). The experimental results
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FIGURE 14. (a): Roadmap on the elbow-up torus (using canonical
parametrization); (b): Roadmap and path on the elbow-down torus (using
canonical parametrization).

are summarized in Table 1, where regular samples simply
mean they lie neither on B nor near Cobst . It shows that the
traditional PRM algorithm takes much longer computation
time and requires more samples before obtaining the correct
answer. Notice that here we regard any instantaneous jump of
the elbow angle (φ2−φ1) of more than 0.04 radian (around 2
degree) as invalid due to the reason explained in the beginning
of Section VI where we present the first challenge of C-space
bifurcation. Samples on B help quickly find the path as shown
in Fig. 8-(b) and 8-(c). Next we apply our algorithm to a 6-bar
closed chain moving among 6 point obstacles in Fig. 9. The
start and goal configurations

(−0.6363,−1.2183, 0.0416, 1.9416,−0.1416, π)

(−0.9063, 0.8648, 0.0416,−2.0416, 0.3416, π)

lie in two different tori. Our software generates 535 random
samples (in less than a minute) which satisfy the loop-closure
constraints and are collision-free. Among which 100 samples
are regular, 100 samples on B, and the remaining ones near
Cobst . Fig. 10, 11, and 12 show the resulting path. In the
middle of path segment 5 in Fig. 12-(a), the robot finishes
a motion that crosses B from the elbow-up torus to the
elbow-down torus, through a sample on B.

B. NARROW PASSAGE PROBLEM
Our second sets of experiments are specifically designed
so that the C-space of the target closed chain contains
narrow passages. Fig. 13-(a) shows a 5-bar closed chain

FIGURE 15. Start and goal configurations of a 12-bar closed chain with
two point obstacles, whose C-space contains a narrow passage.

FIGURE 16. Start (in green) and goal (in red) configurations of a 10-bar
closed-chain moving among 10 point obstacles.

FIGURE 17. (a): First segment of robot path; (b): Second segment of robot
path.

moving among two sufficiently close point obstacles. The
link length vector of this chain is [1, 1.3, 4, 4, 5]T , and the
two point obstacles are (1, 1.1) and (1, 1.4). The start and
goal configurations are [−2.4, 0.75, 0.8847,−0.9727, π]T

and [2.1, 0.15, 0.7503,−1.2415, π]T respectively. At both
configurations link 3 is confined between the two point obsta-
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FIGURE 18. (a): Third segment of robot path; (b): Fourth segment of robot
path.

FIGURE 19. (a): Fifth segment of robot path; (b): Last segment of robot
path.

cles. We apply Alg-1 with both non-canonical (φ3, φ4) and
canonical parameters (φ1, φ2). The generated roadmaps in
different parameter sets are respectively shown in Fig. 13-(a),
Fig. 13-(b), Fig. 14-(a), and Fig. 14-(b). Both roadmaps yield
correct paths through the samples near Cobst .
The performance comparison between the algorithms with

(Alg-1) and without (Alg-2) samples near Cobst is given in
Table 2. It clearly demonstrates the importance of samples
near Cobst .

TABLE 3. Performance comparison between algorithms for a 12-bar
closed chain moving through narrow passages.

Next we compare the performance of both algorithms to a
narrow passage problem of a 12-bar closed chain, also with
two tightly arranged point obstacles, (4, 1.9) and (4, 2.5),
as shown in Fig. 15. The link length vector for this mecha-
nism is [1.2000, 2.0000, 0.5512, 1.9457, 1.2131, 2.9482,
4.5684, 0.3, 0.3, 5, 2.5130, 8.5815]T , and the start and goal
configurations are, respectively, [−0.3800, 0.5708, 2.2956,
0.6335, 0, −0.3809, −1.2904, 3.91134, 2.3753, 1.1734,
3.6964, 3.1416]T and [0.2388, 1.7032, 1.4992, − 0.3222,
0, − 1.0564, − 0.5959, 1.1011, 0.6490, 1.6947, 4.5497,
3.1416]T . Our algorithm can correctly plan a path that move
links of the chain through the workspace narrow passages to
their desired locations. The traditional algorithm turns out to
be very difficult to find a valid path, see Table 3. Videos for
both these two narrow-passage problems can be found in our
website.

C. HIGH-DIMENSIONAL CLOSED CHAINS IN GENERAL
In general situations when C has no narrow passages, C tends
to be more expansive as the number links increase. Both
the traditional PRM algorithm and our algorithm can yield
reasonable solution.

For example we apply our algorithm to the example of a
10-bar closed chain moving among 10 point obstacles. The
link lengths are {1.2, 2.0, 0.5512, 1.9457, 1.2131, 2.9482,
4.5684, 0.3, 0.3, 8.5815}, and the start and goal configu-
rations are {0.6669,−0.3802,−0.6014,−1.1834, 0.0765,
1.9765,−0.1067,−0.3255,−2.7811, 3.1416} and {−0.6669,
0.3802,−0.9412, 0.8299, 0.0067,−2.0765, 0.3067, 0.3255,
2.7811, 3.1416}, respectively. Our algorithm generates over
3000 milestones (2000 samples are near Cobst ) for the
roadmap, and the resulting path is shown in Fig. 17, 18,
and 19. In this example the mechanism crosses the bound-
ary variety in Fig. 17-(a), and pass through several points
in the dilated point obstacle set in Fig. 18 and 19 toward
far left for adjusting the relative angle between link 6 and
7 before arriving the goal configuration. We remark that
the traditional PRM algorithm can also solve this problem
because C contains no narrow passages. The only difference
is that the solution of our algorithm might include milestones
near Cobst .
Although it is hard to compare the performances of

both algorithms to a specific path query problem without
narrow passages. A meaningful comparison can be car-
ried out by counting the successful rate of two equal-size
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TABLE 4. Successful rate of roadmaps under a set of start-goal pairs.

roadmaps generated by Alg-1 and Alg-2, respectively, under
a set of randomly generated start-goal pairs. Table 4 gives
the comparison results for an 18-bar closed chain moving
among 10 obstacles, and a 20-bar closed chain moving
among 12 obstacles. Appendix C provides an estimation
of the number of components under different conditions.
In our case the elbow-up and elbow-down tori are con-
nected (using the test of the long link set introduced in
Section III). Moreover the number of components for the
10-bar and 20-bare cases is estimated to be 1024 and
2048 respectively. Therefore Alg-1 yields a better roadmap
with high successful rate in path queries, and more accu-
rate estimation on the number of connected components
of Cfree.

VIII. CONCLUSION
This paper presents a framework that employs the struc-
tural sets of C for solving the motion planning problems
of planar closed chains moving among point obstacles with
extension to arbitrary convex 2-D obstacles. This framework
combines results on the topology of C, its boundary variety B
and the collision varieties Cobst . First, C is covered by two
charts, each embedded in an (m-3)-dimensional torus. The
connectivity between the two tori is completely determined
by B. Second, the structure of B and Cobst is analyzed using
the C-spaces of lower-dimensional closed chains. We then
present a resolution-complete sampling-based algorithm by
approximating workspace obstacles as a set of point obsta-
cles. This algorithm generates well-distributed samples in the
interior of C, B, and the regions near Cobst . Compared with
traditional algorithms, this new algorithm not only avoids
massive time-consuming projections from the ambient space
to C, but also is able to solve problems for which C contains
bifurcations and narrow passages, as demonstrated by exam-
ples.

APPENDIX A
PROOF OF LEMMA 1
When link j, 1 < j < m− 1 is in contact with point obstacle
pi, the feasible range of the proximal end of link j lies in the
disk of radius lj centered at pi. This workspace is equivalent
to that of a 2-bar mechanism based at pi with link lengths
(1/2lj, 1/2lj). ThereforeV

j
pi is equivalent to the C-space of the

closed chain (l1, . . . , lj−1, 1/2lj, 1/2lj, lb), where lb = ‖pi‖.

FIGURE 20. (a): Disconnected configurations of an 18-bar chain;
(b): Disconnected configurations of a 20-bar chain.

APPENDIX B
PROOF OF THEOREM 1
We first prove that rmin < ‖γ (t)− Pl‖, and the fact ‖γ (t)−
Pl‖ < rmax can be proved in the same manner. We have

‖γ (t)− Pl‖ = ‖f2(ψ(t))− Pl‖

= ‖f2(ψ(t))− f2(ψ1)+ f2(ψ1)− Pl‖

≥ ‖f2(ψ1)− Pl‖ − ‖f2(ψ(t))− f2(ψ1)‖

≥ rmin + δr − ‖Jf2(ψ(t1))‖‖ψ(t)− ψ1
‖

for some t1 ∈ [0, 1]. Because the interval [0, 1] is compact,
‖Jf2(ψ(t1))‖ is bounded from above by a positive value η >
0. Therefore as long as ‖ψ(t)−ψ1

‖ ≤ ‖ψ2
−ψ1
‖ < ε < δr

η
,

then rmin < ‖γ (t) − Pl‖. If without generality we assume
‖γ (0) − Pl‖ = rmin, then the inequality rmin < ‖γ (t) − Pl‖
is still valid for all t ∈ (0, 1], and the equality only holds at
t = 0.

APPENDIX C
ESTIMATE THE NUMBER OF COMPONENTS OF Cfree
For a planar m-link closed chain among n convex obstacles,
although the exact number of components of Cfree is very
hard to compute (with almost same complexity as computing
a complete roadmap), it is possible to put a rough estima-
tion using topological argument. Consider the connectivity
between a pair of configurations of the chain. Geometrically
these two configurations form a closed loop in R2. The num-
ber of components of Cfree clearly depends on the number of
360-degree loops (or winding number in mathematics) of the
former loop and the subsets of obstacles contained in each
360-degree loop. The latter are in turn determined by the
overall distribution of obstacles and their distances to the two
fixed end points pl and pr . Let the entire plane be divided into
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FIGURE 21. (a): Loop formed by the two copies of a 20-bar chain contain
only up to 11 obstacles; (b): O(n2) exceptional cases with internal loops
that contain obstacles.

the top and bottom half-planes along the line PlPr . Consider
the convex hull of the obstacles as well as the two fixed end
on each half-plane. Let Lt and Lb be, respectively, the length
of the perimeter of the top and bottom convex hulls, and
L0 = max (Lt ,Lb). If k <

∑
i li
L0

< k + 1, then the number
N of connected components roughly satisfies

(2n)k < N < b(2n)(k+1), b ∈ {1, 2}. (3)

We deduce this result as follows. Refer to Fig. 20, the loop
formed by the two copies of the chains, one at start configu-
ration (green) and the other at goal configuration (red), might
contain up to n obstacles. Obviously, as long as there are
obstacles inside the loop the two configurations are discon-
nected. The feasible number of connected components can
be counted by fixing the start configuration, and let the goal
configuration vary so that the loop encloses different sets of
obstacles. Each such set leads to a new component in Cfree.
As a result, there are at least

∑n
i=0 C

i
n = 2n components

if the loop can wind around the n obstacles once. Consid-
ering the fact that C itself might contain two components,
the maximal value of b is 2. This leads to Eqn. (3). If the
chain is longer enough so that the loop can wind around the
set of obstacles twice, then the number of components can
reach 2(2n)2. Eqn. (3) tends to be accurate as the number
of links increases, because the more links the chain has,
the closer the chain behaves like a segment of a curve with
two fixed ends. For the example in Fig. 20-(b) and the sec-
ond case in Table 4,

∑
i li
L0

< 1. This is because the green
configuration, as shown in Fig. 21-(a), is not long enough
to contain all obstacles in the bottom half plane, and only
11 obstacles can be enclosed inside the loop formed by the

red and the half-green-half-yellow configurations. Although
there are exceptional cases where a configuration contains
internal loops (see Fig. 21-(b)). It is not difficult to verify
that with the given link length vector, the number of such
exceptional cases is at most O(n2). Therefore, the number
of components for the 20-bar case in Table 4 is close to
211 = 2048. Similarly for the 18-bar example in Fig. 20-(a)
and also in the first case of Table 4, the number of components
is close to 210 = 1024 because 1 <

∑
i li
L0

< 2.
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